

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Measurable Value with Agile
Ryan Shriver works out what’s the right thing to
do.

14 Through the Looking Glass
Stuart Golodetz peeks into the next room.

20 Orderly Termination of Programs
Omar Bashir tries to shut things down cleanly.

27 On Management: Caveat Emptor
Allan Kelly offers some warnings.

30 The Model Student: A Rube-ish Square
(Part 1)
Richard Harris plays with an old favourite.

35 Introduction to FastFormat (Part 1)
Matthew Wilson considers the art of library design.

OVERLOAD 89

February 2009

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Simon Farnsworth
simon@farnz.co.uk

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in
Overload 90 should be submitted by
1st March 2009 and for Overload 91
by 1st May 2009.

EDITORIAL RIC PARKIN
Watt’s going on?
Just how much power are you using...
Over the summer, I’d bought a few new electronic
devices and so reorganised all the power cables to be
neater, and allow me simple control over which were on.
To do this properly I got a simple power meter which
allowed me to make decisions informed by the actual

power usage, and a few power blocks with individual switches. Didn’t take
very long and I now have an easy and accessible ability to choose which
things are on and drawing power.
I was reminded of this during a recent thread on accu-general which
touched on whether it was pointless or not to switch off a TV at the wall.
Time to revisit my assumptions, and do some extra measuring at work –
after all in an IT business, there are an awful lot of electronic devices on
all day (and many people leave them on all night and weekend too.) If we
can save significant amounts of energy, we can save money, and perhaps
reduce CO2 emissions too.
So my power meter got dusted off and I went around getting real figures,
shown in the following two tables. The measurements are how much a
device draws when you turn it ‘off’ but it is still plugged into the power
supply, and how much it uses when being used (which is often a range for
devices such as PCs that do sophisticated power management.)

* for some reason my PC uses a smaller amount when it first gets
power than after it has been shut down.

** first figure is for shutting off the PC, the second is for putting it
into Standby.

Some things jump out here immediately. Many devices have very good
‘off’ power consumption – even zero from old audio equipment and the
DVD player – but most still draw a small amount, I suspect from the power
transformers – eg a laptop power transformer draws 0.3W even without
the laptop plugged in. The PC was an exception, which I suspect is a
combination of the PSU and the network card (there’s a function to wake
up a PC remotely via the network which would need this to be available),
but even that is only about the same as a low-power light bulb. I don’t have
a TV set-top box, but I understand that at some models were really bad –
in ‘standby’ most of the electronics stay on to download updates.
With such figures you can compare various scenarios, such as for my work
rig: leave PC on permanently (~250-300W); leave PC on but switch the
monitors off, eg via screen savers (~150W); switch everything off but
leave everything plugged in (~10W); and switch off at the wall (0W).
This shows that automatic power management can really help reduce
power consumption – it will power off monitors and spin down hard drives
when you go home or are in a meeting, saving a lot for no effort beyond
the initial setup. Getting into the habit of manually switching off devices
that are not in use can save even more, but takes some ongoing effort
(although there are some power-blocks that use a drop in power use from
one socket to switch off everything automatically which makes this even
easier); and the final switch off at the wall saves a little bit more, roughly
equivalent of a low energy light bulb, but can also be made easier by an
accessible power block with a master switch – I’ve one that’s designed to
sit on a desk and act as a power block and network cabling.
This last explains why so many people don’t bother switching off at the
wall – it’s more effort to do so, and doesn’t save much. Some argue that
it’s not worth it, especially when compared to the fluctuations in normal
usage. Of course those fluctuations happen anyway, and this saves an

Device Off (W) In Use (W)

Amp 0 12

CD 0 9

Radio 0 8.5

TV (also used as PC monitor) 0.5 85

DVD 0 20

Power block N/A 0.3

Broadband Cable Modem N/A 8.5

Wireless Router N/A 4.5

PC 4.5/8.8* 85...160

PS3 1.6 100...113

Wii 1.7 16.5

Table 1: Home

Device Off (W) In Use (W)

PC 5/75** 130...150

Monitor 0.4-1.5 30...45

Docking station 2.4 5.4

Phone Charger 0.7 3.2

Laptop 0.7 30...50

Laptop Transformer N/A 0.3

USB Hub N/A 3.8

Total system (4 monitors) ~10 250...300

Table 2: Work

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | February 2009

EDITORIALRIC PARKIN
extra, independent, amount. And even if it looks small for the individual,
when you add it up around a whole office, town and country, this small
saving accumulates and becomes significant.
But this is just looking at the small, personal stuff. Are there more
systematic changes to our IT systems to make a big difference?
The first is for us to not buy or use a device we don’t really need. An
interesting blog recently on how start-ups can save money [Startup]
suggests not buying everyone a phone, and not to bother with an in-house
email server.
The next is for manufacturers to reduce the energy needed to create and
run devices. This takes time and we can only indirectly influence this as
consumers, but sometimes we can make a difference as developers – I’ve
spent time making sure software correctly puts hardware into a low power
state. It might only save a small amount per device, but with a large
customer base such actions have a significant total effect.
Suitably setting up a computer’s power management settings can have a
significant ongoing effect – powering off screens, hard disks, and
eventually putting the PC into hibernate will trim unnecessary costs, and
can be significant when they are added up over the whole office. A good
IT department can influence things here.
Another possibility is to not use complex, power hungry, computers
directly – with fast networks, virtualisation, and server farms we can do
many tasks using only small network appliances sharing processing
power. This still uses power-hungry computers, but they are much less
likely to be idle, and they are now centrally managed and so power usage
can be controlled more easily. And as power is a major cost, there is a
strong incentive for the management to actively control it. A neat example
of this: one company is going to build a server farm in Inverness, citing
the lower ambient temperature as reducing the amount of cooling needed
[Climate] (and it hopes to use the waste heat to provide heating and hot
water to local buildings). You can take this further, and site them in places
like Iceland – not only is it even colder, but a lot of the electricity is from
geothermal sources, and so is cheap and practically carbon-free [Iceland].
Of course some of these savings are minor for the individuals involved,
and if you only have limited time and resources you can often get a better
return by avoiding waste from the real energy hogs: heat. So don’t overfill
the kettle, turn the central heating down a degree, keep the jumper on, and
top up the insulation...

Core blimey
A few years ago, Herb Sutter published an article ‘The Free Lunch is Over’
[FreeLunch], and gave a talk version of it at the ACCU conference. This
discussed how the increase in processor speeds had levelled off, and the
extra transistors predicted by Moore’s law were instead being used to
provide more on-chip memory, and extra cores. The message was, to take
advantage of this we will have to change our programming models from
single-threaded to multi-threaded and multi-processor, and our programs
can continue to get faster as before.

Or not. Recently some studies were published about how multicores will
scale [Memory]. The answer was: not very. Well, almost – if you looked
a bit more carefully, what it actually found was that sharing memory across
cores didn’t scale. This is because accessing main memory is a major
bottleneck – memory speed hasn’t improved by much compared to
processors, and it takes time to get the data to and from the cores. Local
caches help, but it adds the problem of keeping their view of memory
consistent. And this was in fact mentioned in Herb’s article (and has been
known for years before that) but here was some more evidence that we
really do have to rethink how our programs are designed – things won’t
improve by themselves. In many ways programming on multi-cores (and
multi-processors) is just distributed computing on a smaller scale. There
are (relatively) high call latencies, slow data access, and data consistency
issues. There is a large literature on how to program with these constraints,
but a lot of the ideas and techniques are very different from how many
people currently program and it will take time to convert people’s thinking
– from asynchronous message passing, changing data processing to use
algorithms that can be processed in parallel chunks, perhaps using to
functional programming ideas and languages.
And a random thought: could OS writers and chip designers start
organising things to reflect such a model? For example a chip could be
designed to have several groups of cores with their own dedicated local
memory. Then the OS could run on a dedicated core-group, and launches
processes running on their own core-group. Thus each process’ threads
would be able to use its own memory without contention from other
processes, and the only syncing would be to send messages to other
processes which would be coordinated by the OS. Original? Unlikely – it
wouldn’t surprise me in the least if this hadn’t already been done years
ago, and the mainstream is only now catching up.

ACCU Conference
And finally a quick reminder – this year’s conference lineup has been
announced and booking has been open for just over a
month. Early bird rates are still available until 28th
Februrary, so if you haven’t already booked, now is the
time. I look forward to seeing you there!

References
[Climate] http://www.itpro.co.uk/608874/data-centre-heads-north-for-

cooler-climate)
[FreeLunch] Free Lunch is Over: http://www.gotw.ca/publications/

concurrency-ddj.htm
[Iceland] http://www.theregister.co.uk/2007/04/10/

iceland_to_power_server_farms/
[Memory] Limits of multicore sharing memory http://www.sandia.gov/

news/resources/releases/2009/multicore.html
[Startup] http://calacanis.com/2008/03/07/how-to-save-money-running-

a-startup-17-really-good-tips/
February 2009 | Overload | 3

FEATURE RYAN SHRIVER
Measurable Value with Agile
Are you solving the right problem or simply
solving the problem right? Ryan Shriver shows
us that both are needed for value delivery.
gile is one of the hottest trends in IT. It’s the shiny new toy that’s
gone from underground movement to mass marketed panacea. It’s
done all this within the last ten years or so. Now agile is maturing

and being marketed as ‘delivering business value’, but there’s little
agreement in the agile community on what this is and how to measure it.
This past summer I spoke at the Agile 2008 conference in Toronto where
there were over 1,500 attendees and 400 sessions on everything you could
possibly want to know about agile. There was an entire series of
presentations on ‘Customers & Business Value’, yet amongst the
presentations, none that I saw covered:

What is value? What do we mean when we say agile delivers
business value?
How do you measure value?
What do you measure it with (and when)?

After the conference I thought, ‘For a community where nearly everyone
talks about delivering business value and prioritizing by business value,
I’ve seen very few specifics on how to implement this in practice’. Yes,
organizations see features getting implemented and they track velocity, but
they’ve got no real way to measure the value delivered by these features.

The challenge – are we delivering the right things,
now?
In my experience, most IT project teams, even agile ones, rarely grasp the
business objectives of their stakeholders investing in the project. Project
leaders either don’t understand, can’t articulate or don’t care what drives
business value or how it aligns with business strategy. It’s sad to witness
the flurry of new project activities while nearly everyone fails to
distinguish between:

Delivering the right things and delivering things right
This is especially acute in the agile community and it’s setting a dangerous
precedent. As methods like Scrum increase in popularity [VersionOne09],
an overall focus on real value and delivering the right things becomes even
more critical. Today, in practice, teams can be performing Scrum
flawlessly (delivering things right) only to find out they were doing the
wrong project all along (delivering the wrong things) because they didn’t
understand the real business objectives. The result is an investment that
may result in running software that delivers no business value despite the
(apparent) success of the agile process. Whoops!
But it doesn’t have to be this way, as this article will demonstrate.

Determining the right thing doesn’t have to be costly and complex. In fact,
it can be done without changing Scrum and without slowing teams down.
In this article the reader will learn that measurable value using quantified
business objectives and Scrum can work together to ensure teams are both
focused on the right things and delivering the things right. Used together,
teams can move beyond feature-builders to value-delivers, measuring
progress not in features built but value delivered using business-defined
metrics.
Now is the time for agile teams and the agile community to seek out and
embrace practical ways to demonstrate measurable business value. By
engaging the business and quantifying their objectives, agile teams can
ensure investments are aligned with strategies. The agile community,
including you, can help IT transform from feature builders to value
deliverers.

Value delivery approach
This article presents value delivery, a practical approach for measuring the
stakeholder value delivered by teams. This approach directly aligns
business strategies and stakeholder objectives using simple quantitative
methods for clarity.
To understand this approach, we must first get to the root of the issue with
defining value. It is, not surprisingly, communication. In most
organizations a communication gap exists between the lofty prose used by
leadership to describe strategic initiatives and the planning prose required
by teams to deliver business value. Value delivery bridges this
communication gap by transforming vague language into clear objectives
that can be planned and measured. Teams that help stakeholders get closer
to achieving these objectives are delivering tangible value to the business.
Value delivery advocates measuring value using quantified business
objectives in alignment with business strategies. It does not advocate
measuring value using features, functions, function points, epics, user
stories or tasks. These are practically all too low-level for measuring value
to be worth the investment.
Rather, to deliver value, people, process and technology must be properly
blended so that stakeholders’ objectives are met. Value delivery advocates
a systems-thinking approach that encourages teams to think holistically
about the problem space using numbers to assess the impact of designs on
objectives.
Value delivery is a combination of existing principles and practices from
the Evo [Gilb05] method that can be used in conjunction with the Scrum
method. It is not the only method to measure value, but I believe it is a
method that works well with the Scrum method. I believe value delivery
can help agile teams show measurable value delivered in alignment with
organizational strategies quickly and effectively.

Today’s engagement
To show value delivery in action, we’ll use a slightly altered real-world
case study. You and I are going to consult with a non-profit client and we’re

A

Ryan Shriver is a Managing Consultant with Dominion Digital,
a Virginia-based process and technology-consulting firm,
where he leads the IT Performance Improvement Solution.
With a background in systems architecture and large-scale
Agile development, he currently focuses on measurable
business value and systems engineering. He writes and
speaks on these topics in the US and Europe, posting his
current thoughts at theagileengineer.com.
4 | Overload | February 2009

FEATURERYAN SHRIVER

Now that we've identified our stakeholders
and resources (time and money), that just

leaves defining the objectives
going to help them adapt the value delivery approach to their existing
Scrum process.
Our client, a leading non-profit research organization, recently completed
its 2009 strategic planning sessions. Senior management’s business
strategy is:

In 2009, we are embarking on a strategy to increase charitable
giving through improvements to our web site. We believe this
strategy will help increase our market share for online giving while
positively impacting our key customers: non-profit organizations.

The organization currently uses Scrum for developing their web-based
application. The Vice President of Marketing and business sponsor,
Nancy, has personally asked us if we could help her and the organization:

1. Establish a set of strategic objectives so value can be measured and
managed

2. Make smart funding decisions with web site improvements so
budget and risk can be managed

3. Identify the improvements with the best ‘bang for the buck’ for
doing first so quick progress can be demonstrated to everyone.

We need to ensure our work integrates nicely with the existing Scrum
process used for web site development.
At our initial meeting, Nancy asks if we can take this job on. ‘No problem’
I tell her. Then she shrugs a bit, ‘And being a non-profit, we can’t pay much
at all.’ I hesitate for a second, then respond, ‘If you can ensure we get access
to the right people, and provide us with someone to organize the meetings,
we’ll do the project pro-bono!’
‘Wonderful!’ Nancy exclaims. ‘If it’s ok by you, let’s get started the week
after next. That’ll give me some time to lineup the right stakeholders.’
So with that, you and I are off to do some valuable work for a worthy non-
profit. Ready to get started?

Step 1: Identify stakeholders, objectives and
resources
When faced with problems like these, I like to ask myself three questions:

Who are my stakeholders?
What are their objectives?
What resources are available?

Since we’re looking to make improvements at the organizational level,
we’re certain board of directors, CEO and executive management are all
stakeholders. Their customers: non-profit organizations and for-profit
organizations that donate to non-profits, are also stakeholders. Other
internal stakeholders include operations, development, marketing and
management.
Our first day on-site we conduct interviews with key stakeholders (up to
the CEO) and spend quite some time with Nancy. We meet a diverse set
of individuals in marketing, sales and IT who provide us background on
their roles and how the strategy will likely impact them. We cast a wide
net to ensure that we don’t leave anyone out.

During our interview with Nancy, she says, ‘The CEO recently agreed to
provide $1 million and 10 months for implementing the business strategy,
but wants to see results quickly. My responsibility as business sponsor is
to ensure this succeeds, but where do I start?’
After a bit more conversation, Nancy and I sit down together at the table
and I continue, ‘Now that we've identified our stakeholders and resources
(time and money), that just leaves defining the objectives. This is by far
the hardest question to answer, so let’s take an iterative approach to
creating our objectives. The first step is to identify each with a simple
name.’
I turn my attention to a copy of the business strategy on the table, pull out
my pen and underline the key themes I see:

In 2009, we are embarking on a strategy to increase charitable
giving through improvements to our web site. We believe this
strategy will help increase our market share for online giving while
positively impacting our key customers: non-profit organizations.

After some further discussion with Nancy, we quickly identify the
following objectives and write them on the whiteboard in the room
(Figure 1).
The first two come straight from the strategy. Nancy tells us the last is a
request from our non-profit customers. In addition to money, non-profits
also value the time donated by volunteers to help them fulfill their
missions. We decide these three objectives are enough to get started and
provide the right focus for the team, so we capture these and move on.

Step 2: Quantify our objectives
With these objectives identified quickly, we’re feeling pretty good about
our progress. I say to Nancy, ‘The next step is making them quantifiable.’
Nancy, looking a bit puzzled, says,‘Why should our objectives be

Figure 1
February 2009 | Overload | 5

FEATURE RYAN SHRIVER

It is through the process of trying to
quantify objectives that we probe more
deeply into what’s really important
quantified?’ I respond that contrary to what she may think, ‘The main
purpose of quantification isn’t to measure and track. The main purpose is
to provide clarity in requirements. Tom Gilb [Gilb] says it best:’

The fact that we can set numeric objectives, and track them, is
powerful; but in fact is not the main point. The main purpose of
quantification is to force us to think deeply, and debate exactly, what
we mean; so that others, later, cannot fail to understand us.

I continue, ‘It is through the process of trying to quantify objectives that
we probe more deeply into what's really important.’
Nancy responds, ‘But how do we do this? Remember, we don’t have much
time to start showing progress. I’m not looking for an academic exercise,
I need results!’
‘It’s OK’, I say. ‘There’s actually a way we can quantify these objectives
pretty quickly using Planguage [Gilb05]. With our objectives identified,
we’ll next add a Scale (what to measure) and then a Meter (how to
measure).’
Nancy and I return to the board and update our objectives (Figure 2).

Step 3: Identify targets, constraints and benchmarks
Nancy is again happy with the progress but asks, ‘Now I see quantifiable
objectives, but without knowing where we are today or going in the future,
what use is this?’ She’s right.
‘Time to tell you about Targets, Constraints and Benchmarks!’ I respond.
Targets, as the name suggests, are the performance levels the team is
striving to achieve. It’s the level of performance that, when reached,
everyone agrees is success. Stakeholders agree to provide the necessary

resources to achieve these levels and technologists agree to design systems
to meet these levels. Target levels are not simply edicts laid down by
stakeholders absolutely. Rather, setting them requires collaboration and
agreement from the implementation team to ensure the levels are
achievable (with an estimate of what resources it may take to get there).
Constraints are the levels that must be avoided. In practice, these could be
contracted Service Level Agreements (SLAs) identifying the minimal
performance levels before penalties are assessed. They may also be the
minimum levels needed to ship the product.
In our case, these are the levels below which senior management
recognizes things didn’t go well (and perhaps bonuses would be
impacted!). Just like targets, setting constraint levels requires
collaboration from all parties.
Finally, benchmarks are the levels achieved today or what’s been achieved
in the past. Benchmarks enable an understanding of the current state and
assessing how close (or far) we are from achieving the target levels of
performance. In practice, it’s often easiest to start with identifying current
benchmark(s) and using this to set appropriate target and constraint levels.
After listening Nancy responds, ‘Why do we need constraints? Can’t we
just set targets?’
I remind her, ‘As important as setting levels for success is, it’s often more
important to set levels for failure. Everyone in the project needs to
understand clearly what’s success, what’s failure, and where the
organization is today. With that understanding, we can begin honest
discussions about what to do next.’
Nancy takes a guess at target and constraint levels and we do follow-up
interviews with developers and testers to gather benchmark data. Pulling

Figure 2
6 | Overload | February 2009

FEATURERYAN SHRIVER

A design idea is a potential solution that
moves a team closer to achieving the

stakeholder’s objectives
this all together, we update our whiteboard and show Nancy our results
the following morning (Figure 3).
As we walk Nancy through this, we also explain the last two Planguage
concepts: Qualifiers and Sources.
Qualifiers are the variables in brackets [] and they help specify under what
conditions the levels apply. Qualifiers are typically dates, places or events.
Examples could include: 2008, Q1-2009, UK only or Release 3. These are
user-defined and can be anything that makes sense for a particular
situation.
Sources are the text to the right of the arrows ← and they help convey
where information originated. Sources can be applied to any piece of
information to add transparency, credibility and traceability.
We’ve introduced Nancy and the organization to a lot of new concepts, so
let’s briefly recap before moving forward:

Scale – What’s measured (units)
Meter – How it’s measured (method)
Targets – Levels aiming to achieve
Constraints – Levels trying to avoid
Benchmark – Current or past performance levels
Qualifiers – Dates, places or events useful for clarification
Sources – Origin of information for transparency and credibility

I tell Nancy, ‘Think about our progress right now. We have quantifiable
objectives for our business strategy that will fit on a single PowerPoint
slide and can be communicated and understood by all project team
members and stakeholders, including the CEO!’

