

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d
lif

fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 “I’m a Business Analyst – Get Me Out of Here!”
Allan Kelly considers how a Business Analyst fits into
an Agile team.

9 The Model Student: The ACCU 2010 Crypto
Challenge
Richard Harris sets a cryptographic challenge.

12 Renovating a Legacy C++ Project
Alan Griffiths describes how an old project was
brought back on track.

16 Single Threading: Back to the Future? Part 2
Sergey Ignatchenko continues his attempt to avoid
multithreading, this time on servers.

20 Debugging Run Time Memory Problems
Matthew Jones takes control of Undefined Behaviour.

28 Quality Matters: Exceptions: the worst form of
‘error’ handling, apart from all the others!
Matthew Wilson considers what we mean by an ‘error’.

OVERLOAD 98

August 2010

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 99 should be submitted by
1st September 2010 and for
Overload 100 by 1st November
2010.

EDITORIAL RIC PARKIN
A Little Learning Is A
Dangerous Thing
An opportunity for nostalgia triggers some musings on the
value of education. Ric Parkin goes back to school.
Roughly every decade, two years worth of students get
invited back to my college, involving afternoon tea, a
service in the chapel, and a drinks reception followed
by a formal dinner in hall. In a few days time it’s my
year’s turn, and it looks to be a good turnout, with
around 130 out of around 200 possible signed up. (I

know this because there’s now a web page showing who’s coming – a sure
sign of the ubiquity of the internet!). The last one was great fun, and was
fascinating seeing how people had changed (not much), and catching up
with home and work life. This year won’t be quite as surprising as many
people are in touch via LinkedIn or Facebook (which now has an amazing
26m UK users [BBC], that’s around 40% of the population). But
anticipating seeing everyone (and rehearsing my answers to the inevitable
‘what are you doing now’ questions) got me thinking about how well my
education had prepared me for my working life.
The first thing is to get some background about the computer industry, and
education. I’d always been brought up with computers in the background,
as my father worked as a computer engineer and later a trainer. Visiting
the training facilities on the way home from school led to my first
programming experience when I was around 10–11 using teletypes and
VDUs attached to large VAX clusters. This interest led to me getting one
of the first ZX Spectrums as part of the exploding home computing craze.
Sure, I played lots of games, but I also did a lot of programming, not just
using the built-in BASIC, but also using assembler, C, Forth and Pascal.
I eventually sold it just before the peak, and didn’t get another computer
of my own until around 2000.
So how was I using computers during my education? Well, the answer is
‘hardly at all’. When I was choosing which O levels to do, I was advised
that I’d be able to pass Computing tomorrow, so I didn’t take it. I did use
a bit for my Control Technology project, which used a computer
controlled gadget to read multiple choice question papers (amusingly on
the morning of the assessment one of the photo receptors failed, but
realising that using my test sheets I could infer its value from the others,
I managed to tweak the program to work correctly. An early lesson in data
redundancy and error correction). For my A levels we didn’t need
computers at all. And in my Maths degree, we had a couple of projects
using BBC micros to solve Schrodinger’s equation, and do numerical
analysis finding iterative solutions keeping track of errors. While I did
some really nice user interfaces and code structuring, the projects were
marked for the mathematical conclusions you came to rather than the
code. And that was it! The main things I took away were being able to

think logically, and some idea of how to
understand orders of magnitude (useful when it
came to understanding the STL’s complexity
guarantees) and estimate numerical errors.

Thankfully I was getting some proper experience elsewhere – to top up
my finances I’d got a sponsorship from the Ministry of Defence, and spent
the summers in Malvern at the Royal Signals and Radar Establishment
(now part of Qinetiq) doing statistical analysis of aircraft trajectories to
better understand the consequences of a collision avoidance system
[TCAS]. This was on VAXes using Pascal and various maths libraries,
and LaTEX for creating the reports, and I learnt a lot about optimisation
and code structuring. It was probably this experience that allowed me to
get my first job in software.
So would I have been better prepared if I’d taken a Computing degree?
Very likely, although at the time the course was much more theoretical as
it was harder to get access to computing resources. Also, the whole idea
of Software Engineering was relatively young. Nowadays it’s pretty much
a given that everyone has their own laptop, so courses are more hands-on
and relevant (as an example, here’s Cambridge’s lecture and project list
[Cambridge]), although it’s still hard for people to get ‘real-world’
experience on projects of a decent size. This is inevitable and must be
taken into account when hiring graduates, making sure you understand the
strengths and weaknesses (basically, they’ve done a bit of everything but
not much depth, and will not have much idea of the software life cycle
nor projects of much size) so you can design their early projects and
experiences to get them up to speed, perhaps using some mentoring/
apprentice model.
So what sort of education, formal or otherwise, have I done over the years
while I’ve been working? I’ve never had any formal training that lead to
a qualification I could put on a CV. Some do exist, and some sectors are
keener on seeing things like that than others. One of the problems is that
computing evolves so quickly that putting together a formal syllabus can
lead to it being out of date almost immediately. Quite often such
qualifications are pushed by the larger companies as a way of promoting
their technologies, such as MSCE [Microsoft] or SCP [Sun]. These tend
to be more up to date, and can be useful if you need to specialise in that
area. I have attended some training courses, and you do get some sort of
certificates for attending, or even taking some sort of exam, but I’m a bit
more dubious about the worth of many of them – a few days study will
get you up to speed on the basics, but doesn’t tell you much about how
well you can put things into practice, and whether you’ve progressed to
becoming proficient, or even expert. Those things takes time, experience,
learning from the experiences of others.
It is this last area where organisations like ACCU really shine. By bringing
together a disparate group of people all eager to learn you can get great
insights that would have taken you years to have had (if at all). Even if
it’s just planting the seed of an idea, when a future problem needs tackling
quite often these ideas will pop up and you have a possible avenue to

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | August 2010

http://programmeforgovernment.hmg.gov.uk/government-transparency/
http://www.channelregister.co.uk/2010/03/11/tory_tech_manifesto/
http://sysomos.com/insidetwitter/sixdegrees/

EDITORIALRIC PARKIN
explore. Quite often though you learn something of immediate use, which
will improve your ability to produce good quality and value software.
Of course this is just my experience, and I’m very aware that my career
is very different from other people’s. In particular I’ve tended to mainly
work for small companies, often start-ups with small customer bases and
a small amount of largely new code that has to be produced quickly
without letting quality fall. In such an environment broad experience and
adaptability tend to be prized. It would not surprise me that in other
situations, perhaps something like financial modelling for a large bank,
then in that case long term qualifications showing real depth in a
specialized area would be favoured instead. And yet both extremes still
have in common that continuously learning, whether via books,
magazines, conferences, or formal courses, is the only way to improve and
keep your skills current.

The wisdom of crowds?
A few issues ago I mentioned this book by James Surowiecki [Wisdom],
which discusses how large groups of people can be better at certain tasks
than individuals, even experts. He wisely also discusses when such ideas
are not applicable, and can lead to sub-optimal solutions. Interestingly
there have been some great examples recently, which quite often rely on
computing, in particular social media. One odd one was BP asking for
ideas to help cap the deep water oil leak in the Gulf. However, this wasn’t
as crazy an idea as it first seemed, as they were dealing with a problem
that no one had had to face before, so casting around for ideas could inspire
alternative approaches in case the main approaches failed. The main
problem with it was more political – it makes it look like they didn’t have
any ideas of their own, and are desperate.
This is also a risk with one of the more recent ones launched by the new
government for people to suggest which laws could be repealed

[YourFreedom], and areas for spending cuts [SpendingChallenge]. A neat
idea in theory, not that dissimilar to an online suggestions box, but the way
it was implemented as a Web 2.0-style social forum meant that it tended
to be the loudest with a grudge to dominate the discussions and
suggestions, which has the danger of drowning out the more interesting
ideas. This is almost inevitable – by making it so open, public, and
interactive (for perfectly laudable reasons), it breaks some of the criteria
to get a Wise Crowd. Hopefully someone will be taking the time to sift
through all the ideas to find the interesting unexpected ones, rather than
the obvious ones with a large populist backing. It does show that social
webs are excellent at allowing people to seek out and interact with like
minded people, but are not as good at getting a balance of opinion as they
are all too easily susceptible to group-think and self-
selection. While such uses of technology can be
powerful, you do need to understand whether the
dynamics of the resulting system match your needs.

References
[BBC] http://www.bbc.co.uk/news/technology-10713199
[Cambridge] http://www.cl.cam.ac.uk/teaching/0910/CST/
[Microsoft] http://www.microsoft.com/learning/en/us/certification/

mcse.aspx
[SpendingChallenge] http://spendingchallenge.hm-treasury.gov.uk/
[Sun] http://en.wikipedia.org/wiki/Sun_Certified_Professional
[TCAS] http://en.wikipedia.org/wiki/

Traffic_collision_avoidance_system
[Wisdom] http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds
[YourFreedom] http://yourfreedom.hmg.gov.uk/
August 2010 | Overload | 3

http://www.bbc.co.uk/news/technology-10713199
http://www.cl.cam.ac.uk/teaching/0910/CST/
http://www.microsoft.com/learning/en/us/certification/mcse.aspx
http://www.microsoft.com/learning/en/us/certification/mcse.aspx
http://spendingchallenge.hm-treasury.gov.uk/
http://en.wikipedia.org/wiki/Sun_Certified_Professional
http://en.wikipedia.org/wiki/Traffic_collision_avoidance_system
http://en.wikipedia.org/wiki/Traffic_collision_avoidance_system
http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds
http://yourfreedom.hmg.gov.uk/

FEATURE ALLAN KELLY
“I’m a Business Analyst –
Get Me Out Of Here”
Some classic roles are omitted by Agile methodologies.
Allan Kelly considers how a Business Analyst fits in.
ver the last couple of years I have noticed that there is a genuine
desire in the Business Analysis community to know more about how
Business Analysis and the BA role fit into Agile software

development.
This is quite natural. Agile software development is changing the face of
software development and BAs want to be part of the change while
fulfilling their responsibilities to the best of their ability. While there is a
lot of literature on the role of Software Developers on Agile teams the same
is not true of the BA role.
This article will attempt to answer two questions:

What is the role of a BA on an Agile software team? and,
How does the BA role change between traditional (so called
‘waterfall’) development and Agile?