She responds, ‘Wow, now that’s powerful! I think we’re ready to share this
with the other senior managers and stakeholders, I’ll set up a working
session for this Friday so we can get validation before moving forward.’

Step 4: Brainstorm design ideas
During Friday’s working session the business sponsor, product owners,
leaders, analysts, developers, testers and ScrumMaster are all in
attendance. Agreement is reached on the target and constraint levels we
previously established with Nancy. With the team itching to start designing
solutions, I explain ‘Next comes the really fun part: creative brainstorming
of design ideas.’
‘What’s a design idea?’, Steve, one of the architects asks. I respond, ‘A
design idea is a potential solution that moves a team closer to achieving
the stakeholder’s objectives.’
In order to ensure the brainstorming is productive, I tell the team, ‘The
objectives have been established and validated, so now let’s find the
solutions. But I’d request that each of your focus the brainstorming session
on finding design ideas that will:

1. Increase Market Share
2. Increase Monetary Donations
3. Increase Volunteer Time Donations

Good design ideas will positively impact one objective, but great design
ideas will positively impact all three objectives with a single design idea!’
The team knows their current web site is pretty basic with no fancy Web
2.0 stuff. There’s a basic search and the ability to view reports of non-
profits. Users can also make donations directly to non-profits on the web
site by clicking a ‘Donate Now’ button.

Figure 3
February 2009 | Overload | 7

FEATURE RYAN SHRIVER

The process of identifying design ideas is a
creative one that encourages out-of-the-box
thinking engaging the entire team
Nancy offers up to the team, ‘The CEO is looking for ideas that would kick
off an implementation project and are achievable within a $1 million
budget and 10 months. Those are the constraints of our brainstorming
today.’
The process of identifying design ideas is a creative one that encourages
out-of-the-box thinking engaging the entire team, not just executives and
product managers. In practice, good ideas often build off one another.
Teams that do this before starting their projects achieve a greater shared
vision of what they’re being asked to deliver and understand the real
measures of success that translate to value to the organization.
During the session lots of ideas are generated and captured. Some of the
more interesting ones include:

1. Setup recurring payments for members so each month a donation is
automatically made to the non-profits of their choice.

2. Create a Facebook application that integrates the web site to the
100+ million Facebook users so they can get connected to non-
profits organizations of their interest.

3. Create ability for Non-Profits to upload images and videos of their
charitable work to the site to help solicit donations.

Nancy says, ‘Based upon the team’s intuition, these design ideas sound like
the best candidates. Let’s move forward.’
She turns to us and says, ‘Now, how do we get down to just one that we
can do?’

Step 5: Select the next best design
‘Arm wrestling works well’ I quip.
‘Get serious’, responds Nancy.
‘OK, we could vote on each option using a secret ballot. Or we could just
let the CEO pick. There are more options, but I think they would be
irresponsible, given the time and energy we just spent creating measurable
objectives.’
I continue to explain to Nancy and the team, ‘We should use Impact
Estimation (IE) to help us with this problem. IE is a very simple tool for
calculating cost/benefit of design ideas and identifying the one with the
best return on investment or bang for the buck’.
To help Nancy and the team understand the concept, I draw Figure 4 on
the board to show the structure of an IE table with objectives and resources
as the rows and design ideas as the columns. The last row is the benefit to
cost ratio (value delivered) which will help determine the best design idea.
This is a simple ratio of the sum impact of objectives divided by the sum
impact on resources (i.e. sum objectives impact / sum resources impact).
After a little explanation, it appears the team gets the gist of IE enough so
we can get started.
It’s been a very productive session but I feel the energy slipping on Friday
afternoon. ‘Let’s break for the week and next week we’ll start to fill in the
impact estimation table with the help of the team’, I say. Everyone agrees
and heads back to their desks and home for the weekend.

Nancy approaches us afterwards, ‘I really want to thank you, I have never
seen our team identify so many good ideas so quickly. They were amazing!
Because we had focus on our objectives, they really embraced the process
and the result was great collaborative energy in the room. I’m anxious to
see which design idea we end up doing!’
The following week the team meets again and puts the top three design
ideas into the IE table and estimates each ones impact on objectives and
budget. I encourage the team not to try to get too precise; instead simply
try to make a first pass using the best information at their disposal. To show
uncertainty, with each value best and worse case is provided using ±
notation. At the end of the session the team has identified the Facebook
Integration as the best design idea and circles it in the IE table (Figure 5).
In doing this exercise, I point out the following things to the team members,
so they see how we arrived at our decision:

Recurring Payments have the biggest impact on the Increase
Monetary Donations objective, but relatively low impacts on the
others. Its estimated cost is $200K–$400K (30% ± 10% of monetary
budget) and its expected to take 2–6 months to complete (40% ±
20% of time budget).
Facebook Integration has the lowest sum impact on objectives
(110%) of any of the ideas, but its low cost ($100K–$300K and 1–4
months) means it has the best benefit / cost ratio of all design ideas.
So it’s the idea we’ll go with first.
Image & Video Uploads has the biggest sum impact on objectives
of any of the design ideas, but it also costs the most, resulting in the
lowest benefit/cost ratio.

These are the obvious observations, but there are other more subtle things
that are also interesting. I present the following to the group for
consideration:

Figure 4

Design Idea
#1

Design Idea
#2

Design Idea
#3

Total
Impacts

Objectives
Impact on
Objective

Impact on
Objective

Impact on
Objective

Total
Impact on
Objective

Resources
Impact on

Budget
Impact on

Budget
Impact on

Budget

Total
Impact on

Budget

Benefits to
Cost Ratio

Ratio Ratio Ratio
8 | Overload | February 2009

FEATURERYAN SHRIVER

If we’re wrong, at least we’ll know quickly and
can change direction
Assuming the design ideas are mutually exclusive, implementing all
three would not likely help the organization meet their Increase
Market Share objective (Total Impact is 80%). If meeting this
objective is the most critical, then more design ideas must be
identified.

Similarly, if meeting the Increase Monetary Donations objective is
the highest priority, then Recurring Payments must be one of the
design ideas implemented because it alone gets us 80% there.
The Facebook Integration design idea has the most uncertainty
associated with it (widest range of benefit/cost ratios: 0.7 to 9).
Although this looks like the best design idea now based on its
benefit/cost ratio (2.8), more research may be required to bring this
uncertainty down or get the stakeholders to consciously accept this
level of risk before moving forward.
Implementing all three design ideas would use 100% of the money
budget and 110% of the time budget, meaning the organization
would likely not have time to implement all three design ideas in the
next 10 months.

Nancy steps into our team session at the end of the day and I explain to
her that the team now has:

1. Quantified the impact of the three best design ideas against the
objectives and budget

2. Determined the design idea that has the best benefit/cost ratio
3. Identified the risk and uncertainty associated with each design idea,

prompting more research to reduce the uncertainty or
acknowledging the risk comfort level and moving forward

The team’s choice of which improvement to pursue first is now less
guesswork and more fact-based using quantified data. The IE table easily
explains to all stakeholders why the Facebook Integration is the best
project to pursue and can back it up with real numbers including expected
benefit and cost compared to the other design ideas.
Nancy agrees, ‘This is perfect. I can now present the Facebook Integration
project to the stakeholders and the CEO for approval. When they question
why this project was chosen, and I know they will, I can show them how
we measured the impact of the best design ideas against our objectives and
budget.’
Nancy continues, ‘I'll set up another working session for this Friday with
the stakeholders and the team so we can get feedback and make a decision
on the project choose so we can move forward.’
On Friday, Nancy presents the Facebook Integration idea as the first
initiative the team will pursue. After some initial questions, the
stakeholder’s agree and give Nancy and the team the green light to forward.
The CEO explains to Nancy and the team, ‘Although I realize we could
spend more time reducing uncertainty and getting more refined estimates,
I accept the level of risk in order to move forward and start seeing results!’
He continues, ‘If this were a bigger project I’d expect more details, but
what I’ve seen here today makes me comfortable the team has assessed
our options well. If we’re wrong, at least we’ll know quickly and can
change direction. Best should not get in the way of better. Let’s go with
the Facebook option and see how quickly we can impact those objectives!’
Later that afternoon the CEO drops by Nancy’s office. He asks how things
are going and congratulates her on today’s working session. He’s clearly

Figure 5

Recurring
Payments

Facebook
Integration

Image &
Video

Uploads

Total
Impacts

Objectives

Increase Market
Share

(6% → 10%)

30%
±20%

30%
±20%

20%
±10%

80%
± 50%

Increase
Monetary
Donations

($13m→$18m)

80%
±30%

30%
±30%

50%
±20%

160%
± 80%

Increase
Volunteer time

Donations

(2,700→3,600)

10%
±10%

50%
±20%

80%
±20%

140%
± 70%

Total Objective
Impact

120%
± 60%

110%
± 70%

150%
±50%

Resources

Money
($1.0M)

30%
±10%

20%
±10%

50%
±20%

100%
± 40%

Time
(10 months)

40%
±20%

20%
±10%

50%
±20%

110%
± 60%

Total Budget
Impact

70%
±30%

40%
± 20%

100%
±30%

Benefit to Cost
Ratio

120/70
= 1.7

Worst: 0.6
Best: 4.5

110/40
= 2.8

Worst: 0.7
Best: 9

150/100
= 1.5

Worst: 0.9
Best: 2.9
February 2009 | Overload | 9

FEATURE RYAN SHRIVER

we now have a process for quickly
identifying design ideas and assessing
their impacts
happy with how quickly the strategy and team are progressing and quips,
‘you’ve got a real team of movers and shakers working for you!’
The normally reserved Nancy can’t help but beam with pride. She, too, is
proud of what her team has accomplished in two short weeks. She recaps
for her boss that because of their efforts, the organization has:

1. Established a set of strategic objectives so each sprint the value
delivered by teams can be measured and the project properly
managed. Not just that, but the entire team is aligned with the
objectives, something that’s never happened before.

2. Leveraged the Impact Estimation process to ensure smart funding
decisions are based on quantified information. This allows budget to
be managed and risk to be mitigated.

3. Identified the Facebook Integration as the best ‘bang for the buck’
and therefore the one that’ll be done next. Other design ideas will be
evaluated and scheduled for future releases using the Impact
Estimation process during planning.

4. Started to update the web site product backlog so the initial
Facebook Integration features are rolled out in the next release of the
web site in six weeks.

‘I tell you what. Take the team out after work today for a celebration. I
think they deserve it.’ responds the CEO.
Over drinks at the local pub after work, the team celebrates their success
and their growing camaraderie. Nancy comes up to me and says, ‘After
going through this process I’m very confident we’re focused on the right
problem. Like I told my boss, even if the Facebook option isn’t the best
choice, we now have a process for quickly identifying design ideas and
assessing their impacts. We’re focused on the results and if this one doesn’t
work, we can quickly find the right ideas and make them happen.’
But then she pauses, ‘Before we celebrate too much, we still need to ensure
we can do this project using our Scrum method.’

‘Don’t worry’, I say. ‘Scrum will fit right into this process. In fact, we’re
not going to change Scrum at all. We’re simply going to do a few steps
before and after each sprint. It’ll have a minimum disruption on the team,
you have my assurances.’
‘OK, I’ll trust you on this.’ Nancy responds. Then, after a few seconds,
she says, ‘But I’m not too worried. Our team is accustomed to delivering
projects using Scrum, so long as you can items prioritized and into their
backlog, we should be good.’

Step 6: Agile integration
Now that Nancy and her team are focused on right problem, it’s time for
them to solve the problem right. This is where an agile method like Scrum
comes in. Some of the benefits of using agile to implement design ideas
include:

1. Short iterations and inspect-and-adapt philosophy get us working
solutions quicker and reduce our delivery risk

2. Collaborative nature of cross-functional teams with feedback from
stakeholders.

3. Team communication and collaboration creates a positive,
supportive work environment where teams feel ownership of the
process.

The ways in which agile feels different with the value delivery approach
include:

1. Incremental funding is based on real value delivered. If, after a few
iterations, teams are not making progress on the prioritized
objectives, stakeholder’s can call ‘stop’ and pursue a different
design idea with their remaining budget.

2. Entire teams are aligned to the business value of the project and
know how success is measured.

3. In each sprint, progress towards objectives is measured to show the
value delivered in the sprint, as shown in Figure 6.

Figure 6
10 | Overload | February 2009

FEATURERYAN SHRIVER

Teams can still develop user stories for
functional requirements and prioritize them

in the backlog as normal
The value delivery approach rewards teams for delivering value, not just
building features. It raises the level of measurement up from feature-
centric velocity to value-centric objectives. And because these objectives
are aligned to key business strategies, we’re ensuring we’re not just solving
the problem right, we’re solving the right problem.
The value delivery approach integrates with Scrum’s product backlog in
three ways:

1. Teams can still develop user stories for functional requirements and
prioritize them in the backlog as normal. User stories are useful for
documenting ‘what’ the system will do. User stories should be
prioritized by business value, meaning how they help the
organization make progress towards their prioritized objectives.
User stories use the following format:

As a <user>, I would like to <do some function>, so that I can
<achieve some goal>

2. Teams should also prioritize quality requirements (aka non-
functional requirements) alongside functional requirements. These
are useful for ensuring critical system qualities such as availability,
scalability, usability, response time, etc. can be met. Quality
requirements should be defined using the Planguage concepts
introduced earlier including Scale, Meter, Target, Constraints and
Benchmarks so expectations are clearly stated (with numbers) about
how ‘well’ the system must perform. Because meeting target levels
for quality requirements often requires multiple rounds of
improvement, quality stories can help ensure:

As a <stakeholder>, I would like to improve <some quality dimension>
from <current level> to <desired level>, so that I can <achieve some
goal>

3. Both user stories and qualities stories are specified such that teams
can use story point estimates to assess their relative implementation
effort. This helps communicate to the product owner what can be
done each sprint and how long it will take to get meet specific
objectives.

Value delivery uses traditional Scrum activities such as release planning,
sprint planning, story point estimates, burn-down charts and stand-up
meetings all without modification. In practice this minimizes the change
curve and ensures existing processes that are working aren’t disrupted.
The difference is that in addition to the normal end-of-sprint activities such
as demos and retrospectives, value delivery teams report the value
delivered (progress achieved that sprint or release towards stakeholder
objectives). While every sprint may not result in measurable business
value delivered, making this reporting part of the process ensures everyone
stays focused on what’s really important and not focused on simply
building features. It also helps focus the release planning process on
delivering measurable value if product owners and teams know they will
be asked to show the value they are delivering with each release.

Value delivery adoption
Just like Nancy and her team, organizations need some guidance with
adopting value delivery. Adoption is ideally done from the start of new
projects. However, because value delivery doesn’t change the mechanics
of functioning agile teams, organizations can transition to value delivery
on existing projects. The value measuring steps before and after each sprint
will hopefully change the team’s focus, but shouldn’t interrupt their natural
team dynamics.
Although this approach is fairly new, I hope it will slowly start to gain
practice and will evolve with feedback from the community. I have noticed
it does follow an emerging pattern of combining practices from multiple
methods to achieve better results. Scrum co-inventor, Jeff Sutherland, in
2008 published the positive effects of combining CMMI + Scrum over
implementing pure Scrum alone [Sutherland08]. I believe value delivery
is on this same trend, seeking to get better results by complimenting Scrum
with established practices from the Evo method.
If you would like to try value delivery on your next project, in addition to
th is a r t ic le there are f ree tools to ass is t you avai lable on
theagileengineer.com. I am actively recruiting individuals who would like
support using value delivery on their next project. Please contact me for
guidance and coaching on applying these concepts in your organization.

Case studies
The value delivery method described here is essentially selected practices
from the Evo method combined with the Scrum method. Both of these
methods are well tested and have large numbers of case studies behind
them (Evo starting in the 1970s and Scrum starting in the 1990s).
In 2007, I started applying the value delivery approach on projects ranging
from custom software development to Microsoft SharePoint
implementations. As of 2008, three clients in the United States have used
the method and all reported they enjoyed the focus they achieved on
business value and reported their teams felt more aligned to stakeholder
objectives. However, publishable case studies have yet to be done with the
value delivery method, although that remains a goal.
In putting this approach into practice, I observed the following hurdles to
adoption:

1. Introducing the concepts of measurable value may be very
challenging if an organization is struggling to get the basic Scrum
process working and think their issues are with Scrum adoption.

2. When Scrum adoption is a ‘bottom-up’ approach, developers will
often not appreciate the concepts of measurable value delivered (at
least not initially).

3. Progressive business leaders or experienced agile coaches who
recognize the value this brings will be required to help drive
adoption and maintain focus.

4. If you don’t have support from business stakeholders to continually
measure value, teams won’t think it’s important to measure their
results.
February 2009 | Overload | 11

FEATURE RYAN SHRIVER

Are we delivering the right things, now?
5. If business stakeholders want to ‘place an order with IT’ and not be
engaged in defining objectives and measuring value, adoption will
be practically impossible.

6. Making value delivery stick requires discipline in not only creating
the initial objectives, but also following through with actual results
and using these in project management. Organizations can start with
value delivery, but unless management is committed to asking for
the value delivered from their investments, interest can quickly fade.

Others are starting to integrate Evo and Scrum, but as of yet have no
published results. Recently, Jens Egil Evensen of Norway has been
reporting success using Evo with Scrum in a method he calls ‘Avegility’
for his customer’s projects. Evo is used for project management and to
prioritize the backlog, Scrum is used to develop the software and
Planguage is leveraged to write the requirements. [Evensen09]
Kai Gilb is teaching and coaching management and Scrum product owners
at an international organization how to define value-results, and how to
link the business, stakeholder, product and solution value-results to
product backlog Items. He reports, ‘This process enables them to create a
product backlog that is optimized and justified all the way through from
product values to stakeholder values all the way up to business values.
Everything the Scrum development team does is justified all the way up
the value chain, it gives early, frequent, measurable, highly leverage
benefits at all levels. Management can manage the value creation, and
Scrum developers can deliver it.’[Gilb08]

Summary
To return to our challenge, ‘Are we delivering the right things, now?’
hopefully you can see there is an approach for answering ‘yes’ with
confidence that’s lightweight and agile! Nancy has learned it and so has
our team. For our non-profit client, the value delivery approach:

1. Defined what ‘delivering value’ means within their teams
2. Measures value as progress towards stakeholder objectives
3. Prioritizes design ideas according to ROI
4. Integrates with their existing Scrum method

In summary, value delivery’s philosophy is that teams and organizations
should use whatever agile method they prefer for delivering things right.
But they must also focus on delivering the right things with a laser focus
on business value. Only by covering both of these perspectives will
organizations ensure their outcomes are results driven and not feature
driven.
Thanks to Chris Allport, Kai Gilb and Jimmy Chou for early feedback.

References
[Evensen09] Evensen, J. E. (2009) Based on private email conversation
[Gilb] Gilb, Tom, www.gilb.com
[Gilb05] Gilb, T. (2005) Competitive Engineering, Oxford: Elsevier

Butterworth-Heinemann
[Gilb08] Gilb, K. (2008) Based on private email conversation.

[Sutherland08] Sutherland, J., Jakobsen, C., Johnson, K. (2008) Scrum
and CMMI Level 5: The Magic Potion for Code Warriors. Retrieved
14 Jan 2009 from http://jeffsutherland.com/scrum/Sutherland-
ScrumCMM16pages.pdf

[VersionOne09] VersionOne, ‘3rd Annual State of Agile Development
Survey’, retrieved 11 Jan 2009 from http://www.versinone.com/
agilesurvey
12 | Overload | February 2009

FEATURE STUART GOLODETZ
Through The Looking Glass
What’s happening in the next room?
Stuart Golodetz has to find the door first!
Stuart Golodetz has been programming for 13 years and is
studying for a computing doctorate at Oxford University. His
current work is on the automatic segmentation of abdominal
CT scans. He can be contacted at
stuart.golodetz@comlab.ox.ac.uk

n a previous article [Golodetz08], I talked about BSP trees and some of
their uses for 3D games. One such use is in rendering a level: given an
arbitrary position for the player camera, a BSP tree can be used to render

the polygons in a scene in back-to-front order relative to the camera, with
no need for a z-buffer. In practice, however, rendering a scene in this way
will engender an unacceptably low frame-rate for all but the smallest levels
(it’s not a method that scales well).
One solution to this, as I mentioned briefly at the time, is to precalculate
which empty leaves of a BSP tree can potentially see each other (recall that
an empty leaf is called that because it represents an empty convex subspace
of the world). For example, suppose there are five empty leaves (A-E): see
Figure 1. If the player is standing in leaf A, and we know that leaf A cannot
possibly see leaves B and E, then we need only render the polygons in
leaves A, C and D. Needless to say, this makes rendering substantially
faster.

This precalculation process comes in two parts: first, we must determine
the portals (or doorways) between adjacent leaves in the level (see the
dotted lines in Figure 1). Having obtained these portals, we then calculate
the visibility relation between them (i.e. which portals can see each other)
in a manner which will be explained later. This portal visibility relation
induces a related visibility relation between the leaves, which is what we’re
ultimately after.
Since the whole process is quite long and involved, I’ll explain portal
generation in this article, and save calculating the visibility relation for next
time.

Portal generation
For our purposes, a portal is a polygon which forms a directed link between
adjacent (empty) leaves. Its normal will point in the direction of the link,
i.e. away from the portal’s from leaf and towards its to leaf. This means
that portals are one-way, so we actually need two portals for each doorway,
one pointing in each direction. For example, we might have a triangular
portal from leaf A to leaf B (whose normal points towards B), and another
identical triangular portal (with reversed vertex winding order and
opposite-facing normal) from leaf B to leaf A. (I will use counter-clockwise
winding order for the purposes of this article, but it doesn’t matter which
you use as long as you’re consistent.)
Generating portals is a three-step process:

1. Determine the set of undirected planes in which the portals could lie.
2. For each undirected plane:

a) Build a huge initial portal (level-spanning polygon) on each
plane.

b) Clip the initial portal to the BSP tree and add surviving portal
fragments to the list of level portals.

3. Run through the list of level portals and make a reverse-facing copy
of each generated portal.

Determining the undirected plane set
Before we can generate any portals, we need to know the set of (undirected)
planes in which they can potentially lie. (By ‘undirected’, I mean that we
consider two otherwise identical planes which face in opposite directions
to be the same, e.g. (1,0,0) . x – d = 0 is the same (in undirected plane terms)
as (-1,0,0) . x + d = 0.) Intuitively, this seems quite simple: we just add the
planes of all the polygons in our level to a set and we’re done. In practice,
though, we need to be careful to ensure that we don’t get duplicate copies
of the same plane. This is non-trivial because we’re using floating-point
values for our plane coefficients: for instance, as far as we’re concerned,
1x + 0y – 2z = 5 and 1.000001x + 0y – 1.99999z = 4.99999 are basically
the same plane, but to the computer they’re different. What we need, then,
is some way of clustering these very similar planes together.
A solution to this problem is to use a special ordering predicate for our
plane set (see Listing 1). This compares two planes, lhs and rhs, and
returns false if they are sufficiently similar. If not, it compares them
lexicographically. The idea is that when we’re inserting a new plane into
a tree (using the normal procedure for set insertion), it can be ‘captured’and
rejected if it’s too near one of the existing planes.
Note that this is similar to the approach taken in [Tampieri92] for grouping
nearly coplanar polygons together. I’ve taken a simpler approach because
only one plane from each nearly coplanar group is needed for the purposes
of portal generation, so using a representative tree as per their article would
be overkill here.
Using this predicate, then, the code to actually build the undirected plane
set is quite simple (see Listing 2). Ignoring the templated stuff (which is

I

Figure 1
14 | Overload | February 2009

FEATURESTUART GOLODETZ
necessary so that I can pass in either textured or non-textured polygons as
input), all that’s happening is as follows:

1. The undirected plane set is initialised with an instance of the
predicate we created above. We pass in tolerance values to this for
use in deciding when two planes are sufficiently similar.

2. We determine the undirected plane for each polygon in our level,
and insert it into the set.

Initial port generation
Having determined the planes in which the portals may lie, we now need
to generate an initial portal on each of these planes. This should be a huge
polygon which is large enough to span the entire level: the idea is that it’s
large enough to represent the entire plane for our purposes. We’ll then clip
it to the tree, which will give us the list of portals which lie on that plane
(although as previously mentioned, we’ll still need to make a reverse-
facing copy of each of them).
Generating the initial portal itself is something that can be done in a variety
of ways. The method I used (see Figure 2, which shows building an intiial
portal on a plane) works as follows:

1. Generate an arbitrary unit vector, u, in the plane. To do this, we just
calculate n x (0,0,1) (where n is the plane normal) and normalize the
result, provided the angle between n and (0,0,1) isn’t too small
(since the cross product of two vectors which point in the same
direction is the zero vector). If it is, we simply replace (0,0,1) by
(1,0,0). Either way, we eventually end up with a vector which is

perpendicular to n: it thus lies in the plane. (This gives us one axis
of a coordinate system in the plane.)

2. Calculate u x n and normalize the result, to give another unit vector,
v, in the plane which is perpendicular to u. (This gives us the other
axis of the coordinate system.)

3. Project the world origin (0,0,0) onto the plane along the normal to
give a point, o, in the plane. (This is the origin of the coordinate
system.)

4. Generate a large square polygon on the planes with vertices at o +
k(-u – v), o + k(u – v), o + k(-u + v) and o + k(u + v), for some
arbitrarily large number k. (In practice, I chose k = 1000000: if you
make it too large, you get small floating-point errors.)

The code is shown in Listing 3, generating a large polygon on a plane.

Portal clipping
We now come to the most interesting bit of the portal generation algorithm:
clipping the initial portal to the tree. This is done recursively, starting from
the tree’s root node (see Listing 4).
At each stage of the recursive process, we clip a fragment of the initial
portal (initially the whole thing) against a node of the tree. If the node is

Listing 1

struct PlanePred
{
 double m_angleTolerance, m_distTolerance;
 PlanePred(double angleTolerance,
 double distTolerance)
 : m_angleTolerance(fabs(angleTolerance)),
 m_distTolerance(fabs(distTolerance))
 {}

 bool operator()(const Plane& lhs,
 const Plane& rhs) const
 {
 // If these planes are nearly the same (in
 // terms of normal direction and distance
 // value), then !(lhs < rhs) && !(rhs < lhs).
 double angle = acos(
 lhs.normal().dot(rhs.normal()));
 double dist = lhs.distance_value()
 - rhs.distance_value();
 if(fabs(angle) < m_angleTolerance &&
 fabs(dist) < m_distTolerance)
 return false;

 // Otherwise, compare the two planes
 // "lexicographically".
 const Vector3d& nL = lhs.normal(),
 nR = rhs.normal();
 const double& aL = nL.x, bL = nL.y, cL = nL.z;
 const double& aR = nR.x, bR = nR.y, cR = nR.z;
 const double& dL = lhs.distance_value(),
 dR = rhs.distance_value();

 return ((aL < aR) ||
 (aL == aR && bL < bR) ||
 (aL == aR && bL == bR && cL < cR) ||
 (aL == aR && bL == bR && cL == cR &&
 dL < dR));
 }
};

Figure 2

Listing 2

template <typename Vert, typename AuxData>
typename PortalGenerator::PlaneList_Ptr
PortalGenerator::find_unique_planes(
 const std::vector<shared_ptr<Polygon<Vert,
 AuxData> > >& polygons)
{
 typedef Polygon<Vert,AuxData> Poly;
 typedef shared_ptr<Poly> Poly_Ptr;
 typedef std::vector<Poly_Ptr> PolyVector;

 const double angleTolerance = 0.5 * PI / 180;
 // convert 0.5 degrees to radians
 const double distTolerance = 0.001;
 std::set<Plane, PlanePred> planes(
 PlanePred(angleTolerance, distTolerance));

 for(PolyVector::
 const_iterator it=polygons.begin(),
 iend=polygons.end(); it!=iend; ++it)
 {
 Plane plane = make_plane(
 **it).to_undirected_form();
 planes.insert(plane);
 }

 return PlaneList_Ptr(
 new PlaneList(planes.begin(), planes.end()));
}

February 2009 | Overload | 15

FEATURE STUART GOLODETZ
a branch node, we classify the portal against the node’s split plane and take
different actions depending on the result; if the node is a leaf, we discard
the portal fragment if the leaf is solid, and (provided the leaf doesn’t
straddle the portal) note the leaf index in the portal fragment if the leaf is

empty (this is done so that we can keep track of which empty leaves a valid
portal connects). If an empty leaf does straddle a portal fragment
(something which can easily happen: see Figure 3), we discard the
fragment, since it isn’t a doorway between two separate leaves.
In Figure 3, the only valid portal is represented by the dotted line between
α and β (in particular, the potential portal between α and itself is invalid)

Listing 3 (cont’d)

{
 typedef Polygon<Vector3d,AuxData> Poly;
 typedef shared_ptr<Poly> Poly_Ptr;

 Vector3d origin(0,0,0);
 Vector3d centre = nearest_point_in_plane(
 origin, plane);

 Vector3d planarVecs[2];
 planarVecs[0] = generate_arbitrary_coplanar
 _unit_vector(plane);
 planarVecs[1] = planarVecs[0].cross(
 plane.normal()).normalize();

 const double HALFSIDELENGTH = 1000000;
 for(int i=0; i<2; ++i) planarVecs[i]
 *= HALFSIDELENGTH;

 std::vector<Vector3d> vertices;
 for(int i=0;
 i<4; ++i) vertices.push_back(centre);
 vertices[0] -= planarVecs[0];
 vertices[0] -= planarVecs[1];
 vertices[1] -= planarVecs[0];
 vertices[1] += planarVecs[1];
 vertices[2] += planarVecs[0];
 vertices[2] += planarVecs[1];
 vertices[3] += planarVecs[0];
 vertices[3] -= planarVecs[1];

 return Poly_Ptr(new Poly(vertices, auxData));
}

Vector3d nearest_point_in_plane(const Vector3d& p,
 const Plane& plane)
{
 /*
 Derivation of the algorithm:

 The nearest point in the plane is the point we
 get if we head from p towards the plane along
 the normal.
 */

 double displacement = displacement_from_plane(
 p, plane);
 return p - displacement * plane.normal();
}

Listing 3

double displacement_from_plane(const Vector3d& p,
 const Plane& plane)
{
 const Vector3d& n = plane.normal();
 double d = plane.distance_value();

 // Note that this equation is valid precisely
 // because the plane normal is guaranteed to be
 // unit length by a datatype invariant of the
 // Plane class.
 return n.dot(p) - d;
}

Vector3d generate_arbitrary_coplanar_unit_vector(
 const Plane& plane)
{
 const Vector3d& n = plane.normal();
 Vector3d up(0,0,1);

 if(fabs(n.x) < EPSILON && fabs(n.y) < EPSILON)
 {
 // Special Case: n is too close to the
 // vertical, so n x up is roughly equal to
 // (0,0,0)

 // Use a different vector instead of up (any
 // different vector will do) and apply the
 // same method as in the else clause using the
 // new vector.
 return n.cross(Vector3d(1,0,0)).normalize();
 }
 else
 {
 // The normalized cross product of n and up
 // satisfies the requirements of being
 // unit length and perpendicular to n (since
 // we dealt with the special case where n x up
 // is zero, in all other cases it must be
 // non-zero and we can normalize it to give us
 // a unit vector) return
 // n.cross(up).normalize();
 }
}

template <typename AuxData>
shared_ptr<Polygon<Vector3d,AuxData>
 > make_universe_polygon(const Plane& plane,
 const AuxData& auxData)

Listing 4

/**
Clips the portal to the tree and returns a list
of portal fragments which survive the clipping
process.
*/
std::list<Portal_Ptr>
 PortalGenerator::clip_to_tree(
 const Portal_Ptr& portal,
 const BSPTree_Ptr& tree)
{
 return clip_to_subtree(portal, tree->root());
}

Figure 3
16 | Overload | February 2009

FEATURESTUART GOLODETZ
The tricky bit is what to do for the various branch node cases, e.g. what
action should we take if the portal fragment straddles the node’s split
plane? The cases where the portal is entirely behind or in front of a split
plane are easy: we recurse down the appropriate side of the tree. For the

straddling case, it suffices to split the portal across the plane, pass each half
down the appropriate side of the tree, and then concatenate the results (see
Listing 5).

Listing 5

/**
Clips the portal to the subtree and returns a list
of portal fragments which survive the clipping
process.

@param portal The portal to clip
@param subtreeRoot The root of the subtree
@param relativeToPortal The location of the
 subspace represented
 by the subtree relative
 to the portal (in front,
 behind, or straddling
 it)
@return As stated
*/

std::list<Portal_Ptr>
PortalGenerator::clip_to_subtree(
 const Portal_Ptr& portal,
 const BSPNode_Ptr& subtreeRoot,
 PlaneClassifier relativeToPortal)
{
 if(subtreeRoot->is_leaf())
 {
 const BSPLeaf *leaf = subtreeRoot->as_leaf();

 if(leaf->is_solid()) return PortalList();

 switch(relativeToPortal)
 {
 case CP_BACK:
 {
 portal->auxiliary_data().fromLeaf =
 leaf->leaf_index();
 break;
 }
 case CP_FRONT:
 {
 portal->auxiliary_data().toLeaf =
 leaf->leaf_index();
 break;
 }
 default: // CP_STRADDLE
 {
 // The portal fragment is in the middle of a
 // leaf (this is not an error, but we do
 // need to discard the portal fragment as
 // we'd otherwise have a portal linking a
 // leaf to itself).
 return PortalList();
 }
 }
 PortalList ret;
 ret.push_back(portal);
 return ret;
 }

 else
 {
 const BSPBranch *branch =
 subtreeRoot->as_branch();
 switch(classify_polygon_against_plane(*portal,
 *branch->splitter()))
 {

Listing 5 (cont’d)

 case CP_BACK:
 {
 return clip_to_subtree(portal,
 branch->right(), relativeToPortal);
 }
 case CP_COPLANAR:
 {
 BSPNode_Ptr fromSubtree;
 BSPNode_Ptr toSubtree;
 if(branch->splitter()->normal().dot(
 portal->normal()) > 0)
 {
 fromSubtree = branch->right();
 toSubtree = branch->left();
 }
 else
 {
 fromSubtree = branch->left();
 toSubtree = branch->right();
 }
 PortalList fromPortals = clip_to_subtree(
 portal, fromSubtree, CP_BACK);
 PortalList ret;
 for(PortalListCIter it=fromPortals.begin(),
 iend=fromPortals.end(); it!=iend; ++it)
 {
 ret.splice(ret.end(), clip_to_subtree(*it,
 toSubtree, CP_FRONT));
 }
 return ret;
 }
 case CP_FRONT:
 {
 return clip_to_subtree(portal,
 branch->left(), relativeToPortal);
 }
 case CP_STRADDLE:
 {
 // Note: The leaf links for the two half
 // polygons are inherited from the original
 // polygon here.
 SplitResults<Vector3d,PortalInfo> sr =
 split_polygon(*portal,
 *branch->splitter());
 PortalList frontResult =
 clip_to_subtree(sr.front, branch->left(),
 relativeToPortal);
 PortalList backResult =
 clip_to_subtree(sr.back, branch->right(),
 relativeToPortal);
 PortalList ret;
 ret.splice(ret.end(), frontResult);
 ret.splice(ret.end(), backResult);
 return ret;
 }
 }
 }

 // The code will never actually get here,
 // because the switch above is exhaustive,
 // but the compiler still warns us because it
 // can't tell that.
 throw Exception("This should never happen");
}

February 2009 | Overload | 17

FEATURE STUART GOLODETZ

we work out whether the portal is facing in the
same direction as the plane or not
The coplanar case is more intricate. First of all, we work out whether the
portal is facing in the same direction as the plane or not by comparing the
dot product of their normals to 0 (they’re facing the same way if the dot
product is positive). This determines which subtree of the current node is
the from subtree (i.e. its root represents a convex subspace entirely behind
the portal) and which is the to subtree (its root represents a convex subspace
entirely in front of the portal). Having determined this, we pass the portal
down one of the subtrees (the from subtree in my code) and clip it to the
tree. We then clip the portal fragments which survived that clipping
process to the other subtree (the to subtree in my code), and concatenate
the results. Finally, we return the list of fragments which survived being
clipped down both subtrees.
It is worth remarking on the role of the relativeToPortal function
parameter in this process: it is there to indicate whether the subspace
represented by the current node is in front of, behind, or straddling the
portal. It is CP_STRADDLE at the start of the process (since the entire world
space certainly straddles any portal), and only becomes either CP_FRONT
or CP_BACK when the portal lies on a branch node’s split plane (i.e. in the
coplanar case we’ve just been discussing). At this point, we use
relativeToPortal = CP_BACK for the from subtree (since that’s
entirely behind the portal) and relativeToPortal = CP_FRONT for
the to subtree (since that’s entirely in front of the portal). This allows us
to correctly handle what happens to the portal when it ends up in a leaf.

Bringing things together
We’ve now seen how to find the undirected plane set, how to generate an
initial portal on each plane, and how to clip that portal to the tree. All that

remains is to show the top-level code which ties all of this together and
makes the reverse-facing copies of each portal (see Listing 6).
The only new bit in this is the code which makes the reverse-facing portals.
This is largely trivial: all that’s necessary is to flip the portal winding and
switch the from and to leaves in the portal’s auxiliary information
structure.

Example
It would be remiss of me not to show an example of all this in action, so
let’s walk through a bit of the portal generation for the small L-shaped
room in Figure 4. To follow along, it might be easier if you work it through
on a piece of paper!

The undirected plane set (where plane ax + by + cz = d is represented
by the quadruple (a,b,c,d)) is {(1,0,0,0), (1,0,0,1), (1,0,0,2),
(0,1,0,0), (0,1,0,1), (0,1,0,2)}, i.e. x = 0, x = 1, x = 2, y = 0, y = 1 and
y = 2.
Portal P1 on plane x = 0

Straddles 4 → split into P1f and P1b and recurse down each side
P1f is on the plane of 1f and same facing → the back subtree
is the from subtree and the front subtree is the to subtree;
pass down from subtree first

Solid leaf → discard portal
P1b straddles 0 → split into P1bf and P1bb and recurse down
each side

Figure 4
18 | Overload | February 2009

FEATURESTUART GOLODETZ

only one portal ... has survived the
clipping process
P1bf is on the plane of 1b and same facing → from := back,
to := front; pass down from subtree first

Solid leaf → discard portal
P1bb is in a solid leaf → discard it

Portal P4 on plane y = 1
On the plane of 4 and same facing → from := back, to := front;
pass down from subtree first

In front of 0 → recurse down front subtree

Straddles 1b → split into P4f and P4b and recurse down each
side

P4f straddles 5 → split into P4ff and P4fb and recurse
β is empty → becomes from leaf of P4ff
P4fb is in a solid leaf → discard it

P4b is in a solid leaf → discard it
Now pass surviving fragments (i.e. P4ff) down the to subtree of 4

In front of 1f, then 2, then 3, so ends up in leaf α, which
becomes its to leaf

Portal P5 on plane x = 1
Straddles 4 → split into P5f and P5b and recurse down each side

P5f is in front of 1f → recurse down front subtree
P5f straddles 2, so split it into P5ff and P5fb and recurse

P5ff is in front of 3 → recurse down front subtree
α straddles P5ff, so discard it

P5fb ends up in a solid leaf → discard it
P5b straddles 0, so split it into P5bf and P5bb and recurse

P5bf is in front of 1b → recurse down front subtree
P5bf is on the plane of 5 and opposite facing → from :=
front, to := back; pass down from subtree first

β is empty → becomes from leaf of P5bf
Now pass P5bf down the to subtree

Solid leaf → discard portal
P5bb ends up in the solid leaf behind 0 → discard it

I’ll leave generating portals on the remaining planes as an exercise for the
reader. You'll note that so far only one portal (portal P4ff, which goes from
β to α) has survived the clipping process. (This is in fact the only portal –
other than its reverse-facing duplicate, which goes from α to β – in this
small level.)

Conclusion
In this article, we’ve seen how to generate portals for a level. Next time,
I’ll explain how to use these to generate a leaf-to-leaf visibility table for
our level as a way of speeding up level-rendering.

References
[Golodetz08] ‘Divide and Conquer: Partition Trees and Their Uses’,

Overload #86, August 2008.
[Simmons01] ‘Advanced 3D BSP, PVS and CSG Techniques’, Gary

Simmons and Adam Hoult, Game Institute, 2001.
[Tampieri92] ‘Grouping nearly coplanar polygons into coplanar sets’,

Filippo Tampieri and David Salesin. In Graphics Gems III (ed. David
Kirk), Academic Press, San Diego, July 1992.