In the process I will also explain why there is more work for a BA to do
on an Agile team than on a traditional team.

Naming the role
The first thing to point out is that Business Analysts do not exist in every
organization. While they are common in corporate IT departments and
external service providers (ESPs) they are usually absent from product
development organizations. Instead of BAs companies like Adobe, Oracle
and Autodesk have Product Managers or Technical Product Managers.
The Product Manager role is a first cousin of the BA and like the BA they
are concerned with determining the needs the software is attempting to
satisfy. Product Managers employ many of the same tools as the BA and
at the heart of both roles is: analysis.
However the roles are different in one important aspect: while the BA role
is inwardly focused (within the corporation, within the department or
within the client company) the Product Manager role is externally focused.
Figure 1 illustrates the general position.
For a BA the end product, that is the software, will be used by the people
within the organization who have little choice over what they use.
Conversely, Product Managers deals with customers who have a choice:
they can buy the software or not, they can buy elsewhere.
This distinction is important to Agile working for two reasons. Firstly, as
we will show when discussing changing to the BA role; BAs needs need
develop the same commercial awareness as Product Managers.

Secondly, the most popular Agile method, Scrum, contains a role called
Product Owner which is largely based on the Product Manager role. Thus
it is easier for Product Managers to understand their role on an Agile team
than it is for BAs to.
Part of the confusion surrounding the BA role on Agile teams stems from
the fact that neither Scrum, nor the other widely known Agile method,
Extreme Programming (XP) describe a BA role. Both Scrum and XP place
great emphasis on development teams working as closely as possible with
someone who actually wants the final product. XP calls this person the
‘customer’ and Scrum, as already mentioned, calls it the ‘product owner’.
In fact, the first XP project (the Chrysler C3 development) had a BA filling
the customer role. Although the books and descriptions of the project call
this role a ‘customer’ the two people who filled the role were BAs.
It is not always practical, or desirable, to have an actual customer work
with a development team. Instead a proxy needs to play that role. Indeed,
it is wrong to assume there is a single customer. If there is to be a single
customer voice someone needs to amalgamate multiple voices.
This is where the BA fits in. The BA is a customer proxy. The BA is the
person who listens to multiple ‘customers’ and speaks with a single voice
to the team.
One can think of the term Product Owner as an alias used in Agile literature
to mean ‘the person who represents the customers needs’. In a software
product company there is a Product Manager behind the alias, and in a
corporate IT environment there is a BA behind the alias. (Unless otherwise
stated from here on I assume the Product Owner role is filled by a BA.)

Agile is not a management free zone
To date most Agile methods have largely been developer centric. As a
result the BA role has been underplayed. Adding to this neglect is the belief
in some places that Agile does not require management. And since the BA
role is normally a non-coding role it is perceived as a management role by
many developers.

O

Allan Kelly has held just about every job in the software world.
Today he provides training and coaching to teams and
companies in the use of Agile and Lean techniques to develop
better software with better processes. He is the author of
Changing Software Development: Learning to become Agile,
numerous journal articles and is currently working on a book of
Business Strategy Patterns. Contact him at
http://www.allankelly.net.

Figure 1
4 | Overload | August 2010

FEATUREALLAN KELLY

Someone needs to decide what is most
important, what compromises are

possible, and what doesn’t get done
The management free message contained in some Agile texts, and
espoused by some Agile advocates, comes from a belief that developers
know best and self-organizing teams are the most productive way to work.
While there is some truth in both arguments there is still a need for
management. Self-organizing teams do not come into being
spontaneously.
Even on a self-organizing team it helps if someone is focused on the
question of what the customer wants, their needs and where the greatest
value is to be found. It makes sense for someone with business analyst’s
skills and background to take on this role. While they may take on some
other work within the team (e.g. administration, testing) one should not fall
into the trap that other work necessarily includes coding. Not everyone on
the team will possess the necessary skills to write Java or Python. Indeed,
not having these skills can be a useful barrier to prevent the ‘all hands to
the pump, we need more code!’ mentality taking hold. Such a mentality
drives out other work in a blaze of naivety.
Historically Agile has underplayed this role. While XP describes what
developers do in detail and Scrum describes how the team works together
to achieve the project no popular method describes the how the Product
Owner fills their role.
To put is another way: think of an Agile team members as actors
performing a play. There is a BA playing the role of Product Owner or
Customer. The script (Scrum, XP or some other method) describes what
to do when on the stage: work with the team, prioritise, etc. But it doesn’t
describe what the actor does off stage.
It is the offstage work that allows the Product Owner to fulfil their onstage
duties. While the onstage role is similar for a Product Manager or a BA
playing the Product Owner, the offstage role is very different. To date
Agile methods have had little to say about these activities, leaving BA to
decide for themselves what needs doing.

The problem with Customers
On the face of it the original XP model seems ideal: find out what you want
from an actual customer. However there are a number of reasons why a
customer proxy might be better than an actual customer.
Firstly customers may tend to see what is in front of them immediately
rather than looking at the longer term or strategic objectives. In an iterative
development model this may result in a stream of requests to change the
appearance of the software, or add minor features rather than driving
towards the ultimate goal. While useful, even valuable, this can lead to
small changes, perhaps only cosmetic, which do not justify the cost of the
work.
This is particularly true when the development is intended to introduce
change into an organization. IT systems are rarely developed and deployed
to support the status quo, instead they are created to improve processes,
reduce costs, enter new markets and so on. Using an actual customer, or
end user, may focus efforts on the current environment and not on change.
There is a balance to be struck here. The message of Agile methods,
incremental change and continual improvement, is as applicable in the

wider business environment as it is in the software development one.
However there needs to be a change driver.

There is another, more commonly cited, problem with using actual
customers to source requirements: time. Customers have their own jobs to
do, they may not want to leave their job to work with a development team
or the company may not be prepared to spare them for the task. This is
particularly true in development teams that work with highly valuable,
highly paid, individuals like financial traders or doctors. Getting access to
such experts is nearly impossible.

All of this assumes there is a single customer who can be identified and
who knows what is required. While this is true in some cases it is far from
universal. Many internal projects struggle with multiple customers and
stakeholders, each with different expectations and needs for the
development. At best the stakeholders’ needs are complementary and
combined will produce a better system. At worst these needs and
stakeholders are in competition and not compatible.

Given the focus on delivering business need there is a real need to evaluate
requests, compare them and turn some down. Where one of these customer
stakeholders is elevated to the position of ‘the customer’ there is a danger
that their own priorities may take precedence over others regardless of the
business value.

Frequently there is not one single customer but several end-users, and if
we further expand the list of those interested in the work to stakeholders
the possibility of alternative needs conflicting becomes an almost
certainty. Someone needs to decide what is most important, what
compromises are possible, and what doesn’t get done.

Taken together it becomes clear that the single actual customer model is
too simplistic for many environments. The net result is that it is often better
to employ a proxy in the customer role than an actual customer.

In short there is more to fulfilling the Product Owner role than knowing
what one wants oneself. Someone needs to understand the deeper needs,
the motivation and goals of undertaking the work, who the interested
parties are and what their interests are.

Just like the original
I was recently involved with a project which had been started with the brief
‘Make it exactly like the original’. Obviously there was no need for a BA
here, all the development team had to do was copy a working product.

The original was built using PowerBuilder and while it was operating fine
the client didn’t want to risk being dependent on a dated product. So a
project was started to re-write it as a web based Java application.

The users were denied the option of changes that would benefit their work
and consequently demanded ‘exactly the same’. The developers were told
to copy the original, as a result they produced a web application that looked
and felt like a PowerBuilder one.

With no BA involved, and no sense of business value, this potentially win-
win turned into a lose-lose. Rather than have the improved application they
August 2010 | Overload | 5

FEATURE ALLAN KELLY
wanted the users were given an application which cost more to build than
it needed to, probably with more features than they needed.
When you consider that as much as 80% of the features in bespoke software
are not used, then in copying the original software the development team
probably did five times more work than was actually required.