Listing 6

template <typename Vert, typename AuxData>
typename PortalGenerator::PortalList_Ptr
PortalGenerator::generate_portals(
 const std::vector<shared_ptr<Polygon<Vert,
 AuxData> > >& polygons, const BSPTree_Ptr&
 tree)
{
 PortalList_Ptr portals(new PortalList);
 PlaneList_Ptr planes =
 find_unique_planes(polygons);

 for(PlaneList::const_iterator it=
 planes->begin(), iend=planes->end();
 it!=iend; ++it)
 {
 Portal_Ptr portal = make_initial_portal(*it);
 portals->splice(portals->end(),
 clip_to_tree(portal, tree));
 }

 // Generate the opposite-facing portals.
 for(PortalList::iterator it=portals->begin(),
 iend=portals->end(); it!=iend; ++it)
 {
 Portal_Ptr portal = *it;
 // Construct the reverse portal.
 Portal_Ptr reversePortal(
 portal->flipped_winding());
 const PortalInfo& portalInfo =
 portal->auxiliary_data();
 reversePortal->auxiliary_data() =
 PortalInfo(portalInfo.toLeaf,
 portalInfo.fromLeaf);
 // Insert it after the existing portal in the
 // list.
 ++it;
 it = portals->insert(it, reversePortal);
 }
 return portals;
}

February 2009 | Overload | 19

FEATURE OMAR BASHIR
Orderly Termination of Programs
Ensuring a clean shutdown is important.
Omar Bashir presents some techniques.
ervers are processes, typically on networked computers, that
encapsulate and manage a collection of related resources and present
functionality related to these resources to client applications

[Coulouris01]. Servers wait continuously for requests from clients. Upon
receiving requests, servers service the requests and then wait for further
requests. As many other applications depend upon servers, termination of
their execution should be achieved in an orderly manner. This allows the
dependencies to be brought to a state to allow an error-free restart. Also
the clients in the process of being served need to either be notified or
allowed to complete their sessions.
Servers can be terminated in one of the following two ways,

1. Sending a special application level termination request.
2. Sending an operating system level signal to the server.

The former is implemented completely at the application level and can be
relatively conveniently synchronized with the operation of the server to
perform an orderly shutdown. This method is only useful for networked
applications.
However, the latter originates from the operating system (albeit triggered
by another application) and needs to be handled by a callback mechanism
in the destination server. Furthermore, this approach can also be used to
implement orderly termination in standalone applications, as this does not
require communicating program termination commands via a networked
connection.
Most programming languages provide language level constructs to receive
signals (including termination signals) from operating systems.
Applications can register callbacks to be triggered on the occurrence of
these signals. For signals indicating application termination, registered
callbacks can initiate an orderly termination of the application. Most such
callbacks may follow a pattern. An object-oriented generalization of one
of such patterns is discussed in this article. A simple framework that
implements this pattern in C++ is described. This implementation is
specific to the Linux platform. Application of this framework in single
threaded and multithreaded programs is also illustrated.

An orderly termination mechanism
Servers operate in a loop, i.e., wait for requests to arrive. Once the requests
arrive, they process these requests and then wait for further requests. The
simplest way to manage orderly termination of a server is to set a flag
(referred here to as the shutdown flag) when the server is to be terminated.
The server should continuously monitor the shutdown flag and if it is set,
the server should initiate the termination process.

Stevens differentiates servers as iterative and concurrent [Stevens99].
Iterative servers handle only one request at a time. If another request
arrives while the server is processing a previous request, the new request
is queued and is processed once the previous request has been processed.
Managing orderly termination in iterative servers can be relatively
straightforward and a possible means of achieving this is shown in the state
diagram in figure 1.
The server, after initialization, waits for client’s requests. In case the
request is received, the server processes the request. After processing the
request it checks the shutdown flag to determine if a shutdown was
initiated. If that flag is set, the server performs the termination operations,
e.g., closing down files, database connections etc. If the flag is not set then
the server waits for the next request. In case no request arrives, the server
times out and checks the shutdown flag in case program termination was
initiated while the server was waiting for the request. If that flag is not set
then the server again waits for a client’s request. Alternatively, if this flag
is set, the server performs the necessary termination operations.
Concurrent servers handle multiple requests at one time. There are several
approaches to this. A traditional mechanism is to call the Unix fork
function to create a separate child process for each client or request.
Alternatively threads are spawned instead of child processes to service
each client or client’s request. Orderly termination of concurrent servers
may require a slightly more elaborate process but follows a pattern similar
to that for iterative servers.
The state transition diagram in figure 2 shows orderly termination of
concurrent servers. Upon receiving a request, the server will spawn a
thread to service the request. If the shutdown flag has been set, the server
will wait for all the threads it spawned earlier to terminate before initiating
server termination.
Finally, a multithreaded server can have a number of continuously running
threads, which may service incoming requests independently (therefore,
operating as a concurrent server) or they may assist in servicing a single
request (therefore, operating as a multithreaded iterative server). Figure 3
shows orderly termination of a multithreaded server with continuously
running threads.

S

Figure 1

Omar Bashir had his first experiences with programming
trying to interface devices in avionics systems over 15 years
ago. His interests in device interfacing have evolved from
networking to distributed systems and also architectures and
patterns. He is currently working as a software developer for
a financial services company.
20 | Overload | February 2009

FEATUREOMAR BASHIR

Programs will have to register a callback to
receive the program termination signal

from the operating system
Once the server receives a signal to terminate operation, it signals all the
threads to terminate their operations. Individual threads within the server
may be viewed as iterative servers for this purpose. After signaling all the
threads to terminate, the server waits for the threads to join. Once all the
threads have joined, the server terminates its operation.

Class structures and dynamics
In the simplest case, a termination handler is based on two participants.
As shown in the c lass d iagram in f igure 4 , these a re the
ShutdownManager class and the list of Subjects that are notified of
imminent program termination by the ShutdownManager. A Subject
can be the complete application wrapper or individual classes within the
application, e.g., database handler, socket wrapper, etc. A Subject
should at least implement the Haltable interface, which should present
a method (shutdown()) to be called by the ShutdownManager object
t o no t i fy imm inen t p rog ram t e rmi n a t i on a nd a m e thod
(isShuttingDown()) to determine if the Subject is shutting down in
response to a call to the shutdown() method.
Programs using this pattern will have to declare an object of the
ShutdownManager class and register all instances of implementations

of Haltable using the addHaltable() method. Programs will have to
register a callback to receive the program termination signal from the
operating system. This callback will call the executeShutdown()
method of the ShutdownManager instance, which will iterate through
the list of registered Haltable instances and call their shutdown()
methods.
Implementation of Termination Handler as shown in figure 4 may
be sufficient for single threaded programs. However, for multithreaded
programs, Termination Handler needs to be extended as shown in
figure 5. Here, the Subject needs to implement the Runnable interface,
which extends the Haltable interface. Subjects that need to be
executed in separate threads are not directly registered with the
ShutdownManager. Rather they need to be decorated by objects of the
ThreadOwner class (DECORATOR pattern, [Gamma95]. ThreadOwner
also implements the Haltable interface, therefore allowing objects of
the ThreadOwner class to be registered with the ShutdownManager.
Objects of the ThreadOwner class execute implementations of
Runnable in separate threads. Furthermore, they can allow orderly
shu tdown i n a t h r e ad - sa f e m anne r . W he n ca l l ed f rom
executeShutdown(), the shutdown() method of the ThreadOwner
class locks a mutex and then calls the shutdown() method of the

Figure 2

Figure 3

Figure 4

Figure 5

February 2009 | Overload | 21

FEATURE OMAR BASHIR

if they have been executing in separate
threads, those threads should have joined
thus allowing the server to terminate in an
orderly manner
Subject allowing the thread in which the Subject is executing to
terminate appropriately. Similarly, the isShuttingDown() method of
the ThreadOwner class locks the mutex and then calls the
isShuttingDown() me thod o f t he Subject . As
isShuttingDown() method is also called by the Haltable
implementations internally to determine when to terminate their
operations, Runnable implementations require a reference to their
respective ThreadOwner instances so that they can access and invoke the
decorated (and thread safe) isShuttingDown() method provided by the
ThreadOwner. The setThreadOwner() method of a Runnable
implementation is used to establish this association.
Once the executeShutdown() method of the ShutdownManager
instance is called, it first iterates through the list of registered Haltable
instances and calls their respective shutdown() methods. Then it again
iterates through this list and for every Haltable, which is also a
ThreadOwner, it calls the join() method of the ThreadOwner to wait
for the respective thread to join (Figure 6). Therefore, when
executeShutdown() returns, all registered Haltable instances have
been notified of termination and if they have been executing in separate
threads, those threads should have joined thus allowing the server to
terminate in an orderly manner.

Implementation in C++
Listing 1 shows the C++ implementation of the Haltable interface.
As mentioned earlier, each Haltable implementation has to implement
the shutdown() method that specifies the operations to be performed for
t ha t Haltable i m p l e m e n t a t i on u po n s h u t d ow n . A l s o
isShuttingDown() needs to be implemented to allow the calling
method to determine if shutdown() had already been called and the
Haltable implementation is in the process of terminating its operation.
isShuttingDown() will typically be called inside the main functional
loop of the Haltable implementation so that the loop can be exited in
response to a shutdown notification.

Listing 2 shows the Runnable interface. This C++ implementation of the
Runnable interface is actually an abstract class. It holds a pointer to the
ThreadOwner object that will execute a concrete subclass of Runnable
in a separate thread. As mentioned earlier, this association with the
ThreadOwner object is required to allow execution of thread safe
implementations of shutdown() and isShuttingdown() methods
provided by ThreadOwner when invoked from within the Runnable
implementations. This association is established by calling the
setThreadOwner() method and passing it the pointer to the
ThreadOwner object which executes this Runnable implementation in
a separate thread. Finally, the functionality of a Runnable
implementation to be executed in its separate thread is implemented in the
execute() method.

Figure 6

Listing 1

#ifndef HALTABLE_H_
#define HALTABLE_H_
namespace haltable{
 class Haltable
 {
 public:
 virtual void shutdown(void) = 0;
 virtual bool isShuttingDown(void) = 0;
 virtual ~Haltable(){}
 };
}
#endif /*HALTABLE_H_*/

Listing 2

#ifndef RUNNABLE_H_
#define RUNNABLE_H_
#include "Haltable.h"
#include <cstdio>
namespace haltable{
 class ThreadOwner;
 class Runnable: public virtual Haltable{
 protected:
 ThreadOwner* threadOwner;
 public:
 Runnable(void):threadOwner(NULL){}
 virtual void execute(void) = 0;
 virtual void setThreadOwner(
 ThreadOwner* threadHandler){
 threadOwner = threadHandler;
 }
 virtual ~Runnable(){}
 };
};
#endif /*RUNNABLE_H_*/
22 | Overload | February 2009

FEATUREOMAR BASHIR
Listing 3 shows the ThreadOwner class which is an implementation of
the Haltable interface. A ThreadOwner instance is used to invoke the
execute() method of an instance of a Runnable implementation in a
separate thread. Thus, for multithreaded applications, ThreadOwner is
used as a Subject for the ShutdownManager instance. ThreadOwner
uses a mutex, which is locked when the shutdown() and
isShuttingDown() methods of the Runnable instance are called from
the shutdown() and isShuttingDown() implementations of
ThreadOwner thus avoiding any race condition. Constructor of
ThreadOwner also calls the setThreadOwner() of the Runnable
instance passed to the constructor as a parameter and passes its own pointer
to the Runnable instance. This allows the instance of Runnable
i mp leme n t a t i on t o ca l l t he dec ora t e d shutdown() and
isShuttingDown() methods provided by the ThreadOwner rather
than using its own undecorated methods. start() method of
ThreadOwner invokes the executeInThread() function in a new
thread. The argument of this function is type-casted as a pointer to
Runnable and then its execute() method is invoked to execute the
functionality that the Runnable instance provides. Listing 4 shows the
implmentation of executeInThread() function.
Lis t ing 5 shows the ShutdownManager implementa t ion .
ShutdownManager implements a SINGLETON pattern [Gamma95] as
only one instance of this class should be responsible for managing
Haltables and ThreadOwners within a program. Therefore, the
constructor is private. Pointer to an instance of this class is obtained by
calling a static initialise() method. This method increments the
refCount static variable of the class and creates an instance of this class
if one has not already been created. Pointer to this instance is assigned to
the instance static variable. The pointer to the instance of the class is then
returned. Once the instance is no longer required, dispose() method of
the object is called. This method decrements the refCount variable and
once the value of the refCount variable is zero, the instance of this class
being pointed to by the instance class variable is deleted. As both
initialise() and dispose() methods access static class members,
they lock a mutex (initMutex) to ensure thread safety. Finally, the
terminate() static method is used to destroy initMutex which is
statically initialized. The call to this method should be the last statement
in a program..
The constructor of this class specifies the handler() function as the
signal handler for the SIGTERM signal, the signal sent to a process to notify
its termination. The constructor also creates a pipe [Stevens99b] to
communicate that all the Haltables have been notified of shutdown and
all the ThreadOwners have joined. The handler() function is invoked
once the SIGTERM signal is received by the process. handler() blocks
the SIGTERM signal and then invokes the executeShutdown() method
of the ShutdownManager’s instance. executeShutdown() invokes
the shutdown() methods of all registered Haltables and then for all
Haltables that are also ThreadOwners, it invokes their join()
methods to wai t for them to terminate before proceeding.
executeShutdown() then writes a character to the pipe created in the
constructor. The main() function of the program should, at the end,
ca l l t he waitForExecuteShutdown() me t hod o f t he
ShutdownManager’s instance. waitForExecuteShutdown()
blocks to read a character from the pipe created in the constructor of
ShutdownManager. In a multithreaded application, this allows the
main() function to wait for the executeShutdown() method to end

Listing 4

#include "ThreadOwner.h"

void* haltable::executeInThread(void*
runnableObj){
 Runnable* runnable = (Runnable*) runnableObj;
 runnable->execute();
 pthread_exit(NULL);
 return NULL;
}

Listing 3

#ifndef THREADOWNER_
#define THREADOWNER_
#include "Runnable.h"
#include <pthread.h>
#include <stdexcept>
namespace haltable{
void* executeInThread(void* runnableObj);
enum ThreadStatus {
 THREAD_NOT_CREATED,
 THREAD_CREATED,
 ERROR_CREATING_THREAD
};
class ThreadOwner:public Haltable{
 private:
 std::string name;
 pthread_t threadId;
 Runnable* runnable;
 pthread_mutex_t shutdownMutex;
 ThreadStatus currentStatus;
 public:
 ThreadOwner(const std::string& threadName,
 Runnable* runnableObj):name(threadName),
 runnable(runnableObj),
 currentStatus(THREAD_NOT_CREATED){
 pthread_mutex_init(&shutdownMutex, NULL);
 runnable->setThreadOwner(this);
 }
 const std::string& getName(void){
 return name;
 }
 ThreadStatus start(void){
 if (currentStatus == THREAD_NOT_CREATED){
 if (pthread_create(&threadId, NULL,
 executeInThread, runnable) == 0){
 currentStatus = THREAD_CREATED;
 } else {
 currentStatus = ERROR_CREATING_THREAD;
 }
 }
 return currentStatus;
 }
 void join(void){
 if (currentStatus != THREAD_CREATED){
 std::domain_error exp(
 "Thread has or could not be created.");
 throw exp;
 } else {
 pthread_join(threadId, NULL);
 }
 }
 virtual void shutdown(void) {
 pthread_mutex_lock(&shutdownMutex);
 runnable->shutdown();
 pthread_mutex_unlock(&shutdownMutex);
 }
 virtual bool isShuttingDown(void) {
 bool reply = false;
 pthread_mutex_lock(&shutdownMutex);
 reply = runnable->isShuttingDown();
 pthread_mutex_unlock(&shutdownMutex);
 return reply;
 }
 virtual ~ThreadOwner(){
 pthread_mutex_destroy(&shutdownMutex);
 }
 };
};
#endif /*THREADOWNER_*/
February 2009 | Overload | 23

FEATURE OMAR BASHIR
before ending the main() function ensuring that all threads have
terminated normally.
Listing 6 shows the implementation of the handler() function and also
the initialisation of the static data members of ShutdownManager.
handler() obtains the pointer to the instance of ShutdownManager by
call its initialise() static method. Once it has completed its
operation, it releases the instance by calling the dispose() method on
the object.

Example – a single threaded application
Listing 7 shows an implementation of a Haltable called the
SingleThreadedTimeLogger. Its execute() method opens a
specified file and logs system time in that file after every second as long
as the isShuttingDown() method returns false . Once the
isShuttingDown() method returns true, the execute() method
exits the loop and closes the file before ending. The shutdown() method
simply sets the shutdownFlag whereas the isShuttingDown()
method returns the value of that flag.
L i s t i ng 8 s ho w s t h e p r og r a m t h a t u s e s a n ob j e c t o f
SingleThreadedTimeLogger class to log time into the specified file.

Listing 5

#ifndef SHUTDOWNMANAGER_H_
#define SHUTDOWNMANAGER_H_
#define SHUTDOWN_MANAGER_DEBUG

#include <list>
#include "Haltable.h"
#include "ThreadOwner.h"
#include <csignal>
#include <pthread.h>
#include <unistd.h>
#include <stdexcept>
#include <iostream>

namespace haltable{
void handler(int sig);

class ShutdownManager{
 private:
 std::list<Haltable*> haltables;
 int pipeDescriptors[2];
 static ShutdownManager* instance;
 static int refCount;
 static pthread_mutex_t initMutex;
 ShutdownManager(void): haltables(){
 struct sigaction termAction;
 sigemptyset(&termAction.sa_mask);
 termAction.sa_handler = handler;
 termAction.sa_flags = 0;
 pipe(pipeDescriptors);
 sigaction(SIGTERM, &termAction, NULL);
 }

 public:
 static ShutdownManager* initialise(void){
 pthread_mutex_lock(&initMutex);
 refCount++;
 if (NULL == instance){
 instance = new ShutdownManager();
 }
 pthread_mutex_unlock(&initMutex);
 return instance;
 }
 void dispose(void){
 pthread_mutex_lock(&initMutex);
 refCount--;
 if ((NULL != instance) && (refCount == 0)){

Listing 5 (cont’d)

 delete instance;
 instance = NULL;
 }
 pthread_mutex_unlock(&initMutex);
 }
 static void terminate(void){
 pthread_mutex_destroy(&initMutex);
 }
 void addHaltable(Haltable* haltable){
 haltables.push_back(haltable);
 }

 void executeShutdown(void){
 for (std::list<Haltable*>::iterator itr =
 haltables.begin();
 itr != haltables.end(); itr++){
 (*itr)->shutdown();
 }
 for (std::list<Haltable*>::iterator itr =
 haltables.begin();
 itr != haltables.end(); itr++){
 ThreadOwner* threadOwner =
 dynamic_cast<ThreadOwner*>(*itr);
 if (threadOwner != NULL){
 try{
 threadOwner->join();
 } catch(const std::domain_error& exp){
 std::cout << exp.what() << std::endl;
 }
 }
 }
 char continueChar = 'x';
 write(pipeDescriptors[1], &continueChar,
 sizeof(continueChar));
 }

 void waitForExecuteShutdown(void){
 char continueChar;
 while (read(pipeDescriptors[0],
 &continueChar,
 sizeof(continueChar)) != 1){}
 close(pipeDescriptors[0]);
 close(pipeDescriptors[1]);
 }
};
};

Listing 6

#include "ShutdownManager.h"
haltable::ShutdownManager*
haltable::ShutdownManager::instance = NULL;
int haltable::ShutdownManager::refCount = 0;
pthread_mutex_t
haltable::ShutdownManager::initMutex =
PTHREAD_MUTEX_INITIALIZER;
void haltable::handler(int sig){
 haltable::ShutdownManager* shutdownManager =
 haltable::ShutdownManager::initialise();
 struct sigaction termAction;
 sigemptyset(&termAction.sa_mask);
 termAction.sa_handler = SIG_IGN;
 termAction.sa_flags = 0;
 sigaction(SIGTERM, &termAction, NULL);
 shutdownManager->executeShutdown();
 shutdownManager->dispose();
}

24 | Overload | February 2009

FEATUREOMAR BASHIR
The main() function of the program instantiates timeLogger object of
the SingleThreadedTimeLogger class. The main() function also
obtains the reference of ShutdownManager class by calling its

initialise() static method and assigns it to shutdownManager
variable. timeLogger is added to shutdownManager object’s list of
Haltables by passing its pointer to the addHaltable() method. After
timeLogger has been added to shutdownHandler’s list of
Haltables, its execute() method is called to start the logging process.
To perform an orderly termination of this application, the user may
determine the process ID using Linux’s ps command and then kill the
application using the kill <process ID> command. As a result, a
SIGTERM signal is sent to this application. Upon receipt, the handler()
function in ShutdownManager.h is executed to initiate an orderly
termination of the program.
The main() function releases the instance of the ShutdownManager
class by calling the dispose method on the object pointed to by
shutdownManager pointer . Final ly, before returning, the
terminate() static method of the ShutdownManager class is called
(see Listing 8) .