The problem(s) a BA can address
Many Agile adopters believe the best way to produce software a customer
wants is to listen directly to the customer. This can work; this approach
should not be dismissed, particularly if the customer is the person paying
the bills.
However this approach is not guaranteed to bring success. There are a
number of reasons why this approach either will not operate or will not
result in the desired outcome. Consider for a moment a corporate situation
where one set of ‘users’ will use the software created, but another set of
customers, ‘managers’, are commissioning the software with view to
changing how the users work, and a third set of customers are paying the
bills. Who is the customer for the team?
Such situations where competing ‘stakeholders’ have different needs and
desired outcomes for work is the bread-and-butter of business analysis and
systems engineering. Of course the development team may nominate one
of their own to understand these issues and make sense of the competing
demands but in doing so they have created a business analysis role.
When this happens it is fair to ask: does the person filling the BA role have
the right skills and experience? And: Is this an effective use of the skills
and experience they do have? It seldom makes sense to stop a brilliant
coder from coding and ask them to perform a role they are less effective at.
In order to understand where the BA fits on an Agile team it is worth
considering a number of these scenarios that can, and do, occur.
Figure 2 illustrates the position in which the customer doesn’t know what
they want, perhaps they ask for trivial changes or oscillate between
different requests. However, there is a more subtle but severe issue here.
Namely the customer does not know what will result in the greatest value.
Asking a development team to ‘make it like’ is a common way of
describing a need but results in zero value to the business. If the customer
wants a product ‘like Excel’ then why not have Excel?
Two problems will occur again and again: what should the team develop?
And which requests will maximise business value?
Another common issue is demonstrated in Figure 3, that where there are
multiple different ‘customers’ for a system each of whom has different
requirements on the system and different expectations. Determining which
requests will result in the greatest business value is even more complicated
in these cases as each customer group will argue their own side.
Complicating matters further is the small matter of business strategy and
company objectives. On occasions it may not be possible to demonstrate

highest value for a particular feature but business strategy demands the
feature.
For example, take the case illustrated; the software may be under
development for a European company with no American operations. On
the face of it there is no need to have the software work within US
regulations. However, the board of the company may be looking to sell the
company within the next two years. If they can interest American investors
they may be able to extract a higher price from the buyers even if the final
buyer is European.
This example starts to illuminate the difficulty in determining business
value for IT developments. Research shows there is commonly a time lag
between investment in IT and value returned [Brynjolfsson09]. Nor is this
the only complicating factor. Without new processes, training and other
changes the potential value delivered by an IT system may remain
unrecognised. Consequently while a business unit may be able to
demonstrate significant business value from new IT this value might not
be recognisable if the unit concerned cannot make other changes.
Globalisation means that development teams are increasingly faced not
only with multiple customers but also with customers spread

Figure 2

Figure 3

Figure 4
6 | Overload | August 2010

FEATUREALLAN KELLY
geographically. Determining which location gets what it wants, and which
should be made to wait is no small matter. When a team is based in one
location, say, London, requests from that location may win out over
another, say, Hong Kong, not through logic but through acquaintance. The
team and their customer eat in the same places, drink beer together and
share the same space.
Not only do different geographic locations introduce subtle preferences
and information asymmetries, they can slow down work. In a perfect world
a question asked by the London development team could be answered by
New York and Hong Kong overnight and the answer be waiting for the
London team the when they arrive for work. Yet experience shows the
reverse: increased distance between team members and customers results
in slower communication.
The need to arrange conference calls, video and online meetings means
spontaneous and informal meetings cannot occur. A question sent from
London to Hong Kong on Monday afternoon (GMT) that is not answered
by Hong Kong during their Tuesday cannot be chased until Tuesday in
London, which may mean the answer does not appear until Wednesday.
The answer to all the problems outlined so far is to introduce a new role
between the customers and developers – the age old ‘add another layer of
indirection’ solution. This role gathers the requests, helps the requester
with their logic, examines or creates the business case and value statement,
and generally keeps the request pipeline ordered.
Which raises the question: who should fill this role? Often this person is
some sort of manager. Project Managers are a popular choice for this role
because they are professional organizers. But a close look at the skills
required, and responsibilities inherent in this role suggests a Business
Analyst would be more suitable – shown in Figure 5.
Project Management training is focused on the ‘when’ of work. They learn
about work breakdown structures, contingency planning, risk logs,
reporting and perhaps producing Gantt charts. In an Agile project much of
this is irrelevant. Agile teams operate without Gantt charts and many of
the traditional artefacts of Project Management.
Business Analysts on the other hand are trained in stakeholder
identification and liaison, business and process analysis and requirements
discovery. This makes them a better candidate for filling this role.
Yet every extra role that is placed between the development team and their
customers introduces more potential gaps: messages need repeating, some
get lost or distorted in the retelling, and more competing views and agendas
are brought into to play. The more layers between the development team
and the ultimate customer of the company the more the developers are
isolated, and insulated from market forces and real customer focus. Each
extra layer reduces the real Agility of the team and the business.

Sometimes the right answer is to remove layers. The difficulty lies in
knowing when adding an extra layer will improve things, and when
removing a layer is the right thing to do.

BAs and the other type of Product Managers
It is not only software companies that have Product Managers. Banks,
telcos, FMCG and other companies have them however their
responsibilities are to the customers of the real product: financial products,
telephones, washing up liquid and so on. When these ultimate products
contain a high degree of technology, and in this case software technology,
it is better to have these Product Manager work directly with the
developers.
In software companies Product Manager replace BAs because the software
is the product. In such places a Product Manager who does not understand
software, what it is, how it is created, the value it delivers and how it
delivers value will have problems.
Yet when the product is not software the Product Manager is unlikely to
understand software and IT in the way they need to work with the business
team and it is necessary to introduce a BA.
Consider a traditional travel and holiday company. Products are sold
through high street branches or through a call centre. Product Managers
focus on customers’ experience in the shop, on the holiday and stages in
between. IT supports the experience but the Product Manager needs to
understand holidays and customers, not IT. So they use a BA to make
requests on IT.
But, imagine the company ditches its high street stores and closes the call
centres. It offers the products online through a website. Until customers
board the plane the experience is electronic and based on IT. Product
Managers still need to understand customers and the travel market, but if
they do not understand IT they are handicapped. The ultimate product now
has a high IT content so the BA role should be removed and the Product
Manager work directly with the technology team.
As more companies find their core products are delivered by software
systems, the role those systems play in the product experience becomes
more important. No longer is software a back-office operational issue; it
is a part of the front-office environment customers engage with. Someone
needs to represent the software by looking both externally to how
customers engage and internally at how it drives the business. This role is
part BA and part Product Manager, and I expect it to become more
common and important.

The BA role on an Agile team
Most of the skills and experience a BA has can be carried directly from
traditional projects to Agile projects. Gathering needs, talking to
stakeholders, running workshops, writing business cases and so on are as
important on Agile projects as any other. When these old techniques are
carried forward they often occur in an accelerated fashion.
What will be new to some BAs is the need to step back from requirements
and examine more closely what the business is trying to do and, more
importantly, why. Rather than simply document some given need the BA
needs to understand the motivation behind the request and the business
value. Only with this information can the BA prioritise the work requests
– something else that might be new.

Requirements
What BAs won’t be doing any more of is writing long requirements
documents or leaving a project when the coding has only just begun. Most
BA work still occurs before code is written but the two phases overlap. The
BA discovers a bit, the developers code a bit; and while the developers are
coding the BA discovers a bit more so when the developers have completed
the first bit there is a little bit more to do.
Business needs (i.e. requirements) are taken in bite-sized chunks rather
than in thick binders. These small chunks of work have been called
Minimally Marketable Features (MMF) or Business Value Increments
(BVI). The emphasis is on just in time requirements that produce near term

Figure 5
August 2010 | Overload | 7

FEATURE ALLAN KELLY
business value rather than trying to discover everything that can possibly
be known before asking for anything.

BAs need to be embedded in the team, in daily contact with developers,
answering their questions and reviewing work as it is done.
Simultaneously the BA needs to work slightly ahead of the development
team, but only just ahead so they are ready for the next question, or to
prioritise the next request.

The development team can only move fast if they are fed a constant stream
of needs. But those needs are changing as they work – not least because
work which is complete changes the view on what is needed next. The
further the BA is ahead of the team the greater the possibility that the needs
will change while they are waiting to be implemented.

The key BA skill, namely analysis, is to the fore. While developers are
concerned with creating a solution, i.e. synthesis, it is the BA’s role to work
out what needs to be done.

Ensure business value
Research has repeatedly shown that as much as 80% of features or
funct ional i ty in customer sof tware development is unused
[Poppendieck03]. (For commercial products the figure is usually 20% of
the features used by 80% of the users.) Stemming the requests at source
by understanding what is truly needed and what will actually be used can
therefore reduce the team’s workload by four fifths.

More importantly, Product Owners need to ensure these requests have
business value attached. For a team to demonstrate its worth it needs to be
producing valuable software. And if a team is going to turn down 80% of
requests then it needs to ensure it does the 20% with the greatest value.

Gatekeeper and prioritiser
Product Owners on Agile teams are the gatekeepers to the development
team. They decide what will be developed in the next iteration, what will
be held until later and what will not get done at all. And when work is
accepted into an iteration it is the Product Owner who sets the priorities
for the team in the next development episode.

In order to make the best possible decisions about what functionality to
develop and what priorities to set the Product Owner role needs to know
about the value of the work being requested and overall objective.
Sometimes they may be told the value but more often than not they will
need to determine the value for themselves. This means they need
understand what is being asked for, and how it aligns with the objective.
They need to know about all the options and different requests being made
on the system when they make the call.

They also need to know when the best option is to do nothing, and when
to cease development. If value falls below cost then the greatest value
comes from doing nothing.

While business value is the most obvious criteria for determining priorities
there are others. Some may prefer to prioritise by risk, or others by ‘juicy
bits’ – those features which will get the most attention.

Prioritisation criteria can, and do, change over time as work progresses. In
the first few iterations a few ‘juicy bits’ may be picked off and delivered
to demonstrate progress. The next few iterations might attack risk directly
while later iterations use straight business value.

Go to
As if this weren’t enough the Product Owner is the ‘go to person’ for two
groups of people. The first group is those who want the software to fill
some need, whether we consider this people customers, users, stakeholders
or simply ‘the business’ all requests should travel through the BA (or the
BA team). This is necessary both so requests can be validated and
prioritised and in order to reduce disruption to the developers.