Example – a multi-threaded application
Listing 9 shows the ThreadableTimeLogger, an extension of the
SingleThreadedTimeLogger (Listing 7) and the Runnable
(Listing 2) classes. Instances of this class can be executed in separate
threads using instances of the ThreadOwner class. Implementation of the
execute() me t hod i s s im i l a r t o t ha t o f t he
SingleThreadedTimeLogger except that it uses the associated
ThreadOwner instance to determine, by calling the ThreadOwner’s
isShuttingDown() method, if its shutdown() method has been
ca l l ed . Th i s i s because the ThreadOwner i n s tance ca l l s
ThreadableTimeLogger’s shutdown() and isShuttingDown()
methods after locking a mutex to avoid race conditions. As described
earlier, the association between a ThreadableTimeLogger instance
and a ThreadOwner instance is achieved via the Runnable abstract
class’s setThreadOwner() method.
Lis t ing 10 shows the program that uses three instances of
ThreadableTimeLogger to log time in three different files
concurrently. The main() function of this example creates three objects
of the ThreadableTimeLogger class and three objects of the
ThreadOwner class. Each ThreadableTimeLogger instance is
associated with a ThreadOwner instance. ThreadOwner instances are
then added to the l ist of Haltables in the instance of the
ShutdownManager class. start() is then called on each of these
ob je c t s t o s t a r t t he r e spe c t i ve t h r eads fo r e ach o f
ThreadableTimeLogger instances to invoke their execute()
methods in. main() then calls the waitForExecuteShudown()

Listing 7

#ifndef SINGLETHREADEDTIMELOGGER_H_
#define SINGLETHREADEDTIMELOGGER_H_
#include "Haltable.h"
#include <fstream>
#include <string>
#include <ctime>
#include <cstdlib>
#include <unistd.h>
#include <iostream>

class SingleThreadedTimeLogger:
 virtual public haltable::Haltable{
 private:
 std::ofstream outFile;
 bool shutdownFlag;
 int sleepTime;
 std::string message;
 protected:
 std::string outFileName;
 bool openFile(void){
 outFile.open(outFileName.c_str());
 return outFile.good();
 }
 void closeFile(void){
 outFile.close();
 }
 void writeTimeToFile(){
 char buffer[128];
 time_t currentTime = time(NULL);
 ctime_r(¤tTime, buffer);
 outFile << message << " :: " << buffer;
 sleep(sleepTime);
 }
 public:
 SingleThreadedTimeLogger(
 const std::string& fileName,
 const std::string& msg):outFile(),
 shutdownFlag(false),
 sleepTime(1),
 message(msg),
 outFileName(fileName){}
 virtual ~SingleThreadedTimeLogger(){
 if (outFile.is_open()){
 outFile.close();
 }
 }
 virtual void shutdown(void){
 shutdownFlag = true;
 }
 virtual bool isShuttingDown(void){
 return shutdownFlag;
 }
 void execute(void){
 if (openFile()){
 while (!isShuttingDown()){
 writeTimeToFile();
 }
 closeFile();
 } else {
 std::cout << "Error opening "
 << outFileName << std::endl;
 }
 }
};
#endif /*SINGLETHREADEDTIMELOGGER_H_*/

Listing 8

#ifndef THREADOWNER_
#include "ShutdownManager.h"
#include "SingleThreadedTimeLogger.h"
#include <fstream>
#include <string>
#include <ctime>
#include <unistd.h>
#include <iostream>

int main(void){
 haltable::ShutdownManager* shutdownManager =
 haltable::ShutdownManager::initialise();
 SingleThreadedTimeLogger timeLogger(
 "time_log.txt", "SingleThreadedTimeLogger");
 shutdownManager->addHaltable(&timeLogger);
 timeLogger.execute();
 std::cout << "Exiting application" << std::endl;
 shutdownManager->waitForExecuteShutdown();
 shutdownManager->dispose();
 haltable::ShutdownManager::terminate();
 return 0;
}

February 2009 | Overload | 25

FEATURE OMAR BASHIR
method of the ShutdownManager’s instance to block on the pipe internal
to the ShutdownManager’s instance waiting for the notification by the
executeShutdown() method to signal that all Haltables have been
notified of termination and all ThreadOwners have joined. This
application can also be signaled to terminate by using Linux’s kill
command. As in the previous example, handle() will call
executeShutdown() method of the ShutdownManager’s instance.
However, as all the Haltables in this case are also ThreadOwners,
executeShutdown() will wait for all the respective threads to join
before returning.

Concluding remarks
Ensuring orderly termination of applications, particularly servers, can end
up being complicated. Various resources being used by these applications
need to be brought to consistent states for subsequent error-free restart and
various clients need to either be notified of the shutdown or their requests
completed before the shutdown. Large applications may contain several
objects of many different classes that typically are wrappers over system
resources and need to be notified of an impending shutdown. This article
has described a pattern that can be used in a framework to allow necessary
operations to be performed by respective objects once the application has

been notified of its termination. An implementation of a framework based
on this pattern and two examples of its use are also described. This
framework is written in C++ for Linux.

Acknowledgements
I am grateful to Ric Parkin and the reviewers for their valuable feedback
and encouragement.

References
[Coulouris01] G. Coulouris, J. Dollimore, T. Kindberg, Distributed

Systems, Concepts and Design, Pearson Education, 2001.
[Gamma95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns, Elements of Reusable Object Oriented Software, 1995.
[Stevens99] W. R. Stevens, Unix Network Programming (Volume 1),

Pearson Education 1999.
[Stevens99b] W. R. Stevens, Unix Network Programming (Volume 2),

Pearson Education 1999.

Listing 9

#ifndef THREADABLETIMELOGGER_H_
#define THREADABLETIMELOGGER_H_

#include "Runnable.h"
#include "SingleThreadedTimeLogger.h"
#include <pthread.h>
#include <iostream>

class ThreadableTimeLogger:
 public SingleThreadedTimeLogger,
 public haltable::Runnable{
 public:
 ThreadableTimeLogger(
 const std::string& fileName,
 const std::string& msg):
 SingleThreadedTimeLogger(fileName, msg),
 Runnable(){}
 virtual ~ThreadableTimeLogger(){}

 void execute(void){
 if (openFile()){
 while (!threadOwner->isShuttingDown()){
 writeTimeToFile();
 }
 closeFile();
 } else {
 std::cout << "Error opening " <<
 outFileName << std::endl;
 }
 }

 virtual void shutdown(void){
 std::cout << "Shutdown called in
 ThreadableTimeLogger" << std::endl;
 SingleThreadedTimeLogger::shutdown();
 }

 virtual bool isShuttingDown(void){
 std::cout << "isShuttingDown called in
 ThreadableTimeLogger" << std::endl;
 return SingleThreadedTimeLogger::
 isShuttingDown();
 }
};

#endif /*THREADABLETIMELOGGER_H_*/

Listing 10

#include <fstream>
#include "ShutdownManager.h"
#include "ThreadableTimeLogger.h"
#include <ctime>
#include <string>

int main(void){
 haltable::ShutdownManager* shutdownManager =
 haltable::ShutdownManager::initialise();
 ThreadableTimeLogger timeLogger0(
 "time_log_0.txt", "InsideThreadA");
 ThreadableTimeLogger timeLogger1(
 "time_log_1.txt", "InsideThreadB");
 ThreadableTimeLogger timeLogger2(
 "time_log_2.txt", "InsideThreadC");

 haltable::ThreadOwner threadA(
 "ThreadA", &timeLogger0);
 haltable::ThreadOwner threadB(
 "ThreadB", &timeLogger1);
 haltable::ThreadOwner threadC(
 "ThreadC", &timeLogger2);

 shutdownManager->addHaltable(&threadA);
 shutdownManager->addHaltable(&threadB);
 shutdownManager->addHaltable(&threadC);

 if (threadA.start() !=
 haltable::THREAD_CREATED){
 std::cout << "Error starting thread A" <<
 std::endl;
 }
 if (threadB.start() !=
 haltable::THREAD_CREATED){
 std::cout << "Error starting thread B" <<
 std::endl;
 }
 if (threadC.start() !=
 haltable::THREAD_CREATED){
 std::cout << "Error starting thread C" <<
 std::endl;
 }
 shutdownManager->waitForExecuteShutdown();
 std::cout << "Terminating application" <<
 std::endl;
 shutdownManager->dispose();
 haltable::ShutdownManager::terminate();
 return (0);
}

26 | Overload | February 2009

FEATUREALLAN KELLY
On Management: Caveat Emptor
There are many theories and practices of
management. Allan Kelly offers some warnings.
he previous article in this series peeked inside the organizational
form. This is a massive subject in its own right and one that
determines what management roles exist and what is expected of

them. Organizational form is in part a function of what the company is
trying to achieve. Rather than discuss structure in detail I want to turn my
attention to the roles we find in software development groups. However,
before I do so I want use this article to offer some warnings.

Management isn’t homogenous
How does one define management? Or rather, how does one know
management work when we see it?
Perhaps in years gone by management work could be defined as that which
was not manual labour. Rather than assembling things on a production line
managers organized the production line; rather than dig minerals out of the
ground managers concerned themselves with finding people to dig out
minerals, selling the minerals and accounting for the profit and loss.
On this definition managers are those who work principally with their
brains rather than their hands – some would distinguish between white
collar workers and blue collar. But on this basis software developers are
managers because their work is principally in the mind.
Alternatively, we could say than managers concern themselves with
organizing the work rather than doing it. Extending the analogy to
software development, managers are those who don’t code. But this leaves
out software testers and others. So perhaps the definition is those who do
not directly touch the product during development.

Lesson 1: What constitutes Management and what the dividing
line is between manager and worker has never been well
defined and is even more blurred today.

On this basis we might exclude Business Analysts from the management
group. Yet (as we will see in a future article) the role filled by Business
Analysts in some companies is filled by Product Managers in others. And
since Product Managers have the word Manager in their title they must be
managers, QED.
Unfortunately the word manager is somewhat abused. This is most obvious
when writing program code. Naming an object ‘Manager’ – for example
SecurityManager or LogManager – is usually an indication that the
object is poorly understood and ends up being a collection of functions
with a vague connection.
Not only is the word manager added to a title in an attempt to explain a
vague role it is also added as a form of aggrandisement. Title inflation
means that some managers manage little more than their own time, while
those who truly do manage many people – or things – become Directors.
A corollary to this confusion is that managers manage different things in
different ways. The work of a Product Manager is different to that of a
Project Manager which is different to that of a Line Manager which in turn
is different to.... – get the picture?

It is a mistake to think that there is a theory of management and that it
applies to all those titled Managers. While there are theories of
management, they are not universally applicable simply because there is
no universal role of manager.

Lesson 2: Different management roles operate in different
ways.

Given that there is confusion over who is, and who is not, a manager, and
that different managers operate under different conditions with different
objectives it is pointless to see a them and us divide.

Caveat emptor: the power and danger of theory
The ideas of economists and political philosophers, both when they
are right and when they are wrong, are more powerful than is
commonly understood. Indeed the world is ruled by little else.
Practical men, who believe themselves to be quite exempt from any
intellectual influence, are usually the slaves of some defunct
economist. Madmen in authority, who hear voices in the air, are
distilling their frenzy from some academic scribbler of a few years
back. John Maynard Keynes [Keynes36]

When coding, in theory at least, there is a right answer – true it isn’t always
so straightforward in practice but most decisions are contingent. That is to
say, given a set of conditions the next action can be predicted.
Even when there is a dispute over the right answer it should be possible to
conduct an objective experiment and measure the result – which version
executes fastest, which is easiest to understand, etc. Conducting the
experiment will not change the context, conduct it again and the result will
be the same. Judgement and intuition are usually used to sidestep the need
for an experiment and speed things along.
Management isn’t like that. Management is about dealing in ambiguous
situations, there are many more variables, some variables are unknown and
some defy logic – because they often concern people and emotions.
Management isn’t contingent; intuition and judgement are not short cuts
but a way of life.

Lesson 3: Management occurs in ambiguous situations with
missing data and incomplete understanding of the problem. It
is only sometimes possible to postpone a decision and collect
this data. Other times judgement, intuition and clear thinking are
required.

T

Allan Kelly After years at the code-face Allan realised that
most of the problems faced by software developers are not in
the code but in the management of projects and products. He
now works as a consultant and trainer to address these
problems by helping teams adopt Agile methods and improve
development practices and processes. He can be contacted at
allan@allankelly.net and maintains a blog at
http://allankelly.blogspot.net.
February 2009 | Overload | 27

FEATURE ALLAN KELLY

it is the hundreds, thousands, of small decisions
made every day that make the difference
Even if there were a set of rules for management then managers would still
need intuition and judgement. The passing of time is not a neutral event.
Sometimes waiting a little while can resolve a problem but on other
occasions delay can make things worse.
Instead managers seek objectivity in theory. And since management is
fundamentally a social science, these theories are social theories that are
difficult to replicate in an experiment. In fact, the application of these
theories changes the environment.

Lesson 4: There are very few hard facts in management – it is
an art not a science.

There is a famous experiment [Goldman96] where pupils at one school
were divided into two groups: poor performers and high achievers.
One group of teachers were told that the pupils they were teaching were
underperformers and were not expected to achieve much. The other group
of teachers were told the opposite; that their pupils were high achievers
and great things were expected of them. In fact the pupils had been divided
randomly between the two groups. When tested several months later the
supposedly ‘under performing’ pupils did indeed under perform while the
‘high achievers’ did exactly that.

Lesson 5: You get what you expect, expect the worst and it may
well come to pass.

(This experiment was conducted in the 1950s, but today’s ethical standards
would not permit the ‘under performers’ to be treated in this way.)
Management theories exist to shape the way in which managers react. Yet
they are dangerous for exactly this reason. A manager who mentally holds
a poor theory in their head will make decisions based on that theory –
exactly the same as they would if the theory was good.
Yet the only way to test a management theory is to use it and in using it
the context is changed. There is no such thing as statelessness or side-effect
free management.
For these reasons, and others, many management theories are not only
unproven but unprovable by way of experimentation. Learned
management journals like the Harvard Business Review and MIT Sloan
Review [McFarland08] [Sull07] publish plenty of management theories
and advice: many of these articles are based on case studies rather than
experiments. Observation and reasoning is about as good as it gets.
Better people than me have pointed out the problems with management
theory. If you want a real tour de force on the subject read Bad
Management Theories Are Destroying Good Management Practices.
[Ghoshal05]

Lesson 6: Bad management theories can be very destructive.

For the purpose of this Overload series I will strive for objectivity, I will
provide references and examples were I can, but it is impossible to be

totally objective. What I write will always be coloured by the theories I
believe in.
In managing software development work and in advising others on how
to improve their software development, I find that it is the hundreds,
thousands, of small decisions made every day that make the difference.
While it is nice for managers to consider big ideas, like organizational
structure and corporate strategy, this only forms a small part of
management work. Most management work is in the small everyday
decisions.
The thousand small decisions made everyday are usually made based on
intuition and our own underlying beliefs. Each big difference is made by
a thousand small decisions. Every decision is an opportunity to affect the
direction, means and effectiveness of work.

Lesson 7: Making the most of every decision opportunity
requires managers to have a clear goal and vision of how the
goal can be achieved. A manager’s personal philosophy of
management plays a key role in ensuring consistent decision
making.

Software management
In Mythical Man Month, [Brooks75] Fred Brooks wrote:

In many ways, managing a large computer programming project is
like managing any other large undertaking – in more ways than most
programmers believe.

Brooks was right; there is much in modern management literature that
applies to the management of software projects. Those charged with
managing software development can learn a lot by looking beyond the
software community for ideas and practices.
Brooks continued to say:

But in many other ways it is different – in more ways than most
professional managers expect.

Perhaps surprisingly some in the management community look to the
software profession for examples of good management practices. Software
development is both very forgiving of poor practice and very sensitive to
it. Even poor management with poor development practices can produce
software that generates revenue, but to produce great software and to
continue creating great products requires excellence in both domains.
So while managing software work is a lot like managing anything else it
is also more different. Which raises the question: does one need experience
as a software developer to manage software development? There is no
simple Yes or No answer to this question.
Rather than single out software development let us try some alternative
questions:

Does one need a background as an accountant in order to manage the
financial operations of a company?
Does one need a background in marketing in order to manage the
marketing department?
28 | Overload | February 2009

FEATUREALLAN KELLY
There will always be individuals who are so able, so skilled, that they will
be able to turn their hand to managing anything. Such individuals will have
quick minds, be good people-managers and be excellent at listening. And
it is a truism to say such people are few and far between.

Lesson 8: In general, managing IT work is best done by those
who have experience of IT work.

So, on the whole a software development background is necessary to
manage a software development group. However such a background is not
in itself sufficient to manage a group. Different skills are required, skills
such as people-management, listening, political acumen, organization and
others. Some will posses these skills already while others will need to learn
them.
But, the skills that make someone a good software developer can also trap
that person when they move to management. Understanding code is good;
however, jumping in to change someone else’s code is not good, it
undermines trust and responsibility. A fascination with technology can
drive a good developer but the same fascination can mislead a manager.
As a developer the first thought upon hearing of a problem should be: it is
a problem with the code. As a manager it pays to look beyond the
immediate problem, Jerry Weinberg [Weinberg85] has said: Its always a
people problem. Looking for a technical problem when the real issue is a
people or process issue can be comforting but also wasteful.
In a way, technical problems are the easy bit. Compilers don’t get upset
when you find a bug in the code, computers don’t sulk when your software
causes them to crash again and switches don’t have bad days and only route
half the packets.
The hard bit is the people bit, it’s the soft stuff. The truly difficult stuff is
the interlocking processes and systems that we find in organizations. The

same systems and processes that allow the organization to exist in the first
place are also the ones which cause the problems.
Maybe that’s why, 25 years after Mythical Man Month, Fred Brooks
[Brooks95] wrote:

Some readers have found it curious that The Mythical Man Month
devotes most of the essays to the managerial aspects of software
engineering, rather than the many technical issues. This bias ...
sprang from [my] conviction that the quality of the people on a
project, and their organization and management, are much more
important factors in the success than are the tools they use or the
technical approaches they take.

References
[Brooks75] Brooks, F. 1975. The mythical man month: essays on software

engineering: Addison-Wesley.
[Brooks95] Brooks, F. 1995. The mythical man month: essays on software

engineering. Anniversary edition: Addison-Wesley.
[Ghoshal05] Ghoshal, S. 2005. ‘Bad Management Theories Are

Destroying Good Management Practices’ Academy of Management
Learning & Education 4(1).

[Goldman96] Goldman, D. 1996. Emotional Intelligence: Bloomsbury.
[Keynes36] Keynes, John Maynard. 1936. The general theory of

employment, interest and money. [S.l.]: Macmillan.
[McFarland08] McFarland, K.R. 2008. ‘Should you build strategy like

you build software?’ MIT Sloan Management Review 49(3):7.
[Sull07] Sull, D. 2007. ‘Closing the Gap Between Strategy and

Execution.’ MIT Sloan Management Review 48(4):8.
[Weinberg85] Weinberg, G.M. 1985. The secrets of consulting. New

York: Dorset House.
February 2009 | Overload | 29

FEATURE RICHARD HARRIS
The Model Student: A Rube-ish
Square (Part 1)
We all have nostalgia for favourite childhood toys.
Richard Harris looks at the maths behind a classic.
or those of us of a certain age, the creak-creak-creak of an orchestra
of Rubik’s Cubes [Rubiks] provided the soundtrack to many a
childhood lunch break. There are no doubt a few amongst us who were

elevated from socially awkward outsiders to school yard super heroes after
having learnt the Secrets of the Cube Masters [Taylor81]. You may be
surprised to read that I was not one of this number. Socially awkward yes,
but I never learnt how to solve that fiendish puzzle.
What I, and I suspect many of us, did not realise at the time was that Rubik’s
Cube is far more than just a toy. It is in fact a physical manifestation of
the mathematical subject of group theory.
Group theory can be thought of as the mathematics of symmetry. It was
to group theory that I turned when considering the number of tours in the
regular travelling salesman problem [Harris07], although I didn’t discuss
it in those terms in the article. In the case of Rubik’s Cube, each rotational
manipulation leaves the cube in a state symmetric to the previous; namely
a cube. The coloured stickers are simply labels to inform us of which of
these symmetric states the cube is currently in.
Rub i k ’ s Cube has a s t agge r i ng num ber o f s t a t e s ;
43,252,003,274,489,856,000 all told [Rubiks]. Indeed, there are so many
that the original manufacturer downplayed the figure because they thought
that the public wouldn’t believe it [Rubiks2]. It is still an open question as
to what is the largest number of moves required to return the cube to its
initial state from any other state, with the latest estimate being 26
[Kunkle07].
Because of this complexity, I propose that rather than analysing Rubik’s
Cube itself, we should study a simpler, analogous, problem. That problem
is a two-dimensional version of the cube, which I shall call the Rube-ish
Square.
The Rube-ish Square is defined as a three by three grid containing the
numbers one to nine. Each row and column can be rotated left or right and
up or down respectively with the number being pushed out of the grid
returning on the opposite side, as illustrated in figure 1.

The joy of group … theory
In order to understand the properties of this puzzle we must determine what
kind of group it represents, and in order to do that we must first understand
what a group actually is.
A group is defined by a set of elements and an associative (i.e. independent
of the order of application) binary operator (usually denoted by) that
uniquely maps a pair of elements from the set onto a third, also from the
set. Furthermore, there must be a unique identity element, i, that when
combined via the operator with any other element of the set results in that
element. Finally, for each element of the set, x, there must be a unique
inverse element, denoted x-1, such that when they are both combined, the
identity element results. Formally, for a group G this can be expressed as:

Closed:

Associative:

Identity:

Inverse:

Now, I understand that this definition is rather loaded with mathematical
jargon. To clarify, the upside down A means for all, the backwards E
means there exists and the rounded E means within.
Translating, these rules mean that for a group G:

Closed: For all a and b within G, is within G

Associative:For all a, b and c within G,

Identity: There exists a unique element i within G such that for all
a within G,

Inverse: For all a within G, there exists a unique element a-1 within

G such that

I suspect that this may not have entirely cleared up matters, so let’s look
at a specific example; modular arithmetic. Modular arithmetic, otherwise
known as clock arithmetic, is defined as the addition of non-negative
integers less than a given upper bound with the rule that when a result is
equal to or greater than the upper bound, the upper bound is subtracted
from it to return it to a number less than the upper bound.
Specifically, if we have an upper bound of n and a and b both less than n
(and hence members of our group):

If a + b < n then
Else

This rule ensures that the result of the addition must be greater than or equal
to zero and less than n and hence within the group. Since addition is
associative, our operator must also be associative. The number zero acts
as the identity and for any integer a less than n, the number n – a acts as
the inverse, yielding the identity after addition under this rule.

F

Figure 1

°

a b G a ° b G∈⇒∈,∀

a b c, G a° b°c() a°b() °c=⇒∈,∀

i G such that a G a ° i i ° a a= =∈∀∈∃

a G∈ a 1– G such that a ° a 1–∈∃⇒∀ a 1– ° a i==

a°b

a° b°c() a°b() °c=

a ° i i ° a a= =

a ° a 1– a 1– ° a i==

a ° b a b+=
a ° b a b n–+=

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
30 | Overload | February 2009

FEATURERICHARD HARRIS

The symmetry of clock arithmetic reveals
itself if we connect the numerals with straight

lines to form a regular twelve sided polygon
If we choose n to be twelve, we can see why this is also known as clock
arithmetic. Working with hours on a twelve hour clock and counting from
the previous twelve o’clock we have, for example:

Closed: 5 hours + 9 hours = 2 hours
Associative: 5 hours + (6 hours + 3 hours) = 2 hours
 = (5 hours + 6 hours) + 3 hours
Identity: 5 hours + 0 hours = 5 hours
Inverse: 5 hours + 7 hours = 0 hours

Whilst it is clear that clock arithmetic follows the rules required for a
group, it is perhaps not so obvious what this has to do with the mathematics
of symmetry that I asserted was at the heart of group theory.
The symmetry of clock arithmetic reveals itself if we connect the numerals
with straight lines to form a regular twelve sided polygon. Now, instead
of moving the hour hand by a given number of hours, we keep it pointing
up and rotate the clock beneath it, as illustrated in figure 2.
Each rotation yields an identical, albeit relabelled, polygon, showing that
the clock arithmetic captures the rotational symmetry of the dodecagon.
So, now that we have described what groups are, let’s take a look at some
of their properties.
Firstly, we shall show that my requirement that the identity be unique was
superfluous. To see why, let’s assume that there are two identities for a
given group, i and i'. Consider:

Now, by the rule for identities, this implies both:

and:

and hence:

So the rule describing identities ensures that they must be unique for any
given group.

Secondly, the requirement that the inverse of an element of a group is
unique is also redundant. Assuming two inverses of the element a, a-1 and
a*, we have by the rule for inverses:

Now the associative rule further implies:

and so by the identity rule we have:

proving that each element can have only one inverse.

Groups within groups within groups man
An important concept in group theory is that of the subgroup. A subgroup
is comprised of a subset of the elements of a group that within themselves
conform to the rules governing groups. The mathematical notation to
indicate that a group H is a subgroup of a group G is:

As an example of a subgroup, let’s again take the clock arithmetic but this
time only with the even-numbered hours. To show that this forms a group,
consider each of the rules.

Since the sum of two even numbers is always even and subtracting
twelve from an even number greater than or equal to twelve also
results in an even number, this set of numbers is closed under
addition modulo twelve.
We are still dealing with addition, so associativity is a given.
Zero is an even number, so we have an identity element.
Subtracting an even number less than twelve from twelve results in
an even number less than twelve, so we have an inverse for every
number in the set.

Hence the even numbered hours in the clock arithmetic form a subgroup
of the clock arithmetic.
The clock arithmetic group has an important additional property that it
shares with many, but not all, groups; that of commutativity. Translating
into English, this means that the order in which the elements of the group
are presented to the operator is irrelevant; that . Such groups
are known as abelian groups and this additional property is formally
expressed as:

Commutative:

Examples of groups that do not share this property are those of the
permutation groups. Permutation groups describe the properties of
reordering sets of elements and formed the original definition of groups

Figure 2

i′° i

i′° a a i′° i i=⇒=

a° i a= i′° i i′=⇒

i′ i=

a 1– °a =

a °a∗ i=

a 1–
°a()°a∗ a 1– ° a°a∗()=

i °a∗ a 1–
° i=

a∗ a 1–
=

H G⊆

a°b b°a=

a b G a°b b°a=⇒∈,∀
February 2009 | Overload | 31

FEATURE RICHARD HARRIS

now that we are familiar with the basic
properties of groups we are ready to investigate
the properties of the Rube-ish Square
when group theory was first developed in the early nineteenth century
[Baumslag68].
To informally show that permutations can form groups we again consider
the rules defining groups.

If we reorder a set of elements and then reorder it again we trivially
have another reordering of the elements and hence permutations are
closed.
If we reorder the elements once and then, considered together, a
twice and third time we will have the same permutation that we
would have had if we had instead reordered them with the first and
second permutations considered together and then the third
permutation and hence they are associative.
We can leave the elements in the order we found them, so they have
an identity element.
Finally, we can sort the elements back into their original order, so
each permutation has an inverse.

The set of all possible permutations of a set of n elements is known as the
symmetric group of degree n, or Sn. The usual notation for a permutation
is two rows of numbers, the first listing the positions of elements before
they are reordered and the second listing their positions after they are
reordered. For example, one permutation of a set of three elements is:

Applied to the set of elements (a, b, c) this results in (b, c, a). The first
element becomes the third, the second becomes the first and the third
becomes the second. Applying it again would yield (c, a, b), or the
permutation:

Applying it a third time results in (a, b, c), giving us the identity
permutation:

The symmetric group of degree three has the following six elements:

We can show that this group is not abelian by taking a pair of permutations
and applying them in both orders:

Note that I’ve adopted the convention that the permutation on the left hand
side of the operator is applied to the set first and the permutation on the
right hand side second. The opposite convention, with the permutation on
the right hand side applied first, would also describe a group, albeit one in
which combining pairs of elements would yield different results.
The first row of elements in the full group above contains the three
permutations first described. These are the permutations that swap two
pairs of elements whilst the second row contains those permutations that
result swap just one pair.
In a similar fashion to the even-numbered hours of the clock arithmetic,
permutations with an even number of swapped pairs form a subgroup of
a symmetric group, known as the alternating group of degree n, or An.
Calling the first permutation described above p, we have already shown
that applying it three times results in the identity, so:

and hence:

giving us inverses for both p and p2, thus confirming that this is indeed a
group.
The permutation p is known as a generator of the group since by repeatedly
applying it we generate every element of the group. Formally, a generator
of a group is a set of elements that, together with their inverses, yield every
element of the group through repeated application of the operator.

Ladies and gentlemen: the point!
So now that we are familiar with the basic properties of groups we are ready
to investigate the properties of the Rube-ish Square. The first step is to
determine which group captures its symmetries. We can begin by noting
that each rotation of a row or column results in different permutation of
the squares, so we can represent it using the permutation notation.
By definition the rotations of the rows to their left, the rotations of the
columns upwards and their inverse rotations must, by repeated application,
generate every possible state of the square since they are the only
operations with which we can manipulate it and hence are a generator for
our group. We name these r1, r2, r3 and c1, c2, c3 as illustrated in figure 3.
These are represented as resulting states, in permutation notation and by
exchanges of elements as follows:

1 2 3
3 1 2

1 2 3
2 3 1

1 2 3
1 2 3

1 2 3
1 2 3

1 2 3
2 3 1

1 2 3
3 1 2

1 2 3
1 3 2

1 2 3
3 2 1

1 2 3
2 1 3

1 2 3
2 3 1

°
1 2 3
3 2 1

1 2 3
2 1 3

=

1 2 3
3 2 1

°
1 2 3
2 3 1

1 2 3
1 3 2

=

p°p°p p3 i= =

p°p p2 p 1–
= =
32 | Overload | February 2009

FEATURERICHARD HARRIS

we can exchange any pair of two sequentially
adjacent elements of the Rube-ish Square
The first thing that we should note is that all of these are even permutations
since they each swap two pairs of elements of the square. Our Rube-ish
Square must therefore be described by either the alternating group of
degree nine, or a subgroup of it.
The question as to whether the Rube-ish Square is described by the
alternating group is equivalent to the question as to whether any two pairs
of elements of the square can be exchanged using a combination of
elements from the generator set. We can answer that question by
examining permutations of the form:

and, since an element is by definition the inverse of its inverse, also of the
form:

Specifically, we’re interested in four of these permutations:

By chaining these and r1, r2 and r3 together we can exchange any pair of
two sequentially adjacent elements of the Rube-ish Square. For example,
to exchange element 2 and 3 and 5 and 6, we apply the chain:

We can also manipulate the square itself to confirm that this works:

Figure 3

r1

2 3 1
4 5 6
7 8 9

1 2 3 4 5 6 7 8 9
3 1 2 4 5 6 7 8 9

1 2↔()° 2 3↔()= = =

r2

1 2 3
5 6 4
7 8 9

1 2 3 4 5 6 7 8 9
1 2 3 6 4 5 7 8 9

4 5↔()° 5 6↔()= = =

r3

1 2 3
4 5 6
8 9 7

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 9 7 8

7 8↔()° 8 9↔()= = =

c1

4 2 3
7 5 6
1 8 9

1 2 3 4 5 6 7 8 9
7 2 3 1 5 6 4 8 9

1 4↔()° 4 7↔()= = =

c2

1 5 3
4 8 6
7 2 9

1 2 3 4 5 6 7 8 9
1 8 3 4 2 6 7 5 9

2 5↔()° 5 8↔()= = =

c3

1 2 6
4 5 9
7 8 3

1 2 3 4 5 6 7 8 9
1 2 9 4 5 3 7 8 6

3 6↔()° 6 9↔()= = =

a ° b ° a 1–

a 1–
° b ° a

c1 ° r1 ° c1
1–

1 3 4
2 5 6
7 8 9

1 2 3 4 5 6 7 8 9
1 4 2 3 5 6 7 8 9

2 3↔()° 3 4↔()= = =

c3
1–
° r2 ° c3

1 2 4
5 3 6
7 8 9

1 2 3 4 5 6 7 8 9
1 2 5 3 4 6 7 8 9

3 4↔()° 4 5↔()= = =

c1°r2°c1
1–

1 2 3
4 6 7
5 8 9

1 2 3 4 5 6 7 8 9
1 2 3 4 5 7 6 8 9

5 6↔()° 6 7↔()= = =

c3°r3°c3
1–

1 2 3
4 5 7
8 6 9

1 2 3 4 5 6 7 8 9
1 2 3 4 5 8 6 7 9

6 7↔()° 7 8↔()= = =

c1 ° r1 ° c1
1–()° c3

1–
° r2 ° c3()° r2() 2 3↔()° 3 4↔()°

3 4↔()° 4 5↔()°
4 5↔()° 5 6↔()

=

2 3↔()°
3 4↔()° 3 4↔()°
4 5↔()° 4 5↔()°
5 6↔()

=

2 3↔()° 5 6↔()=

c1 ° r1 ° c1
1–():

1 2 3
4 5 6
7 8 9

1 3 4
2 5 6
7 8 9

→

c3
1–
° r2 ° c3():

1 3 4
2 5 6
7 8 9

1 3 2
5 4 6
7 8 9

→

r2:
1 3 2
5 4 6
7 8 9

1 3 2
4 6 5
7 8 9

→

February 2009 | Overload | 33

FEATURE RICHARD HARRIS
The notation here is that of a mapping and indicates that the permutation
on the left of the colon maps, or transforms, the state immediately to the
right of it to the one following the arrow. As predicted, the elements 2 and
3 and 5 and 6 have been swapped by this permutation.
The next question is whether being able to exchange any two sequentially
adjacent pairs of elements implies that we can exchange any two pairs of
elements. To answer this, consider a chain of exchanges of sequentially
adjacent pairs in which one pair appears at every step. For example:

The effect of this permutation upon the state of the square is as follows:

With this chain of permutations, we have moved the 4th element to the 7th
position, keeping all the elements between the 4th and the 7th in their
original order. We can move the original 7th element to the 4th position
by applying a similar chain in the opposite direction:

with the result that we have swapped elements 1 and 2 and 4 and 7.
We could repeat the operation with another non-sequentially adjacent pair
together with elements 1 and 2 to exchange two arbitrary pairs since the
elements 1 and 2 would be swapped back to their original order.
Unfortunately, this scheme breaks down when we want to move either
element 1 or element 2. To employ this approach in this situation we need
simply note that there is nothing special about these elements; we could
just as easily have chosen elements 8 and 9. As we march a given element
up or down through the sequence, we should employ an adjacent pair that
will not interfere with the intended step. As the moving element
approaches the currently employed pair we can simply swap them with
another pair since we have already shown that we can construct a
permutation that swaps any two sequentially adjacent pairs of elements.
For example, if we wish to swap elements 4 and 2 we could employ the
following sequence of exchanges:

Since we only move a single element within the sequence during each step,
we can always find a sequentially adjacent pair to exploit that won't
interfere with the element's journey. Hence we can construct a permutation
that will exchange any two arbitrary pairs of elements using our generator
set.
Therefore, the generator set for the Rube-ish Square can generate any even
permutation of the elements of the square and so the group that describes
it must be the alternating group of degree nine. This means that the number
of states of the Rube-ish Square must be equal to the number of elements
of the alternating group of degree nine, or:

Now, I am well aware that this article has been rather maths heavy and for
that you have my sincerest apologies. Thankfully, the next question I wish
to raise about the Rube-ish Square is that of determining which state
requires the most moves to return it to the initial state and, much as this is
an unsolved question for Rubik’s Cube, we will not be able to answer this
mathematically. Next time, dear reader, there will be code.

Acknowledgements
With thanks to Astrid Byro, Keith Garbutt and John Paul Barjaktarevic for
proof reading this article.

References & Further Reading
[Baumslag68] Baumslag, B. and Chandler, B., Group Theory, McGraw-

Hill, 1968
[Harris07] Harris, R., ‘The Model Student: The Regular Travelling

Salesman’, Overload #82, ACCU, 2007
[Kunkle07] Kunkle, D. and Cooperman, G., ‘Twenty-six Moves Suffice

for Rubik’s Cube’, Proceedings of the 2007 International
Symposium on Symbolic and Algebraic Computation, ACM Press,
2007

[Rubiks] http://www.rubiks.com
[Rubiks2] http://en.wikipedia.org/wiki/Rubik's_cube
[Taylor81] Taylor, D., Mastering Rubik’s Cube, Henry Holt & Co, 1981

1 2↔()° 4 5↔()
1 2↔()° 5 6↔()
1 2↔()° 6 7↔()

1 2↔()° 4 5↔():
1 2 3
4 5 6
7 8 9

2 1 3
5 4 6
7 8 9

→

1 2↔()° 5 6↔():
2 1 3
5 4 6
7 8 9

1 2 3
5 6 4
7 8 9

→

1 2↔()° 6 7↔():
1 2 3
5 6 4
7 8 9

2 1 3
5 6 7
4 8 9

→

1 2↔()° 5 6↔():
2 1 3
5 6 7
4 8 9

1 2 3
5 7 6
4 8 9

→

1 2↔()° 4 5↔():
1 2 3
5 7 6
4 8 9

2 1 3
7 5 6
4 8 9

→

1 2↔()° 4 3↔():
1 2 3
4 5 6
7 8 9

2 1 4
3 5 6
7 8 9

→

1 2↔()° 8 9↔():
2 1 4
3 5 6
7 8 9

1 2 4
3 5 6
7 8 9

→

8 9↔()° 3 2↔():
1 2 4
3 5 6
7 9 8

1 4 2
3 5 6
7 8 9

→

8 9↔()° 3 4↔():
1 4 2
3 5 6
7 8 9

1 4 3
2 5 6
7 8 9

→

9!
2
----- 9 8 7× 6 5 4 3 2 1×××××××

2
---=

9 8 7 6 5 4 3×××××× 180 000,≈=
34 | Overload | February 2009

FEATUREMATTHEW WILSON
An Introduction to Fast Format
(Part 1): The State of the Art
Writing a good library is hard. Matthew Wilson compares
some existing formatting libraries, and promises to do better.
his article series describes FastFormat, a new open-source C++
formatting library that offers a maximal blend of robustness,
efficiency and flexibility.

This first instalment will look at the state of the art in C++ formatting,
including standard and leading open-source libraries. It will assess the
alternatives in terms of software quality characteristics, and consider how
they compare with FastFormat.
Examination of FastFormat’s extensibility mechanisms and performance
will be examined later in the series.

Introduction
FastFormat is one of a generation of libraries that I’ve been working on
over the last few years whose overarching design principle is a refusal to
make undesirable and unnecessary compromises between (what I deem to
be) the essential characteristics of good software. These characteristics,
their tradeoffs, the refusal to compromise, and the full technical details of
the concepts, patterns, practices and principles that support this aim will
be discussed in my next book, Breaking Up The Monolith: Advanced C++
Design without Compromise, which is in preparation and aimed for
publication in 2009.
The characteristics I’m interested in include robustness, efficiency,
expressiveness, flexibility, discoverability and transparency, portability,
and modularity. (If you’re unfamiliar with any of these, they are also
documented in the Prologue of my second book, Extended STL, volume 1:
Collections and Iterators [XSTLv1], which is freely available from http:/
/www.extendedstl.com/, along with the preface and several sample
chapters.) In the case of formatting, there’s an important additional
characteristic: internationalisation (I18N) and localisation (L10N).
The basic philosophy of Monolith, which FastFormat and its sister libraries
uphold, is:

C++ is hard; so only use it if you must. The (primary) reason you must
use it in preference to easier languages is that it affords extremely
high efficiency; the reason you use it in preference to C (which is
usually equally fast) is that it is massively more expressive (though
still less so than many other, easier languages). Consequently,
general-purpose C++ libraries must be extremely efficient.
Nonetheless, you shouldn’t have to sacrifice expressiveness and
flexibility half as much as you might think in order to get that efficiency.

For a subject with such scope, the presentation is necessarily truncated.
Some of the topics will be expounded on in a follow on article; others rely
on previously published work; some may not recieve the full treatment
until Monolith is published.
Although this article focuses on FastFormat, it’s appropriate to mention
its (older) sister library, Pantheios, a logging API library that offers a
similar set of characteristics (and is up to two orders of magnitude faster
than the competition), and which uses the same technology. In fact,
FastFormat came about from a suggestion by Walter Bright (of Digital
Mars C++ and the D Programming Language renown) to apply the

Pantheios design to string formatting in general. Though FastFormat is less
mature than Pantheios, which is already established in large-scale, high-
performance commercial systems throughout the world, I hope that it will
achieve similar significance. As well as providing an introduction to the
library, these articles are also a call to any interested engineers who might
like to get involved with the project. (I intend to cover the specifics of
Pantheios in a later article.)