The second group for whom the BA is the ‘go to person’ is the developers.
When a developer needs more information about a request or when some

unforeseen question arises they need to ask the BA. In some cases
developers might be able to go to the final customer or user with such a
question but when this is not possible, or not appropriate, then the BA takes
on this role.

When the BA is also a subject matter expert (SME, sometimes called a
domain expert) this they may be able to answer the question directly, other
times the BA will need to know where to go to find an answer, or be
prepared to make a judgement call.

Where delay occurs in answering a question development should not
proceed. If a developer makes a guess there is every chance the guess will
be wrong resulting in rework, delay and disruption. Alternatively a
developer may work on another piece of work but this too results in
disruption as one piece of work is laid to one side and another starts – and
consequently tracking work is more difficult. It may well be better to have
a developer do nothing rather than take their focus away from the work in
hand.

In fulfilling the roles of gatekeeper, prioritiser and go to person the BA has
to continually keep the delivery to the business at the front of their mind.
The BA’s primary responsibility is always to ensure the work being
undertaken will produce business value. Ensuring business value is
delivered in a timely fashion is not just a case of determining what needs
to be done and asking for it. There are a multitude of options, possible
actions and decisions which follow once need is determined. Maintaining
a steady flow of deliveries means keeping sight of the overall objectives.

In closing
The lack of a clear BA role in Scrum and XP has created confusion about
what, if anything, Business Analysts do on Agile teams. Yet there is an
important role for them to play in keeping the corporate arteries clear;
ensuring considered and valuable requirements reach Developers, and
ensuing that Developers get the information they need, when they need it.

There is more to Agile software development than simply declaring your
team ‘Agile’. The Magic Agile Dust only works if teams and their
management are prepared to make real changes. This includes changing
the way needs are presented to the teams. The changes in the BA role are
perhaps more subtle than the changes to the Developer role but are just as
key in delivering genuine agility.

References
[Brynjolfsson09] Brynjolfsson, E. 2009. Wired for Innovation, MIT

Press.

[Poppendieck03] Poppendieck, M. and Poppendieck, T. 2003. Lean
Software Development, Addison-Wesley.

Figure 6
8 | Overload | August 2010

FEATURERICHARD HARRIS
The Model Student: The ACCU
2010 Crypto Challenge
Electronic computers advanced cryptography enormously.
Richard Harris sets a challenge, and finds a solution.
nce again I have had the good fortune to have been invited to
contribute a cryptographic puzzle as part of the fund raising efforts
for Bletchley Park and the Museum of Computing during the ACCU

conference.
Last year, if you recall, I designed a puzzle based upon the Enigma machine
which could be broken with pencil and paper in 15 to 30 minutes once the
weaknesses in the rotor mechanism and the crib in the message had been
spotted.
As was the case with that puzzle, this one has been designed to be possible
to solve with pencil and paper alone and includes a bonus question that
cannot be answered if the problem is simply brute-forced.
So that you too may enjoy the puzzle, it is repeated below followed by its
historical justification, its solution and the names of the master
cryptographers who solved it at the conference.

The challenge

Encoding
The enemy are using a 32 character alphabet encoded as 5 bit unsigned
binary numbers. The # character is a control code indicating that the
following character should be interpreted as its numerical value rather than
as a letter or punctuation. The full table of character mappings is given
below.
 00000000001111111111222222222233
 01234567890123456789012345678901
 #abcdefghijklmnopqrstuvwxyz ?!.,

Encryption
The encryption scheme used by the enemy is a symmetric key stream
cipher in which each plaintext number is bitwise exclusive or-d with the
key to create the ciphertext number after which the plaintext number is
added to the key (discarding any bits above the 5th) to create a new key.
An in-place C implementation of this scheme is given in Listing 1.

Plaintext
We know that the enemy prefix their messages with a single 5 bit number
(i.e. one character) representing the message’s priority. We also know that
they foolishly postfix their messages with the date in the form
 DDMMM

where DD is the day and MMM is the month, represented by a number and a
three character abbreviation respectively.
The enemy encrypt each message with a randomly chosen key. This
message key is repeated twice in a 2 character header at the start of the
plaintext which is itself encrypted using a daily key.

Example
The plaintext
 kkbflee#dfeb

represents a priority 2 message of ‘flee’ sent on the 4th February that will
be encrypted with the message key ‘k’ and the daily key using
 assert(*plaintext == *(plaintext+1));

 encrypt(plaintext+2, 10, *plaintext);
 encrypt(plaintext, 2, daily_key);

If the daily key is ‘d’ this yields the ciphertext
 odik,zaimkvz

Ciphertext
Decrypting the following ciphertext will reveal the number of the box in
which to deposit your ticket.
 ynb#zuybzmot.vt!xbhaxh

Bonus question
If we add to the ciphertext and the information we have about the structure
and content of the plaintext a set of guessed key and/or plaintext characters
at specific locations in the plaintext, and if we assume that these guessed
characters are added to this set in the worst possible order that is logically
consistent with a cryptanalysis, how large must this set be to guarantee that
we correctly deduce where to deposit the ticket?

The historical justification
After the electro-mechanical rotor-based cryptosystems like the Enigma,
the next big development in commercial cryptography were the digital
electronic cryptosystems of the 1970s.

O

Listing 1

void
encrypt(unsigned char *s, size_t n,
 unsigned char key)
{
 while(n--)
 {
 unsigned char c = *s;
 *s++ ^= key;
 key += c;
 key &= 0x1f;
 }
}

Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.
August 2010 | Overload | 9

FEATURE RICHARD HARRIS

These ciphers draw their inspiration
from the only provably unbreakable
encryption algorithm: the one-time pad
Perhaps the most successful of these was the Data Encryption Standard,
or DES, developed by IBM as a candidate for a government encryption
standard proposed by the US National Bureau of Standards and not
officially retired until 2005.
This was a block cipher, in which the plaintext is broken up into relatively
large blocks, each of which is algorithmically combined with a fixed key.
In contrast to block ciphers are stream ciphers which bear a much greater
resemblance to their forebears, being polyalphabetic substitution ciphers
operating on single characters, or even on single bits, of the message at a
time. In doing so, they are attractive for telecommunications, for which the
size of the message can rarely be determined in advance and the hardware
may have limited volatile memory in which to store the message data.
These ciphers draw their inspiration from the only provably unbreakable
encryption algorithm: the one-time pad. To operate a one-time pad, the
sender and receiver of encrypted messages must first exchange identical
sequences of random characters. To encrypt a message the sender iterates
through both its characters and those in the sequence of random characters,
combining them; typically with x-or. To decrypt a message the receiver
performs the same operation on the ciphertext. Crucially, each must
discard the random characters as they are used; if they do not do so their
messages can be broken with statistical analyses.
The difficulty in exchanging the random characters makes the one-time
pad unattractive for almost all applications. It is therefore extremely
tempting to replace the random sequence with a pseudo-random sequence
so that the two parties need only exchange the much shorter seed. The
resulting cryptosystem is no longer provably unbreakable, but may be
practically unbreakable.
Provided the pseudo-random sequence of characters is not too predictable,
that is.

The solution
To decrypt the message we apply the same algorithm, although since the
plaintext character is recovered after the x-or we don’t need to store it to
add to the key. An in-place C implementation is given in Listing 2.

Trivially, we could brute force the message and discover the plaintext with
a worst case of 32 guessed characters. The real question is whether or not
we can decode it with fewer.
Noting that the enemy postfix their messages with the date we know that
the 5th character from the end must be '#', represented by a 0. Since the
ciphertext is generated by x-oring the plaintext with the key we can deduce
that the key for this character must be 'b'. Running the last 5 characters
through the decryption function yields
 #jmar

indicating that the message was sent on the 10th March.
We might assume that the final characters of the message represent the
number of the box, in which case the 7th character from the end must also
be a '#', meaning that the key must be '!'. Using this key to decrypt the last
7 characters of the message yields
 #e#jmar

which is entirely consistent with what we already know about the plaintext.
This is reasonably convincing evidence that the ticket should be deposited
in box 5 and that we need just one guessed character.
Reasonably convincing, but wrong.
In last year’s Enigma challenge, the predictable structure of the message’s
postfix signature was the crib that ultimately allowed its decryption. As
such it was too tempting for me to resist using it as a red herring in this
puzzle.
This time the crib is, in fact, the repeated message key.
The trick is to recognise that for single bits, addition is exactly the same
as x-or. Specifically, for any pair of integers, we have
 (x+y)&1 == (x^y)&1

Denoting the ith bits of the daily key, the message key and the jth character
of the plaintext as di, mi and Tj,i respectively, we have

From this we can deduce that the least significant bit of the message key
is given by

We can perform a similar calculation for the second least significant bits,
but must take into account the fact that there may have been a carry when
the daily key was added to the message key.
Fortunately, we can retrieve the carry bit c1 from the information we have
already extracted from the message.Listing 2

void
decrypt(unsigned char *s, size_t n,
 unsigned char key)
{
 while(n--)
 {
 *s ^= key;
 key += *s++;
 key &= 0x1f;
 }
}

T0 0, d0 m0⊕=

T1 0, d0 m0+() m0⊕=

d0 m0⊕() m0⊕=

d0 m0 m0⊕ ⊕=

d0=

m0 T1 0, T0 0,⊕=
10 | Overload | August 2010

FEATURERICHARD HARRIS

The difficulty in exchanging the random
characters makes the one-time pad

unattractive for almost all applications
Denoting the ith carry bit as ci we can generalise our formulae to bits other
than the least significant.

giving us a recursive procedure for extracting the bits of the keys.