Design parameters
Formatting is a core aspect of many C++ programs. A formatting library
exists at a relatively low layer of abstraction within an application and
should not exhibit characteristics that cause it to intrude in a deleterious
manner on application code, or application programmer consciousness. It
must not compromise on robustness, efficiency or flexibility, because if
it’s flaky, slow, or has limited/no compatibility with your application types
or with other libraries, you won’t use it.
Without any compromise of these factors, it must be expressive and
discoverable so it is easy to understand and use, and must facilitate the
writing of code that is transparent (and beautiful!). If not, you won’t enjoy
using it and will be distracted from your real purpose: writing your
application. It must also have high modularity and be portable, so you can
use it in a wide range of contexts and with a wide range of compilers; if it
only works with certain compilers on certain operating systems/
architectures, you won’t use it for any software that might need to be ported
to them.
I believe that FastFormat meets these (sometimes conflicting) obligations
more optimally than any other formatting library, and I will illustrate the
reasons why this is so throughout these articles, in comparison with two
standard libraries, C’s Streams and C++’s IOStreams, and two open-
source libraries, Loki.SafeFormat [LOKI1, LOKI2] (version 0.1.6) and
Boost.Format [BF] (version 1.36.0). Each is a very impressive piece of
software engineering, but each also has crucial flaws, as we will see.
Streams, Loki.SafeFormat and Boost.Format are replacement-based
formatting APIs, where a format string is used to specify the number, type
and location of parameters that will be replaced by arguments presented
in the statement. By contrast, IOStreams is a concatenation-based
formatting API, where each argument in turn is converted into string form
and concatenated together to form the result.
FastFormat provides two different APIs:

The Format API (hereafter FastFormat.Format), is a replacement-
based API
The Write API (hereafter FastFormat.Write), is a concatenation-
based API.

T

Matthew Wilson is a software development consultant,
columnist, and author of Imperfect C++ and Extended STL.
He is the creator of the FastFormat, Pantheios and STLSoft
libraries. Matthew is curently working on Breaking Up The
Monolith: Advanced C++ Design Without Compromise.
February 2009 | Overload | 35

FEATURE MATTHEW WILSON

There are use cases where having
unreferenced arguments is valid
Example
First, let’s take a look at the libraries in use, with a simple example
statement. Listing 1 shows it with a notional AcmeFormat() function.
To emulate this functionality with Streams we’d use sprintf(), as in
Listing 2.
Note the mistake in the calculation: forename.size() should be
multiplied by 2. Tellingly, this was a genuine error made during the
preparation of the example, nicely illustrating one of the dangers of the
printf()-family.
The other five are as shown in Listing 3. All the requisite includes are
elided for space. Furthermore, in the rest of the article, I will assume the
inclusion of the optional header fastformat/ff.hpp, which does
nothing more than include the main header fastformat/
fastformat.hpp and then alias the namespace fastformat to the
more succinct ff.

Software quality characteristics
We’ll now consider each of the libraries in turn, against the quality
characteristics.

Listing 1

std::string forename = "Professor";
char surname[] = "Yaffle";
int age = 134;
std::string result;

AcmeFormat(result, "My name is %0 %1; I am %2
years old; call me %0", forename, surname, age)

Listing 2

#include <stlsoft/memory/auto_buffer.hpp>
#include <string>
#include <stdio.h>

const size_t total = 39 // the literal part(s)
 + forename.size()
 + ::strlen(surname)
 + 21 // enough for any number
 + 1; // for the nul-terminator
stlsoft::auto_buffer<char> buff(total);
// allocate space, on stack if poss.

int r = ::sprintf(&buff[0], "My name is %s %s; I
am %d years old; call me %s", forename.c_str(),
surname, age, forename.c_str());
// TODO: handle r < 0
result.assign(buff.data(), size_t(r));

assert("My name is Professor Yaffle; I am 134 years
old; call me Professor" == result);

Listing 3

// IOStreams:
std::stringstream sstm;
sstm << "My name is " << forename << " " <<
surname << "; I am " << age << " years old; call
me " << forename;

result = sstm.str();
. . . // assert assumed in all other examples

// Boost.Format:
result = boost::str(boost::format("My name is %1%
%2%; I am %3% years old; call me %1%") % forename
% surname % age);

// Loki.SafeFormat
Loki::SPrintf(s, "My name is %s %s; I am %d years
old; call me
%s")(forename)(surname)(age)(forename);

// FastFormat.Format:
fastformat::fmt(result, "My name is {0} {1}; I am
{2} years old; call me {0}", forename, surname,
age);

// FastFormat.Write:
fastformat::write(result, "My name is ", forename,
" ", surname, "; I am ", age, " years old; call me
", forename);

Sink
A sink is an entity that will receive the results of the formatting. Sinks have
traditionally been file streams (including console) and character buffers,
but can in principle be any type that can make use of a string.

Format
A format is a string, or an instance of a type interpretable as a string, that
defines a format. It is required only for replacement-based APIs.

Argument
An argument is a value inserted/concatenated to form the output. For
some libraries it may be only built-in types, for others only strings. For
most it can be of arbitrary type, requiring translation into a form
understood by the library, usually via a user-defined function.

Replacement Parameter
A replacement parameter is a replacement specification within a format.
It may specify an argument index, and may also specify width and/or
alignment and/or special formatting.

Terminology
36 | Overload | February 2009

FEATUREMATTHEW WILSON

the robustness of a piece of software is
usually concerned with whether it operates
correctly when used in accordance with its

own design
Robustness
Discussion of the robustness of a piece of software is usually concerned
with whether it operates correctly when used in accordance with its own
design. In other words, whether it is defective. With libraries it is
worthwhile to consider also whether the library engenders correct use: it
should be easy to use correctly, and hard to use incorrectly.
In the case of the robustness of formatting libraries, we can identity several
aspects to robustness:

Defective format specification
Defective arguments
Atomicity

Defective format specification
There are three kinds of defective format specification:

1. (For libraries whose replacement parameters specify types) the
required types may not match the argument types

2. Too few arguments are specified for the format being used
3. One or more specified arguments are unreferenced in the format.

The first is easy to illustrate, using the Streams library:
 char const* name = "The Thing";
 int mass = 200;

 printf("name=%s, mass=%skg\n", name, mass);

This is defective, and will not produce the intended output: It may well
fault in a way that will stop your process (and you must hope that it does!).
Some compilers proffer warnings in such cases, but can only do so if the
format string is a literal in the same statement, so the help is limited. We
may claim that Streams is not robust because it so readily facilitates the
writing of defective code. Furthermore, it is possible to use it in a manner
that violates its design, leading (hopefully) to hard faults. In neither case
is the compiler able to prevent you.
Loki fails a little more gracefully; it detects the mismatch, stops any further
argument processing and output, and the statement evaluates to -1.
Boost.Format and FastFormat.Format are not vulnerable to this issue.
All four are subject to the other kinds. First, too few arguments:
 printf("name=%s, mass=%skg\n", name);
 std::cout << (boost::format("name=%1%,
 mass=%2%kgln") % name);
 Loki::FPrintf("name=%s, mass=%skg\n")(name);
 ff::fmtln(std::cout, "name={0},
 mass={1}kg", name);

Boost.Format and FastFormat.Format both throw exceptions, to ensure
that client code cannot fail to be informed of the defective format
specification. Loki.SafeFormat output stops at the point in the formatting
corresponding to the first missing argument, and the statement returns the
value -1. printf() will fault in some way or another, hopefully fatally.

It is important to note a significant difference between the software
contracts of the libraries, insofar as where the contract violation occurs. It
is a precondition of printf() (and its relatives) that every replacement
parameter in the format string has a corresponding argument of the same
type, or a type for which there is a known good conversion (e.g.
short⇒int , float⇒double) . Failure to provide such a
correspondence is to have violated the contract, and thereby written a
defective program. This is quite different from the case of Boost.Format
and FastFormat.Format. They do not deem a case of mismatched format
and arguments as a violation of the library’s software contract. Rather, the
libraries provide the means to detect and report such mismatches in a
precisely defined way: it is part of their (well-functioning) behaviour. The
onus on recognising this condition is on the client code, which, in all
likelihood, is defective, and should be terminated accordingly. But that
determination is outside the purview of the formatting library. (Note: an
important side effect of this ‘raising the defect level’ is that such libraries
are far more amenable to the application of automated testing.)
Finally, let’s consider the case of too many arguments:
 printf("name=%s", name, mass);
 std::cout << (boost::format("name=%1%") % name
 % mass);
 Loki::FPrintf("name=%s")(name)(mass);
 ff::fmtln(std::cout, "name={0}", name, mass);

Once again, such a circumstance is likely to be as a result of a defective
application. In the case of the Streams library, this is not deemed to be
defective, and the function operates as if the extra arguments were not
there. Loki.SafeFormat appends unreferenced arguments on to the
‘completed’ formatted string, which I assume is accidental. With
Boost.Format and FastFormat.Format (in default mode) an exception is
raised and sent to the caller.
There are use cases where having unreferenced arguments is valid, and
both Boost.Format and FastFormat.Format support these. With
Boost.Format, you can change the exceptional conditions on a per-
formatter basis. With FastFormat, you can either change it on a per-
program basis at compile-time, or on a per-thread/per-process basis by
changing the process/thread mismatch handler. We’ll look in more detail
at this subject in a subsequent article. (Both libraries also support the
suppression of exception reporting when there are too-few arguments, but
the use cases for this are pretty few and far between.)

Defective argument types
It may surprise you to learn that some libraries allow you to pass variables
of the wrong type, leading to a fault in operation of the application.
Consider the following code:

 wchar_t const* name = L"The Thing";
 int mass = 200;

 std::cout << "name=" << name << ",
 mass=" << mass << "kg" << std::endl;
February 2009 | Overload | 37

FEATURE MATTHEW WILSON

you find out about programmer error at
runtime: this is too late
This does not print what the programmer wanted. In fact, it will print
something along the lines of

 name=001237f0, mass=200kg

This is a side effect of the ability of the IOStreams to manipulate pointers.
Good intentions; terrible consequences. In my opinion, this ‘feature’ fairly
justifies the claim that the IOStreams are not type-safe, and are unfit for
purpose.
What I was surprised to learn during the research of this article is that
Boost.Format suffers from exactly the same design flaw, and produces
similarly useless output. Loki.SafeFormat fares a little better, in at least
being aware of the mismatch. However, its weak defective format
specification mechanism of returning a result code rather than throwing
an exception means that it just prints nothing past the first literal fragment,
and unless you’re diligently checking the return you won’t know it has
failed. In all three cases you find out about programmer error at runtime:
this is too late.
Neither FastFormat API suffers from this issue. Both of the following lines
precipitate a compilation error because the generic components that
interpret the arguments into a canonical representation are not defined for
wide string types in a multibyte string build (and vice versa).
 ff::fmtln(std::cout, "name={0}, mass={1}kg",
 name, mass);
 ff::writeln(std::cout, "name=", name, ",
 mass=", mass, "kg");

The programmer finds out about the error before it becomes a defect in the
code. This is a good thing.
Alas, this issue is not limited to defects of mixed character string
encodings. Some libraries provide extensibility mechanisms to allow user-
defined types to be passed as arguments. Passing an instance of, say, a
Person type by reference will result in a compiler-error unless you’ve
provided a suitable definition of the requisite extensibility mechanism.
This is a good thing.
However, if you pass a pointer to a Person instance, the picture changes
significantly. In the following example the statements using IOStreams
and Boost.Format will compile whether or not you’ve provided a
definition of how to print a Person*,
 Person* pw = new Person("Wilson", . . .

 std::cout << "person: " << pw << "\n";
 // Compiles!

 std::cout << (boost::format(
 "person: %1%\n") % pw); // Compiles!

If you have, then it will work according to the programmer’s intent. If not,
however, it will proceed to write out the pointer value of person, which
is unlikely to be of any use to your users. This is due to the insertion

operator overload taking void cv*. Once again, the worst part of this
problem is that you find out that your code is defective only after running
the program. This is a bad thing.
With FastFormat, such defects are reported at the earliest possible moment,
because they will fail to compile.

 ff::fmtln(std::cout, "person: {0}", pw);
 // Does not compile

 ff::writeln(std::cout, "person: ", pw);
 // Does not compile

It goes without saying that this is a very good thing. And it goes further:
even if you introduce the extensions that allow FastFormat to understand
void pointer arguments, doing so will still not allow the Person*
arguments to be (incorrectly) understood. Hence:
#include
 <fastformat/shims/conversion/void_pointers.hpp>

Person* pw = . . .
void* pv = person;

ff::fmtln(std::cout, "person: {0}", pw);
// Still does not compile
ff::fmtln(std::cout, "pv: {0}", pv);
// Now compiles

Atomicity
With IOStreams, Boost.Format and Loki.SafeFormat, each statement
element is presented to the stream in turn, with the unfortunate
consequence that when the s tream is a f i le/console (ei ther
std::basic_ostream or, where supported, FILE*) the output from
multiple threads/processes can interleave at the granularity of the
statement element rather than of the statement.

This characteristic means that IOStreams, Boost.Format and
Loki.SafeFormat are unsuitable for use in multi-threaded environments,

Library Is Atomic?

Streams Yes

IOStreams No

Boost.Format stdout (via boost::str()) Yes

std::cout No

Loki.SafeFormat stdout No

std::cout No

FastFormat.Format stdout Yes

std::cout Yes

FastFormat.Write stdout Yes

std::cout Yes
38 | Overload | February 2009

FEATUREMATTHEW WILSON

high flexibility would mean facilitating
output to different destinations
unless you first convert to a string and send that to the output stream. None
of the other libraries considered here suffer from this critical flaw.
Underneath the covers, the other, seemingly atomic, libraries are also
converting to a local buffer before presenting that to the low-level I/O layer
en bloc. But the crucial point is that they do this for you implicitly, thereby
engendering correct use.

Flexibility
Flexibility is about how easily a library lets you do what you need to do,
with the types with which you need to do it. For a formatting library, this
comes in three areas:

1. The sink types
2. The argument types
3. The format types (for replacement-based APIs only)

Sink types
In terms of sinks, high flexibility would mean facilitating output to
different destinations. We’re all familiar with writing to console, file and
strings, but there’s much more to it than that. We might want to write output
to a speech synthesiser, a compression component, a GUI message box,
or anything else you can think of. Even if you’re writing to a ‘string’, there
are many forms of string beyond std::string: it might be a character
buffer, a string stream, an ACE ACE_CString, and so on.
Streams allows for only character buffer and FILE* stream sinks. It is not
extensible. IOStreams allows for extension to any type of sink via the
streambuf mechanism [L&K]. There are many examples of such in the
canon, from spawned process I/O [PSTREAMS] to speech synthesis
[SHAVIT]. It’s quite involved, requiring implementing a whole class
(with less than obvious semantics), although helper libraries are available
[BSTMS].
B o os t .F o r ma t o u tp u t s t o std::basic_ostream and
std::basic_string, and is therefore indirectly extensible via
IOStreams extension mechanisms. Loki.SafeFormat allows for stream
(FILE*), IOStream (std::ostream), character buffer (char*) and
string (std::string) sinks out of the box, and it also allows for general
extension by requiring a single method to be implemented to match the
custom sink type.
Similarly, sink flexibility is a first-class aspect of FastFormat’s design. By
default, the library understands only sink types that provide the
reserve(size_t) and append(char const*, size_t) methods,
o f std::string a n d o t h e r c o nf o rm a n t t y p e s (e . g .
stlsoft::simple_string). However, adding support for other sink
types is easy, and several stock sinks are provided in the FastFormat
distribution (see Table 1). To use them, you need only #include the
requisite header in your compilation unit.

Argument types
Argument flexibility is undoubtedly the most important. We’re all familiar
with the limited flexibility of the Streams library: arguments can only be

integer, floating-point and character types, C-style strings and pointers (as
addresses). Loki.SafeFormat adds to this the ability to pass
std::string.
The IOStreams, Boost.Format and both FastFormat APIs expand on this
by providing the ability to pass instances (either via reference or via
pointer) of user-defined types, by defining suitable extension functions.
I'm assuming for brevity that you know how to overload insertion operators
for your type(s) for IOStreams and Boost.Format.
FastFormat goes much further. Its application layer function templates
apply string access shims [IC++, XSTLv1], which define a protocol for
generalised representation of objects as strings. Consequently, all types for
which string access shim overloads have been defined are understood
implicitly. So a large number of types are already compatible with
FastFormat out of the box, including std::basic_string ,
std::exception, ACE_CString, VARIANT, struct dirent,
struct tm, struct in_addr, CString, FILETIME, SYSTEMTIME,
and many more. Because shims are able to introduce compatibility without
incurring coupling, you can define shim overloads for your own types and
they will automatically work with FastFormat (and with STLSoft, and
Pantheios, and any other libraries that use string access shims).
Furthermore, FastFormat provides a second, higher-level, filtering
mechanism for extension: it understands any types for which the overloads
of the conversion shim [IC++, XSTLv1] fastformat::filtering::
filter_type have been defined, and considers this before resolving
arguments based on string access shim overloads. This type-filter
mechanism facilitates FastFormat-specific conversion of types for which
string access shim overloads have not been defined, e.g. an application-
specific user-defined type. The mechanism can also be used for types
whose conversion form does not suit your purposes: if you don’t like the
way, say, struct tm, is represented then you can override it.

Sink type Required #include

Fixed-capacity character buffers fastformat/sinks/char_buffer.hpp

Fixed-capacity C-style strings fastformat/sinks/c_string.hpp

STLSoft’s auto_buffer fastformat/sinks/auto_buffer.hpp

FILE* fastformat/sinks/FILE.hpp

std::ostream (incl. std::cout/cerr) fastformat/sinks/ostream.hpp

Speech (currently Windows only,
using SAPI)

fastformat/sinks/speech.hpp

Vectored file (using UNIX’s
writev())

fastformat/sinks/vectored_file.hpp

std::stringstream fastformat/sinks/stringstream.hpp

ACE’s ACE_CString fastformat/sinks/ACE_CString.hpp

ATL’s CComBSTR fastformat/sinks/CComBSTR.hpp

MFC’s CString fastformat/sinks/CString.hpp

Table 1
February 2009 | Overload | 39

FEATURE MATTHEW WILSON

Expressiveness is ‘how much of a given
task can be achieved clearly in as few
statements as possible’
We’ll look at how these mechanisms work, and examples of how they
facilitate extension to user-defined types, in a subsequent article.

Format types
The last area of flexibility, for replacement-based APIs, is the format
string. With Streams, the format string must be a C-style string.
Boost.Format and Loki.SafeFormat also support std::basic_string.
FastFormat.Format applies string access shims to its format parameter,
which means a potentially infinite set of types. In practice, this flexibility
has been most helpful in cases using string classes from other libraries (e.g.
ACE, ATL), resource strings, and localised format bundles (again, a
follow-on article issue).

Expressiveness
Expressiveness is ‘how much of a given task can be achieved clearly in as
few statements as possible’ [XSTLv1]. Both succinctness and clarity are
important, each without trespassing too much on the other.
With a formatting library, expressiveness can be judged in terms of:

Direct syntactic support for built-in and standard types
Direct syntactic support for user-defined types
Specification of width and alignment
Special formatting, e.g. hexadecimal for integral/pointer types

Direct syntactic support for built-in and standard types
Streams, IOStreams, Boost.Format and Loki.SafeFormat all provide good
support for built-in types.
By nature, FastFormat does not understand built-in types, any more than
it understands any types that are not, or cannot be represented (via string
access shims) as, strings. As noted in the previous section, however, it can
be easily extended to understanding any type via the type-filter
mechanism.
The library comes with stock type-filters for:

All integral types (including int64 / long long)
float and double floating-point types
bool type
char and wchar_t types (except for compilers that define
wchar_t as a typedef)
void pointer types (void* and its cv-variants)

They’re each defined in their requisite header located in the fastformat/
shims/conversion /filter_type include directory. As a
convenience, the type-filter header for integral types is included into
fastformat/fastformat.hpp by default. This can be switched off
via the pre-processor. Automatic inclusion for the other types can be
switched on in the same way, if you don’t want to have to explicitly include
them in your application code.

As for other standard types, all except Streams understand std::string
(or std::wstring): our Streams example illustrates the annoying
requirement to explicitly invoke the c_str() method.
As mentioned in the section on FastFormat also understands several other
standard types. If you want to pass an exception as argument to a format,
all other libraries will require you to explicitly invoke the what() method.