The first two characters of the ciphertext are
 y = 25 = 11001
 n = 14 = 01110

Applying this procedure yields

Giving us daily and message keys of

 01010 = 10 = j
 10011 = 19 = s

Using these to decrypt the message yields
 ssqdrop no. three#jmar

meaning that the ticket should be placed in box number 3 and that it was
not necessary to guess any characters.

And finally…
Congratulations to Duncan Gary Duke, Andrew Kemp, Per Liboriussen,
Callum Piper and Martin Turnock who successfully cryptanalysed the
Crypto Challenge.
To everyone who took part, and to everyone who donated to Bletchley and
the Museum of Computing, we extend our deepest gratitude.

c1 d0 m0∧=

c1 di 1– mi 1–∧=

T0 i, di mi⊕=

T1 i, ci di mi+ +() mi⊕=

ci di mi⊕ ⊕() mi⊕=

ci di mi mi⊕ ⊕ ⊕=

ci di⊕=

ci
0 i 0=

di 1– mi∧ i 1>⎩
⎨
⎧

=

di ci T1 i,⊕=

mi ci T1 i, T0 i,⊕ ⊕=

c0 0=

d0 c0 T1 0,⊕ 0 0 0=⊕= =

m0 c0 T1 0, T1 0,⊕ ⊕ 0 0 1⊕ ⊕ 1= = =

c1 d0 m0∧ 0 1∧ 0= = =

d1 c1 T1 1,⊕ 0 1⊕ 1= = =

m1 c1 T1 1, T0 1,⊕ ⊕ 0 1 0⊕ ⊕ 1= = =

c2 d1 m1∧ 1 1∧ 1= = =

d2 c2 T1 2,⊕ 1 1⊕ 0= = =

m2 c2 T1 2, T0 2,⊕ ⊕ 1 1 0⊕ ⊕ 0= = =

c3 d2 m2∧ 0 0∧ 0= = =

d3 c3 T1 3,⊕ 0 1⊕ 1= = =

m3 c3 T1 3, T0 3,⊕ ⊕ 0 1 1⊕ ⊕ 0= = =

c4 d3 m3∧ 1 0∧ 0= = =

d4 c4 T1 4,⊕ 0 0⊕ 0= = =

m4 c4 T1 4, T0 4,⊕ ⊕ 0 0 1⊕ ⊕ 1= = =
August 2010 | Overload | 11

FEATURE ALAN GRIFFITHS
Renovating a Legacy C++ Project
Over time projects tend to become hard
to maintain. Alan Griffiths describes
how one was improved.
’ve been using C++ for a long time, at first because it was the principle
language available for developing desktop applications on OS/2 and
Windows. More recently it has been chosen either for non-technical

reasons or because it provides better control over resources than other
popular languages. As a result of this and the efforts of others like me the
world is now full of functionally rich, slow to build, hard to maintain, C++
systems. Some of these have been developed over long periods of time by
many and varied hands.
These C++ systems continue to exist because they provide valuable
functionality to the organisations that own them. To maximise this value
it is necessary to provide interfaces to today’s popular application
development languages, and make it possible to continue to develop them
in a responsive and effective manner.
The need to work with other languages comes from the forces that change
our industry: as computers and development tools have got more powerful
we have tackled bigger and more complex problems. To facilitate tackling
each part of the problem in the most effective way, it is common for
different parts of the system to be built using different programming
languages. In recent years the projects I’ve worked on have included C++
with combinations of Java, C#, Python and Javascript.

The project
The project that I’m going to describe used C++ for a mixture of reasons
– the non-technical reason was that the codebase has been developed over
a couple of decades, originally in ‘C With Objects’ but more recently, after
a port, in C++. The technical reasons for choosing C++ were the usual
‘control over resources’ ones – principally CPU and memory. There are
man-centuries invested in the codebase so a rewrite in a fashionable
language would be hard to justify.
The code in question is a ‘Quantitative Analytics Library’ – it does the
numeric analysis that underlies the trades done by an investment bank. This
isn’t the place to explain these trades and valuation methods in any detail
(even if I could). Briefly, investment banks trade in a range of ‘assets’:
futures of commodities, derivatives of stocks, currencies, bonds and
indexes, and base their valuation on the available information (mostly
historical pricing information).

An analytics library takes this data to assess the price needed to assure a
likely profit from each trade. Among other things it builds multi-
dimensional data structures of largely floating point numbers and
processes these on a number of threads – small changes to layout and
processing order can have big effects on performance. (And the resulting
numbers!) Using C++ does indeed give some control over this – hence,
while there are other plausible languages for this work, C++ remains a
popular choice for such code.
There are a lot of applications in different areas of the bank that make use
of this library to value the trades they are making. Most of the Linux based
user applications are using Java, and most of the Windows ones are using
C#. (It also exists as an Excel plugin – that’s written entirely in C++.)
The codebase is monolithic – highly coupled, incohesive and with no
agreed ‘public interface’, but it does have a suite of end-end tests that
covers all the financial models supported in production and, at least in
principle, any bug fixes do come with a corresponding test case.
The developers of these financial models are known as ‘quants’ (from
‘quantitative analytics’) and specialise in their domain knowledge rather
than software engineering. I and a couple of other developers worked with
them to redress this balance. (In this case the quants worked principally
on Windows – of which more later.)
The library is supported on a range of platforms: primarily 32 bit Windows
and 32 bit Linux, but 64 bit Linux is supported in development and planned
for roll out later this year, and Win64 is under development – to be
supported next year.

The legacy interface for users
Historically the users have been given a set of libraries (.sos or .dlls) and
all the header files extracted from the codebase. Unsurprisingly the Java
and C# users are not happy with this as the supported interface. Nor would
any hypothetical C++ users be happy as things are forever changing
(because there is no agreed public interface). It is also far from clear how
a particular type of trade should be valued. Each application team therefore
has to do work to map from its own representation of trades to the
mechanics of configuring the corresponding analytic model for valuing it.
(For example, it was the application team that constructed the correct
choice of asset price and price volatility models for the trade.)
At some time in the past one such client group wrote a series of scripts to
generate and build a Java interface to the library using SWIG [SWIG].
Other groups started using this interface and it is now shipped with the
analytics library. This isn’t ideal as, while there are multiple groups using
this interface, there are no tests at all. Provided it compiles and links it will
be shipped. When we started work the code wasn’t even part of the main
repository: it was a svn ‘extern’ to a repository owned by the group who
once employed the original author – we didn’t have commit access. (There
was also a C# derivative of this work, but this will not be discussed
separately.)
The lack of ownership of this SWIG interface generating code was
particularly problematic as the same code was pulled in by all the active

I

Alan Griffiths has long been a contributor to ACCU, including
chairing the organisation, editing Overload, contributing
articles to the magazines and presenting at conference.
During that time he’s delivered working software and
development processes, written contributions for magazines
and books, spoken at conferences and made many friends.

He has been developing software through many fashions in
development processes, technologies, and programming
languages. Firmly convinced that common sense is a rare and
marketable commodity he’s currently working as an
independent. He can be contacted at alan@octopull.co.uk
12 | Overload | August 2010

FEATUREALAN GRIFFITHS

With these issues to contend with it could take
over three months to get a new type of trade and

valuation model into production
branches. (There are typically a couple of branches in production and
another in development – but this can increase occasionally.) The main
problems occur if changes on one of the branches necessitate changes to
the generating code – which, as it has lots of special case handling for
particular methods and constructors, happens. (In particular SWIG isn’t
able to expose the C++ distinctions between const, references, pointers and
smart pointers – this can, and does, lead to unintended duplication of
method signatures. There are some sed scripts to hide these problematic
functions from SWIG.)
One of the first changes we made was to ‘adopt’ this code into our
repository so that we could fix problems for each of the active branches
independently. This wasn’t entirely satisfactory as we still had no tests or
access to the client code to check it compiled against the generated
interface – the best we achieved was to ensure that the SWIG library
compiled and linked then wait for users to ‘shout’. (We could have done
more to ensure the quality of these releases, but as we wanted people to
move off this ‘legacy interface’, we felt we’d get better returns on time
invested elsewhere.)

The new interface for users
As mentioned earlier, the legacy interface caused problems for our users.
The interface didn’t reflect normal Java (or C#) conventions, wasn’t stable
and reflected the need of the implementer, not the user. Each client
application’s developers needed to understand not only the trades they
were valuing but also the correct way to value them. In addition, they
needed to get ‘sign-off’ of the valuation models being produced for each
trade type they implemented.
With these issues to contend with it could take over three months to get a
new type of trade and valuation model into production. For competitive
reasons the business wanted to move faster than this.
To address this we built a new, more stable, public interface that directly
supports Java and C# and incorporates the mapping between a trade
definition and the valuation models. Thus the client would supply the price
and volatility data and our API would know the appropriate way to model
these based on the information supplied about the trade. This would be
much easier for client applications as the developers need only to present
the trade (and market data) in an agreed format and don’t need to be
concerned with the method of valuation. This comprised a number of
components (see figure 1):

one that supports a uniform data representation (this can be thought
of as a subset of JSON – as that is its serialised form);
another that maps a trade representation to a model representation
(by passing it to a library of Javascript functions that implement the
mappings);
a third that uses the modelling library to value the model (actually
we introduced support for a second modelling library – so there were
two of these);
a fourth that manages all of this; and

native C# and Java APIs that provide access to all of this.
Much of this is implemented in C++, but there are obviously bits of C#
and Java and the mappings between trades and models is implemented in
Javascript.
We address the lack of an idiomatic API by creating a C# API using
properties for the data representation and IDisposable for resource
management (so that ‘using’ blocks correctly managed C++ resources).
The corresponding Java API was designed using setters and getters and a
dispose() method. In both languages errors were represented by
exceptions (one to say ‘your input doesn’t make sense’ another to say ‘that
valuation failed’).
Initially we implemented the C# API using ‘Platform Invoke’ and the Java
API using ‘JNA’. These are roughly equivalent technologies based on
reflection that, given an interface coded in the corresponding language
implements the calls to the native code at runtime. (There is a runtime cost
to this, but it does provide a quick way to implement access to native code.)
Given the large amounts of processing by the analytics library we didn’t
expect the performance to be an issue.
We later found that one of our client application teams using Java had two
problems with this implementation. Firstly, they were doing a lot of fast
running valuations and that for them performance was an issue and
secondly, they were doing some fancy custom ClassLoader tricks and
these clashed with similar practices in the JNA implementation – switching
to a JNI implementation of our interface removed these difficulties.
The client interfaces have remained relatively stable over time. During the
first six months there were binary interface changes, and through the first
year there were tweaks to the trade definitions to approach a more uniform
naming style (and to co-ordinate with a global initiative to represent trade
elements in the same way throughout the business). All of that is settling

Figure 1
August 2010 | Overload | 13

FEATURE ALAN GRIFFITHS

a new type of trade was implemented by a client
application in three weeks instead of the three
months that would have previously been required
down and work now focusses on reflecting changes and enhancements to
the valuation engine and providing mappings for additional trade types.
Naturally, we introduced some ‘acceptance tests’ for the supported trade
types that ensured that they were validated correctly. This greatly
simplified the task of application developers who now only need to sign
off that they were presenting us with correct trade representations (our tests
established the correctness of the results for all the application teams).
As a measure of success a new type of trade was implemented by a client
application in three weeks instead of the three months that would have
previously been required. They were also able to ditch several hundred
thousand lines of code when migrating code to the new interface.
(Although, as they were also removing a massive tangle of Spring, that
work must share some of the credit.)

Building integration and release
When I joined the project much of the effort was expended ‘firefighting’
the build and release process. There were a number of problems:

‘Clever’ use of CruiseControl
CruiseControl [CruiseControl] was used to manage continuous integration
for the supported release branches and integration on the trunk. Something
unusual was clearly going on as it was managing builds for both Windows
and Linux. Instead of the more common email based reporting on builds
summary results were being published to a ‘chat’ channel the developers
subscribed to. Definitely not a ‘vanilla’ CruiseControl setup. It took a
while to figure out what was going on!
With understanding, things were not as good as first appearances had
suggested: it turned out that despite appearances and natural assumptions,
CruiseControl didn’t actually control either the checkouts or build
processes directly. What CruiseControl treated as a build was actually a
shell script that wrote a token file to a shared directory – another shell script
on the corresponding target platform polled for these tokens and checked
out the current source and built it. This then wrote the build results back
to the share for the first script to pick up. The results were confusing as
HEAD often changed between CC scanning the repository and the build
script checking things out. The result of this inventiveness was:

No reporting on regression tests
Incorrect change reporting
Poor error reporting

Something had to be done. But there were more issues to deal with than
that.

The Linux build
Even with good code the Linux build failed about half the time – this turned
out to be a parallelism issue, one make rule created a directory, another
wrote to it and there was no dependency between them. Some very
fragmented makefiles (lots of included fragments) made this hard to spot.

A less frequent cause of build failures was that the quants worked on
Windows and the code checked in was not always good for Linux. Two
problems we saw after any significant commit were that the case was
wrong on #includes and that it was often necessary to add standard headers
(for content that was implicitly supplied by others on Windows).

The Windows build
The Windows build was also in a mess. No-one quite knew why but the
Windows ‘Release’ build configuration would fail if the Windows
‘Debug’ build configuration wasn’t built first. However, apart from being
needed to create the ‘Release’ build the ‘Debug’ build ‘wasn’t used’!
The quant developers worked with a more useful ‘Debug(DLL)’ build
configuration that allowed components to be worked on independently –
the ‘Release’ and ‘Debug’ builds produced a single DLL which took an
age to link. The upshot of this was that the build server built three build
configurations in succession ‘Debug’, ‘Release’ and finally
‘Debug(DLL)’. There was also a ‘Quantify’ build configuration but no-
one maintained it.
Building all these configurations took a few hours.

The release build process
The above describes the integration build. You might be forgiven for
assuming that the release process was based on the same mechanism.
You’d be wrong.
In order that the code released could be built from a label (yes, I know that
Subversion allows you to label what you built afterwards) there was a pre-
release build (with the same steps as the integration build) that would label
the sourcecode for release if it succeeded. Again, HEAD would often
change after the pre-release build was requested. (And, as the build failed
randomly half the time, it often took several attempts to build before a label
was applied – with the codebase evolving all the time.) Once a build had
succeeded and a label applied another script would be started to build the
software from the label. (As before the build failed half the time, but at
least the code wasn’t changing).
Once the release binaries had been created it was time to push the binaries
out to the development and production environments. (You weren’t
thinking ‘testing’ were you? ‘Fortunately’ this system was a library for
other teams applications to use, and they did need testing before releasing
a version of their application to production using our release.)
Back to pushing out the binaries to the development and production
environments. This was also problematic. Apart from the inevitable
organisational change control forms that needed to be completed, there
was a sequence of scripts to be run in sequence. The various shell and perl
scr ipts involved were f ragi le . They had h idden hardcoded
interdependencies, poor error checking, needed to be run as specific
accounts, and no documentation.
Oh, and no version control. Not only did this mean that one had to track
changes manually, it also meant that the same script was used for building
a ‘patch release’ for a year old release branch as for the current version.
14 | Overload | August 2010

FEATUREALAN GRIFFITHS

What started as a slow to update component with a
hard to use and unstable interface changed into a

much more responsive and user friendly tool
This meant, for example, that adding components for the new interface
wasn’t just a matter of adding them to the scripts, but also surrounding
these changes with tests for the versions in which they existed.

Slow and steady
Although these issues were a constant drain, fixing them was a background
task – getting releases out consumed about one developer’s productivity.
On top of which there was the new library interface to be built. With a small
team (two for a lot of the time) progress was slow.
Changing the build system was also time consuming – even with pairing
to review changes, and trying to separate out bits that so that they could
be tested independently, changes tended to break things in ways that were
not detected until the next release was attempted.
But every time we fixed one of these problems life got easier. The race
condition in the Makefile was the first fixed and made things a lot more
predictable. Killing the dependency on ‘Debug’ and eliminating the
‘Debug’ and ‘Quantify’ build configurations also sped up integration and
release builds. (In later days the ‘Debug(DLL)’ build was renamed
‘Debug’ to keep things simple.)
To fix the poor error reporting from integration we needed to build the
version of the code that the CI tool was looking at. This could have been
fixed with CruiseControl but, in practice, waited until we gained a team
member with experience of TeamCity [TeamCity]. He replaced
CruiseControl with TeamCity which has direct support for having ‘build
agents’ on a variety of platforms and eliminated the scripting complexity
used to achieve this with CruiseControl. (There are other continuous
integration servers that might have served instead of TeamCity – Hudson
[Hudson] is often suggested. Support for ‘build agents’ was one motivation
for changing, another was the web interface for managing configuration
which was a lot easier to learn than the XML files driving CruiseControl.)
TeamCity also integrates an artefact repository (in the past I’ve combined
Ivy with CruiseControl to the same effect, but having it ‘out of the box’
was nice). This allowed us to eliminate the pre-release and release builds
– our new release process (automated as Ant scripts run by TeamCity) took
the binaries directly from the integration build, tagged the corresponding
source revision in the repository, and then distributed the binaries to the
development and production environments around the world.
It took around six months to address all the problems we’d seen initially
and life was a lot easier – we could focus on the new library interface.

The benefits we saw
If integration was ‘green’ then a release could be requested of that code
(and even if integration were broken, if a recent successful build contained
the needed changes then that version could be released).
The build process was easy to change and enhance. We split out builds of
separate components to give faster feedback.
We also added automated regression and validation tests as TeamCity
‘build configurations’ within the project. This was helpful to the
application developers that were using our library through the ‘new’

interface – we had already generated much of the test evidence for the
supported models.
Compared to the fragile collection of scripts we had been using copying
build configurations in TeamCity is easy. This enabled us to set up parallel
builds to test changes to compiler and library versions and extend support
to 64bit Linux.
Copying projects in TeamCity is also easy – so when a stable release build
was branched for maintenance it was easy to set up the integration build
for it.
The ability to run multiple build agents meant that we could have a lot of
building happening in parallel – which improved responsiveness to
checkins.
Things were a lot more productive. Where a release once took a week and
most of a developer’s time it was now a few minutes of form filling
(irreducible bureaucracy – although we did talk of scripting this) and a
couple of button clicks. A couple of hours later the code was in production.

Conclusions
We managed to get buy-in from the management, clients and quants by
being responsive to the current issues and regularly delivering incremental
improvements (every week brought something visible). As releases
became faster and more reliable, interfaces became cleaner and builds
more reliable and faster, it became accepted that we could be trusted to fix
the things brought to our attention.
What started as a slow to update component with a hard to use and unstable
interface changed into a much more responsive and user friendly tool. The
team and the client are happy with what we achieved and so are the client
applications.
It is possible to make legacy C++ systems into projects fit for the third
millennium!