Direct syntactic support for user-defined types
This one’s simple. Streams and Loki.SafeFormat do not allow for
arguments of user-defined type. All the others do. To format strings
representing instances of user-defined types with Streams and
Loki.SafeFormat you have two choices. One option is to perform explicit
formatting in application code, which is obviously anything but
expressive.
printf("person: %s %s, %d\n", bob.forename.c_str(),
 bob.surname.c_str(), bob.age);
Loki::Printf("person: %s %s,
 %d\n")(bob.forename)(bob.surname)(bob.age);

The other option is to use a conversion function, which requires more code,
is inefficient and still somewhat lacking in expressiveness:

std::string Person2String(Person const& person);

printf("person: %s\n", Person2String(bob).c_str());
Loki::Printf("person: %s\n")(Person2String(bob));

Specification of width and alignment
All of the libraries except FastFormat.Write offer some ability to specify
width and/or alignment. The statements in Listing 4 all print a left-aligned
integer in a width of 5, and a right-aligned string in a width of 12
("[-3 , abcdefghi]")

Listing 4

int i = -3;
std::string s = "abcdefghi";

printf("[%-5d, %12s]\n", i, s.c_str());

std::cout << (boost::format("[%|-5|, %|12|]\n") %
i % s);

std::cout << "[" <<
std::setiosflags(std::ios::left) << std::setw(5)
<< i << ", " << std::setiosflags(std::ios::right)
<< std::setw(12) << s << "]" << std::endl;

Loki::Printf("[%-5d, %12s]\n")(i)(s);

ff::fmtln(std::cout, "[{0,5,,<}, {1,12}]", i, s);
40 | Overload | February 2009

FEATUREMATTHEW WILSON

To the FastFormat core, everything is just a
string slice
Four of the libraries acquit themselves well in this case, with
Loki.SafeFormat probably taking the biscuit. However, the IOStreams
statement is a pig. Personally, I’ve always loathed the IOStreams, and
avoided using them wherever possible, and this is a perfect illustration of
why.
It’s worth nothing that in terms of width and alignment, Boost.Format
provides extended facilities for centred alignment and absolute tabulations
over multiple fields. FastFormat.Format provides left/right/centred
alignment, and can also do absolute tabulations, although it requires a
certain indirection. We’ll see how in a later article.
Without compromising robustness or efficiency, FastFormat.Format is
able to support a good range of formatting/alignment instructions, by
defining replacement parameter syntax as:

 index[, [minWidth][, [maxWidth][, [alignment]]]]

The index is required, but each of the other fields is optional. The index
and widths must be non-negative decimal numbers. The alignment field
is zero or one of '<' (left-align), '>' (right-align), '^' (centre-align). The
minimum width can be anything up to 999, for implementation reasons;
once again, we’ll see why in a subsequent article.

Special formatting
Streams is able to format integers as decimal, octal and hex, to select
precision for floating-point types, to use zero padding instead of spaces,
and so on. Boost.Format and Loki.SafeFormat all provide the same
functionality with equal expressiveness. IOStreams also provides these
facilities, though you’ll find yourself in the same kind of chevron-hell as
with width and alignment.
As you can see from all the examples presented thus far, FastFormat’s
expressiveness is pretty good, on a par with the best performers of the other
libraries. Here is where we reach its limit. I have made a strong case for
FastFormat’s superior robustness characteristics (and will do so regarding
its performance characteristics), and the cost is in lower expressiveness in
the area of special formatting.
Currently (as of 0.3.1), FastFormat supports no special formatting at all.
The two I’m considering adding to FastFormat.Format both involve the
case where the argument exceeds the parameter’s maximum width, if
specified. One option is to fill the whole field with a (per-thread/per-
process) customisable character, which would probably default to the
hash/pound character '#'. The other option is to insert an ellipsis "..." into
the result. Both cases could be accommodated without compromising
robustness or performance. The following example, using syntax that is
speculative at this time, shows both options, giving the output "-3,
########, ...efghi":

 ff::fmtln(std::cout, "[{0}, {1,,8,>#}],
 {1,,8,>.}]", i, s);

Three features that have no hope of being accommodated within the
current design are:

Leading zeros (or any other non-space padding)
Octal/hexadecimal encoding
Runtime width/alignment specification

To the FastFormat core, everything is just a string slice. It doesn’t know
anything about integers, floating-points, or user-defined types. So we
cannot zero-pad. Well, actually, to add support for this would be trivially
simple, since we already support space padding (for minimum width).
Unfortunately, it would mean that you could do something like the
following (again, the syntax is speculative).
 ff::fmtln(std::cout, "[{0,5,,>0}, {1,12,^}]",
 i, s);

This would produce the result "[000-3, abcdefghi]", rather than
the intended "[-0003, abcdefghi]". Because an overriding
principle of FastFormat is that it does not allow you to easily do the wrong
thing, this will not be supported. The correct way to do this is to use an
inserter class, which we’ll discuss in detail in a subsequent article. For now,
let’s look how to do it with the Pantheios integer inserter class. I do this
to illustrate the implicit, uncoupled interoperability between FastFormat
and other libraries that use string access shims. (I also do it because, at the
time of writing, there are not yet any inserter classes written for
FastFormat; I’ve been using the Pantheios ones, and getting on with
trickier problems.)

#include <pantheios/pan.hpp>
// API; alias namespace pantheios -> pan

#include <pantheios/inserters/integer.hpp>
// pantheios::integer class

ff::fmtln(std::cout, "[{0}, {1,12,^}]"
 , pan::integer(i, 5, pan::fmt::zeroPad), s);

Octal/hexadecimal representation is not possible because the arguments
have already been turned into string form before the format string is
collated. If you want a number to be represented in this way, you need to
use an inserter class. Again, until such time as FastFormat has its own, you
can ‘borrow’ the integer class from Pantheios:

ff::fmtln(std::cout, "10 in hex={0}"
 , pan::integer(10, 8, pan::fmt::fullHex));

Finally, specifying widths at runtime is also not possible, again because
all arguments are treated as strings. If you need to do that, you must create
the format string on the fly. The good news is that you can do this using
FastFormat, and without significantly compromising performance. We'll
February 2009 | Overload | 41

FEATURE MATTHEW WILSON

I’m hoping to interest people in joining the
project
see such examples of using FastFormat in ‘recursive’ mode in a subsequent
article.

Discoverability and transparency
Discoverabi l i ty and t ransparency a re the two s ides of the
comprehensibility of a software component. Essentially, discoverability is
how easy the component is to understand in order to use it (including
customisations); transparency is how easy it is to understand in order to
change it. With both characteristics, judgements are subjective, though not
wholly so.
In terms of discoverability, I honestly believe that FastFormat is very good
in the majority of its features, though I would have to concede that its more
esoteric ones are likely just as undiscoverable as those of Boost.Format.
Through force of habit, perhaps, Streams is very discoverable, and
Loki.SafeFormat, being very similar to Streams, has that same
characteristic. I have always found IOStreams to be the opposite of
obvious, and am never able to do any non-trivial IOStreams programming
without consulting the documentation. Score them last, in my opinion.
Any non-trivial C++ library, such as these, will suffer in the transparency
stakes. Having spent a lot of time delving inside implementations of them
all in recent weeks, I would have to say that none are scoring all that well.
In my opinion, Loki.SafeFormat is slightly more transparent than the rest,
and IOStreams and Boost.Format are considerably worse. Both are
effectively opaque to anyone with less patience than a saint. (As, perhaps,
is FastFormat too, to anyone other than its creator.)
It is no accident that the discoverability and transparency of Streams and
Loki.SafeFormat seem to be superior to the rest, because they are the least
flexible libraries: the two characteristics are usually in inverse proportion.

Portability
Being standard, Streams and IOStreams are available on just about every
platform you’re going to come across. (The only exceptions, pardon the
pun, will be certain embedded platforms that don’t support exceptions and/
or templates.) Loki.SafeFormat is highly generic and contains no
compiler-dependencies; as long as your compiler is modern enough to
support static array-size determination [IC++] it works just fine.
Boost.Format also has extremely high coverage. In terms of compiler
capabilities, FastFormat is very portable, and will work with any modern
compiler, and several not-so modern ones: It even works with Visual C++
6!
FastFormat does not rely on compiler/operating-system specific constructs
(although it may use them where available), and has been used successfully
on Linux, Mac OS-X, Solaris, and Windows, including 32-bit and 64-bit
variants of most. Nonetheless, it’s likely that there are platforms and/or
compilers that are not yet supported, but I’m highly confident that such
can be accommodated readily. Part of the reason for writing this article is
that I’m hoping to interest people in joining the project to help with such
things (and to drive the design to new places, of course).

Modularity
Modularity is about dependencies, usually unwanted ones. This tends to
have two forms:

What else do I need to do/have in order to work with the library
What else do I need to do/have in order to use the library to work
with other things

In terms of the first, we can immediately stipulate that, being standard, the
Streams and IOStreams libraries are perfectly modular by definition.
Boost.Format comes as part of Boost, and requires nothing else.
Loki.SafeFormat comes as part of Loki, and requires nothing else. Both
of these require only the usual download/unpack/build/install aspects of
any open-source library.
FastFormat is less modular than the others, in that it requires the STLSoft
libraries. However, since STLSoft is 100% header-only, this is a pretty
small burden; the only impost is that you define the STLSOFT environment
variable that the FastFormat makefiles expect.
When it comes to the other aspect, only FastFormat offers true modularity.
Because its default argument interpretation is done via string access shims
[XSTLv1], it is automatically compatible with any other libraries/
applications that use them. For example, you can report results of API
functions from the Open-RJ library in FastFormat statements, as in:
 openrj::ORJRC rc =
 openrj::ReadDatabase(databasePath, . . .

 if(ORJ_RC_SUCCESS != rc)
 {
 ff::fmtln(std::cerr, "failed to open {0}: ",
 databasePath, rc);
 }

The resultant string will be formed from the format, the database path (C-
style string) and the string form of the result code. If, say, databasePath
is "myfile.rj" and rc is ORJ_RC_CANNOTOPENJARFILE, then the
result will be "failed to open myfile.rj: the given file
does not exist, or cannot be accessed". This all works
without the FastFormat and Open-RJ libraries knowing anything about
each other. In fact, it works without Open-RJ even having any dependency
on STLSoft!

I18N/L10N
Depending on where you get your information, you may see slightly
conflicting definitions of Internationalisation (aka I18N) and Localisation
(I10N). The definitions I prefer are that I18N is the business of giving
software the capability to support different locales, and L10N is the
business of using that capability and actually providing support for one or
more specific locales. We’ll consider the libraries on that basis.
There are two major features required for I18N in a formatting library:

The ability to convert arguments in a form suitable to the locale
The ability to arrange arguments in an order suitable to the locale
42 | Overload | February 2009

FEATUREMATTHEW WILSON

a new formatting library with big aims: to
provide the highest possible quotient from

the software quality equation
When it comes to argument conversion, FastFormat is not yet fully
internationalised: the converter classes and localised integer conversion
functions are not yet written; the only integer conversions currently
provided are not I18N, and just do vanilla integer to string conversion. The
good news is that all these are addressable, and FastFormat is totally
customisable to provide full I18N support: by string access shims, by the
filter_type() mechanism and by inserter classes. All other libraries
are, platform/compiler/standard-library permitting, already fully I18N
compatible in how they convert arguments.
Arranging arguments necessitates a replacement-based API, whose format
string may contain positional identifiers, such that arguments may be
utilised in arbitrary order – determined at runtime, if necessary – dependent
on the locale. Boost.Format and FastFormat.Format are the only two
libraries from our set that support this requirement. FastFormat also comes
with several ‘bundles’ – user-defined types that associate format strings
with keys – from which format strings can be elicited dependent on locale;
this will be discussed in a later article.

Efficiency
By this point may be wondering whether the mechanisms that enforce total
robustness and allow infinite extensibility impose a performance cost. I am
pleased to be able to tell you that this is not so: far from it, in fact.
The next article will take a deeper look into issues of performance, but I
want to show you a sneak peek of the performance results for the Professor
Yaffle example. (This test is included in the performance tests in the
FastFormat distribution.) Table 2 shows the times for 100,000 iterations
of the string formatting operation, compiled with GCC and Visual C++ on
32-bit and 64-bit machines.

Let’s look at the memory allocations involved with the example statement.
Table 3 shows the results for four compilers.
It’s clear that Boost.Format is the greedy sluggard of the group, reflected
in the amount of memory allocations it makes and in the time it takes to
prepare statements. Streams is consistently quicker than IOStreams and
Loki.SafeFormat, but their relative performance is dependent on compiler/
platform (IOStreams on UNIX is surprisingly quick.) But the clear winners

are the two FastFormat APIs, which (thankfully!) live up to their name;
the Write API is somewhat quicker, as we’d expect.

A last word on Loki
Along with Streams, IOStreams and Boost.Format, Loki.SafeFormat has
come in for a fair grilling. I would like to point out that it differs from the
other three in being a knowingly research/alpha project. Its original author,
Andrei Alexandrescu, has pointed out on more than one occasion that it’s
not yet a polished idea nor of production status: its version number, 0.1.6,
is a good indication of that. I’ve included it in this test because (i) I did not
want to be accused of singling out Boost for criticism, and (ii) it’s got an
interesting interface layer. Once you’ve read Monolith (hint, hint), you’ll
see how some of the library’s deficiencies are not necessarily of the basic
design, merely a consequence of a weak tunnel mechanism, and could be
remedied by adopting a different one. Consequently, most (though not all)
criticisms of its robustness and flexibility issues may be taken with the
reservation that such things are improvable.

Summary
In this article we’ve looked at several formatting libraries and compared
at how well they fared against some important characteristics of software
quality, with decidedly mixed results; see Table 4. We also introduced Fast
Format, a new formatting library with big aims: to provide the highest
possible quotient from the software quality equation in this crucial area of
almost all programs.

And the impartial recommendation is …
Well, if it’s not obvious by now, I mustn’t have belaboured the point quite
enough. As I said at the start of the article, a formatting library ‘must not
compromise on robustness, efficiency or flexibility’. All four established
libraries fail this test for the most important of these, robustness. In my
opinion, that is the fatal blow. By contrast, FastFormat.Format is as robust
as it is possible for a replacement-based format library to be, and
FastFormat.Write is completely robust: it is impossible to compile
defective code using it!
That FastFormat offers better flexibility (although only slightly in the case
of Boost.Format and IOStreams) and substantially better performance is

Library Time (ms) for 100,000 Yaffles

VC++ 9
(x86)

VC++ 9
(x64)

GCC 4.2
(x86)

GCC 4.1
(x64)

Streams 257 175 209 83

IOStreams 734 378 233 186

Boost.Format 2,005 1,145 706 736

Loki.SafeFormat 356 235 342 235

FastFormat.Format 129 88 153 112

FastFormat.Write 112 84 63 66

Table 2

Library # allocations

VC++ 7.1 VC++ 9 GCC 4.2 (x86) CodeWarrior 8

Streams 2 1 2 3

IOStreams 8 8 2 11

Boost.Format 16 19 16 41

Loki.SafeFormat 3 3 4 6

FastFormat.Format 1 1 1 3

FastFormat.Write 1 1 1 3

Table 3
February 2009 | Overload | 43

FEATURE MATTHEW WILSON
the cherry on the cake. That FastFormat is permanently a little less
expressive than Boost.Format is a small price to pay for the
robust+flexible+fast trifecta.
The key, then, is to finish off its I18N support, sort out its packaging and
ensure its full portability. I am hoping that readers of these articles will be
motivated to help me get it over the line. Then we can just enjoy flexible,
reliable formatting that also happens to be exceedingly fast.
The next article(s) will look in detail at FastFormat’s extensibility
mechanisms and cover some of the ways in which it achieves its high
performance.

References
[BF] The Boost.Format library; http://www.boost.org/doc/libs/1_36_0/

libs/format/index.html

[BSTMS] The Boost.IOStreams library; http://www.boost.org/doc/libs/
1_36_0/libs/iostreams/doc/index.html

[IC++] Imperfect C++, Matthew Wilson, Addison-Wesley 2004; http://
www.imperfectcplusplus.com/

[L&K] Standard C++ IOStreams and Locales, Langer & Kreft, Addison-
Wesley, 2000

[LOKI1] The Loki library; http://www.sourceforge.net/projects/loki-lib
[LOKI2] ‘Typesafe Formatting’, Andrei Alexandrescu, C/C++ Users

Journal, August 2005; http://www.ddj.com/cpp/184401987
[PSTREAMS] http://pstreams.sourceforge.net/
[SHAVIT] audio_stream: A Text-to-Speech ostream, Adi Shavit, March

2007; http://www.codeproject.com/KB/audio-video/
audio_ostream.aspx

[XSTLv1] Extended STL, volume 1, Matthew Wilson, Addison-Wesley
2007; http://www.extendedstl.com/

Fa
st

Fo
rm

at
Fo

rm
at

10
0%

n/
a

Ye
s

H
ig

h

H
ig

h

V
er

y
H

ig
h

N
o

H
ig

h

H
ig

h

Lo
w

cu
rr

en
tly

 in
co

m
pl

et
e

ye
s

M
ed

iu
m

 n
ow

H
ig

h
po

ss
ib

le

R
el

is
es

 o
n

S
T

LS
of

t

V
er

y
H

ig
h

Fa
st

Fo
rm

at
W

ri
te

10
0%

H
ig

h

Ye
s

H
ig

h

n/
a

V
er

y
H

ig
h

N
o

H
ig

h

n/
a

n/
a

cu
rr

en
tly

 in
co

m
pl

et
e

ye
s

M
ed

iu
m

 n
ow

H
ig

h
po

ss
ilb

e

R
el

ie
s

on
 S

T
LS

of
t

V
er

y
H

Ig
h

Lo
ki

.S
af

eF
or

m
at

M
ed

iu
m

Lo
w

N
o

H
ig

h

M
ed

iu
m

Lo
w

N
o

B
ui

lt-
in

 ty
pe

s:
 h

ig
h

U
D

T
s:

 n
/a

M
ed

iu
m

B
ui

lt-
in

 ty
pe

s:
 h

ig
h

U
D

T
s:

 n
/a

ye
s

no H
ig

h

R
el

ie
s

on
ly

 o
n

Lo
ki

H
ig

h

Bo
os

t.F
or

m
at

M
ed

iu
m

H
ig

h

N
o

H
ig

h

M
ed

iu
m

H
ig

h

Ye
s

H
ig

h

V
er

y
H

ig
h

V
er

y
H

ig
h

ye
s

ye
s

H
ig

h

R
el

ie
s

on
ly

 o
n

B
oo

st

Lo
w

IO
St

re
am

s

M
ed

iu
m

n/
a

no H
ig

h

N
/a

H
ig

h

Ye
s

H
ig

h

Lo
w

Lo
w

ye
s

no To
ta

l (
S

ta
nd

ar
d)

To
ta

l (
S

ta
nd

ar
d)

M
ed

iu
m

St
re

am
s

V
er

y
Lo

w

V
er

y
Lo

w

Ye
s

M
ed

iu
m

Lo
w

Lo
w

N
o

B
ui

lt-
in

 ty
pe

s:
 h

ig
h

U
D

T
s:

 n
/a

M
ed

iu
m

B
ui

lt-
in

 ty
pe

s;
 h

ig
h

U
D

T
s:

 n
/a

ye
s

no To
ta

l (
S

ta
nd

ar
d)

To
ta

l (
S

ta
nd

ar
d)

H
ig

h

Ro
bu

st
ne

ss
(t

yp
e-

sa
fe

ty
)

Ro
bu

st
ne

ss
(f

or
m

at
)

Ro
bu

st
ne

ss
(a

to
m

ic
it

y)

Fl
ex

ib
ili

ty
(s

in
k)

Fl
ex

ib
ili

ty
(f

or
m

at
)

Fl
ex

ib
ili

ty
(a

rg
um

en
t)

Re
de

fin
es

 o
pe

ra
to

r
se

m
an

ti
cs

Ex
pr

es
si

ve
ne

ss
(U

DT
s)

Ex
pr

es
si

ve
ne

ss
(W

id
th

/A
lig

n)

Ex
pr

es
si

ve
ne

ss
(S

pe
ci

al
 F

m
t)

I1
8N

/L
10

N
(c

on
ve

rs
io

ns
)

I1
8L

/L
10

N
(o

rd
er

in
g)

Po
rt

er
bi

lit
y

M
od

ul
ar

it
y

(r
eq

ui
re

d)

Ef
fic

ie
nc

y

Table 4
44 | Overload | February 2009

	Watt’s going on?
	Measurable Value with Agile
	Through The Looking Glass
	Orderly Termination of Programs
	On Management: Caveat Emptor
	The Model Student: A Rube-ish Square (Part 1)
	An Introduction to Fast Format (Part 1): The State of the Art