References
[CruiseControl] http://cruisecontrol.sourceforge.net/
[Hudson] http://hudson-ci.org/
[SWIG] http://www.swig.org/
[TeamCity] http://www.jetbrains.com/teamcity/
August 2010 | Overload | 15

http://www.swig.org/
http://cruisecontrol.sourceforge.net/
http://hudson-ci.org/
http://www.jetbrains.com/teamcity/

FEATURE SERGEY IGNATCHENKO
Single-Threading:
Back to the Future? (Part 2)
Multithreading can cause notoriously difficult bugs. Sergey
Ignatchenko finds mitigating strategies for programs on servers.
s we have seen in the previous article [Ign10] which described the
1st half of the historical match between our ‘No Multithreaded Bugs’
Bunny and Multithreaded Gorrillazz, in most cases our Bunny has

managed to reach the touchdown area without the need for heavily multi-
threaded development. It means that on the client side the number of cases
which are really calling for heavily multithreaded code (known to have
numerous problems) is rather limited, and so in most cases heavy multi-
threading can be avoided. Now it is time to take a look at server-side
programs to see if our hero can avoid heavy multithreading there. As
‘server-side’ we will consider programs aimed to support many users
simultaneously over the network. Web applications is one prominent
example, but we will not limit our analysis only to them.
One common feature of server-side applications is that they almost always
depend on some server-side storage, normally a database; therefore, we
will assume that some database (not specifying if it is relational or not) is
used by application. Even if the application uses plain files for storage, we
still can consider it as a kind of (very primitive) database for the purposes
of our analysis. There are a few exceptions to this database dependency,
but as we will show below in ‘No Database? No Problem’ section, the most
practically important of them can be handled using the same techniques
as described here and in part1.
It should be noted that, as before, this is mostly a summary of practical
experiences and cannot be used as strict instructions for ‘how to avoid
multithreading’. Still, we hope it will be useful as a bunch of ‘rules of
thumb’. We will also try to provide some very rough numbers to back up
these ideas, but please take them with a good pinch of salt.

Quarter 3&4 line-up
As in the first half of the match, we have our ‘No Multithreaded Bugs’
Bunny standing on the left side of the field, with touchdown being his only
chance to win. He faces a team of extremely strong ‘Multithreaded
Gorrillazz’, and any single Gorrilla is strong enough to stop him forever.
Fortunately they’re rather slow, which leaves our hero a chance. As in the
first half we will make a distinction between heavily multithreaded code
all over the place (which results in perpetual debugging and a maintenance
nightmare) and isolated multithreaded pieces (which are not exactly a
picnic either, but can be dealt with with finite amount of effort; we will
consider them acceptable if there are no better options).
To discuss server development, the very first thing we need to see is if our
Bunny is writing a program based on standard interfaces and frameworks,
or needs to develop his own framework. If a framework is already there
(for example, he’s developing a web application), it simplifies his task
significantly. As the whole idea of the server-side application is to serve

independent requests from many users, most existing frameworks (eg
CGI/FastCGI, PHP, .NET, Java Servlets) do not require any interaction
between requests. Sometimes avoiding interaction between threads within
the framework requires some discipline (for example, static data in Java
servlets can cause inadvertent interactions leading to problems [CWE-
567]), but overall it is usually not rocket science to avoid it (unless it is
dictated by application logic itself, which is discussed below).
Now, let us consider the scenario where standard interfaces are not good
enough; while it is not so common, there are still several good reasons not
to use standard web frameworks in some specific cases. Such reasons may
include, for example, the inherently request-response nature of the HTTP
protocol, which doesn’t necessarily fit all application usage scenarios. The
decision to write your own framework is always a tough one and obviously
includes lots of work, and often such frameworks need to be multithreaded
for performance reasons. But even when it is really necessary, the
framework can still be written such that all multithreading stuff is kept
within the framework itself and is never exposed to the application. It
means that even if our hero has quite an unusual case when existing
frameworks don’t work, he can still confine multithreading to relatively
small and (probably even more importantly) rarely changed area of the
code.

Wazzup, doc?
Now, one way or another, our ‘No Multithreaded Bugs’ Bunny has a
framework which handles multiprocessing and multithreading itself,
without imposing that his application code be multithreaded. It doesn’t
mean he will be able to avoid multithreading in the end, it merely means
that he hasn’t been grabbed by any of Gorrillazz yet.
The next question to our ‘No MT Bugs’ Bunny is the very same ‘Houston,
do we have a problem?’ question that he needed to answer for the client-
side. The main reason for multithreading is performance, so if there are no
performance problems there is no real need to do anything about it (and if
multi-threading exists for any other reason, our ‘No Bugs’ Bunny should
think about it twice, especially if threads were added only because it’s
‘cool’ or because without them the program is ‘so 1990-ish’). If there are
any observable performance problems, the very first thing our Bunny
should ask himself is ‘Are you sure that the database has all the indexes it
needs?’ It is unbelievable how many cases can be drastically improved by
simply adding one single index. In particular, developers and even DBAs
often tend to forget that a 2-column index on columns A+B can be orders
of magnitude faster than 2 separate indexes on column A and column B.
The biggest improvement we’ve observed from adding a 2-column index,
was 1000x; not a bad incentive to take a closer look at indexes. So, we want
to re-iterate: when using databases, indexing is of paramount importance,
and is the very first thing to be considered if there are any performance
problems. No amount of multithreading/multi-coring will save your
program if the database lacks appropriate indexes. Another thing to take
a look at this stage is eliminating outright inefficient requests (there are
usually at least a few in any application, and basic profiling using database-
provided tools should be able to help).

A

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
16 | Overload | August 2010

FEATURESERGEY IGNATCHENKO

where updates are rare but the number of read
requests is huge, the next step is usually to see if

it some kind of caching will help
If the database indexes are fine and there are still performance problems
(for Internet applications it usually won’t happen until about 1M-10M
requests/day1), than the next question arises. Usually most applications of
this kind can be divided into two wide categories. The first category of
applications is ‘data publishing’ and have mostly read-only requests
(represented by any kind of site which publishes information, including
serving search requests). The second category makes many updates, but
these updates are usually trivial and, after optimizations mentioned above,
should take rather little time; reporting can still be ugly and have heavy
and very heavy requests (this is a typical pattern of ‘Online Transactional
Processing’, or OLTP, applications). At this point our Bunny should
understand which category his application belongs to.

The clone bunny
For a ‘data publishing’ application where updates are rare but the number
of read requests is huge, the next step is usually to see if it some kind of
caching will help. Caching does introduce interactions between requests,
but with a proper implementation (similar, for example, to memcached
[Facebook08]) it can easily be used in a way which has nothing to do with
multithreading. For applications/sites which can cache all
the information they need (for example, content
management systems with updates
a few times a day, or a
‘w idge t ’ showing
weather to every user
in its location), it
u sua l l y means
handling virtually
unlimited number
o f u s e r s

without much
further effor t (in
practice, the exact
n u m be r w i l l d e p e n d
greatly on application specifics
and the framework used, but our extremely
rough estimate would be on the order of 10M-
100M requests per day per typical 2-socket 8-core ‘workhorse’ server,

with an option to add more such servers as necessary). If, on the other hand,
there are essential requests which cannot be handled from the cache (for
example, ad-hoc searches) and even after caching everything we can
performance is still not good enough, then things become more
complicated. At this stage, our ‘No Multithreaded Bugs’ Bunny should
consider creating a ‘master’ database which will handle all the updates, and
multiple ‘replica’ databases which will handle the read-only requests.2
This approach will allow scalability for read-only requests (with an
extremely rough estimate of number of requests per single ‘workhorse’
server on the order of 1M-10M per day, though with proper optimization
in some cases it can reach as high as 100M), so the only risk which remains
is handling the update requests; usually it is not a problem for this kind of
application, but if it is – our ‘No MT Bugs’ Bunny can approach them the
same way as described below for typical OLTP applications.

Heavy-weights
So, what should our ‘No MT Bugs’ Bunny do if he faces an application
which needs to handle lots of updates (more than a few million per day)
and still experiences problems after all necessary indexes are present and
the outright inefficient requests are eliminated? The next step is usually to
optimize the database further, mostly at the physical level. It could include

things like upgrading the server to a RAID controller with a battery-
backed write cache (this alone can help a lot), moving DB logs to a

completely separate set of HDDs (usually RAID-
1), selecting an optimal RAID structure for tables

(often a simple bunch of RAID-1 arrays works
the best, and RAID-5/RAID-6 are usually not

a good idea for heavily updated tables),
separating tables with different
behavior into separate bufferpools and
onto separate physical disks, and so on.

Additionally, moving most (or all)
r e p o r t s t o ‘ un c o m m i t t e d r e a d ’

transaction isolation level could be
considered; in some cases this simple

optimization can work wonders. A related optimization can
include separating a few frequently updated fields into a
separate table, even if such a table has 1:1 relation to the
original one. Another application-related optimization
which can occur at this stage is moving to prepared
statements or stored procedures. It is worth noting that
despite common perception, on a DBMS where prepared

statements are properly supported (last time we’ve checked

1. All numbers in the article are extremely rough estimates, your
mileage may vary. Also we’re assuming ‘typical’ Internet
application with ‘typical’ distribution of requests over the day, with
difference between minimum hour and peak hour not exceeding
2-5x. Still, while numbers are extremely rough, we feel that even
such rough numbers can be of some value on initial stages of
analysis.

2. Unfortunately, way too many RDBMS still experience problems
under heavy load when replication is implemented using RDBMS-
provided means. Heavy testing with comparable to production
loads and data volumes is advised when trying to implement
replication. As a workaround, custom application-level replication
can be considered, but it is rather complicated and is beyond the
scope of this article.
August 2010 | Overload | 17

FEATURE SERGEY IGNATCHENKO
it still didn’t include MySQL) they tend to provide almost the same
performance as stored procedures, while requiring less code rewriting and
keeping more potential for switching the DBMS if necessary.

Half-gotchaed?
What will happen if our ‘No MT Bugs’ Bunny did all the above
optimizations, but his system or program still doesn’t work efficiently
enough (which we estimate shouldn’t normally happen until 10M update
requests/day is reached)? It is no picnic, but is still not as bad as heavy
multithreading, yet. At this stage our hero can try to separate the
operational updatable database from the read-only reporting database,
making the reporting database a replica of the ‘master’ operational
database, running on a separate server. The effect achieved by this step
heavily depends on DBMS in use and types of load, but usually the heavier
the load – the bigger the effect observed (removing inherently heavy
reporting requests from an operational database reduces cache/bufferpool
poisoning and disk contention, and these effects can hurt performance a
lot).
If it doesn’t help, our ‘No Bugs’ Bunny might need to take a closer look
at inter-transaction interaction (including transaction isolation levels,
SELECT FOR UPDATE statements and the order of obtained locks). We
feel that if it goes as far as this, he is in quite big trouble. While inter-
transaction communication is not exactly multithreading, it has many
similar features. In particular, deadlocks or ‘dirty reads’ can easily occur,
eliminating them can be really tricky, and debugging can become
extremely unpleasant. If our ‘No MT Bugs’ Bunny finds himself in
such situation, we will consider him being ‘Half-Gotchaed’.
One application-level option which might be useful at
this point is to start postponing updates (storing
them in separate table, or some kind of queue) for
certain frequently updated statistical

f i e l d s (l i ke a
‘number of hits’ field) to avoid the locking,
and move such postponed updates into the main table
later, time-permitting or in bulk, reducing locking.

Single connection: back to the future?
It is worth noting that there is an option to avoid this kind of multithread-
like problems altogether, which is rarely considered. It is sometimes
possible to move all update statements into a single DB connection
(essentially to a single thread); while such approaches are often ostracized
for lack of scalability, practice shows that in some environments
(especially those where data integrity is paramount with no room for
mistakes, for example, in financial areas), it is a perfectly viable approach
– the biggest load which we have observed for such single-update-
connection architecture was on the order of 30M update transactions per
day for a single synchronous DB connection, and when it became not
enough, it was (though with a substantial effort) separated into several
databases with a single connection for updates to each one, reaching
100M+ update transactions per day (and with the option to go further if
necessary).

Divide et impera
If after applying all the optimizations above our our ‘No MT Bugs’ Bunny
still experiences performance problems, his next chance to escape fierce
‘Multithreaded Gorrillazz’ is to try to find out if the data he works with
can be easily classified by certain criteria, and split the single monolithic
database into several partitioned ones. For example, if his application
needs to handle transactions in a thousand stores worldwide, but most

transactions are in-store and only a few interactions between the stores
(similar to the task defined in [TPC-C] benchmark), he has a chance of
getting away with partitioning the database by store (one or several stores
per database), achieving scalability this way. Methods of separation can
vary from DBMS-supported partitioning (for example, [IBM06] and
[Oracle07]) to application-level separation. Application-level separation
can have many varieties (with many being extremely application-specific),
and detailed discussion of such separation can easily take a few books, so
we will not try to go into more details here.

In-memory state: case of multiple sclerosis
If everything described above fails, and our
Bunny indeed has an application with
100M+ update transactions per day,
he may need to resort to RAM to
remember some parts of the system
s ta t e , r a the r t han t o keep
everything in the database. It is a
fundamental change, and it won’t
be e a s y . O ne i m p o r t a n t
imp l i ca t i on i s t ha t a l l
information held in memory
only will be lost if system goes
down or reboots; in some cases
(like caches) it doesn’t matter, but
i f going beyond caches, the
implications must be considered

very carefully.
Still, even with in-memory state multithreading

is not always necessary; it can be avoided
either by techniques described in the
previous article [Ign10], or by separating

the system into a series of logical objects, each
having its own in-memory state and incoming
queue, and all the logical object input being

limited to the processing of incoming
messages, with all interaction between
objects restricted to sending messages to

each other. One of us has seen such a system
processing over 1 billion (yes, this is nine zeros) of

requests per day, still without any multithreading at the application
level (all multithreading has been confined to a few thousand lines

of specialized framework, which is 100% isolated from the application-
level business logic and therefore is changed extremely rarely). If our
Bunny is one of the few very lucky (or unlucky, depending on point of
view) ones who really need to process more than 1e9 requests per day –
there is a chance he will be gotchaed, but honestly – how many of us are
really working on such systems? To set some kind of benchmark:
NASDAQ is currently able to process 2e8 transactions per day
[NASDAQ], so we can reasonably expect that there are relatively few
systems which need more than 1e9. Still, it can happen and we have no
choice other than to award a point to Gorrillazz in this case.

No database? No problem
As promised at the very beginning of the article, now we will come back
to discussing examples of server-side applications which don’t use
databases (or use them in a very limited way). One such example is
music/video streaming server applications. While such applications don’t
need to rely on a database, they can be scaled easily enough similar to any
other ‘data publishing’ application (see ‘The Clone Bunny’ above); in
extreme cases where top performance is necessary, using non-blocking I/O
techniques can be used to improve performance further.
Another prominent example of server-side applications which don’t really
need to depend on the database, is game servers. While it is very difficult
to generalize such a vast field as games in general, massive server-side
games usually seem to fit under ‘In-Memory State: Case of Multiple
Sclerosis’ described above, and our ‘No MT Bugs’ Bunny can try to handle
18 | Overload | August 2010

FEATURESERGEY IGNATCHENKO
them using the very same techniques as described there and in previous
article.

Quarter 3&4: ‘No MT Bugs’ Bunny: 4¾ ‘Multithreaded
Gorrillazz’: 1¼
Now as the match between ‘No MT Bugs’ Bunny and ‘Multithreaded
Gorrillazz’ has came to end, we’re able to find out the final score of this
magnificent game. As we’ve seen, similar to client-side, on the server-side
there aren’t too many cases for multithreading either. Our ‘No MT Bugs’
Bunny managed to make 9 home runs on the server side of the field, while
being gotchaed only once, and being half-gotchaed once. Taking into
account the relative weights of these runs, we conclude that quarters 3 &

4 have been completed with a score of ‘No MT Bugs’ Bunny: 4¾
‘Multithreaded Gorrillazz’: 1¼, making the overall score

for the whole game ‘No MT Bugs’
B u nn y : 8¾ ‘ Mul t i t h rea de d

Gorrillazz’: 2¼.

References
[CWE-567] CWE-567: Unsynchronized Access to Shared Data, Common

Weakness Enumeration,
http://cwe.mitre.org/data/definitions/567.html

[Facebook08] Scaling memcached at Facebook, Paul Saab, 2008,
http://www.facebook.com/note.php?note_id=39391378919

[IBM06] Introducing DB2 9, Part 2: Table partitioning in DB2 9, Rav
Ahuja, 2006,
http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0605ahuja2/

[Ign10] ‘Single-Threading: Back to the Future?’ Sergey Ignatchenko,
Overload #97, June 2010

[NASDAQ] Technology Fast Facts, NASDAQ,
http://www.nasdaq.com/newsroom/presskit/reports/NASDAQ_Tec
hnology_Worksheet.pdf

[Oracle07] Partitioning in Oracle Database 11g, Hermann Baer, 2007,
http://www.oracle.com/technology/products/bi/db/11g/pdf/partition
ing-11g-whitepaper.pdf

[TPC-C] Overview of the TPC Benchmark C: The Order-Entry
Benchmark, Francois Raab, Walt Kohler, Amitabh Shah,
http://www.tpc.org/tpcc/detail.asp
August 2010 | Overload | 19

http://cwe.mitre.org/data/definitions/567.html
http://www.facebook.com/note.php?note_id=39391378919
http://www.ibm.com/developerworks/db2/library/techarticle/dm-0605ahuja2/
http://www.nasdaq.com/newsroom/presskit/reports/NASDAQ_Technology_Worksheet.pdf
http://www.oracle.com/technology/products/bi/db/11g/pdf/partitioning-11g-whitepaper.pdf
http://www.tpc.org/tpcc/detail.asp

FEATURE MATTHEW JONES
Debugging Run Time
Memory Problems
The C++ Standard is often silent on what happens when things go
wrong. Matthew Jones looks under the bonnet to take control.
his article explores some of the the grey areas between the C++
language, the OS and the CPU. All three come into play when
memory problems arise, and usually in the form of the dreaded

undefined behaviour (UB).
A lot goes on behind the scenes between a system booting, or an
application starting in its fresh virtual memory space, and main() being
called. Most people are happy to gloss over, or even ignore, this area. This
is acceptable because it works perfectly almost all the time. Usually we
only care that main() is called (somehow), memory is allocated when you
ask for it (somehow), and everything works just fine. But what happens
when things go wrong and the system starts to behave incorrectly? Will
we even notice? Will it lead to a crash? How do we go about debugging
these problems? Is it even feasible to debug dynamically, or do we give
up and start inspecting the source code? We might, and in simple single
threaded code this could be sufficient. But if we put some effort into
taming, or even defining, our undefined behaviour, we can tell far more
from a crash than we might think. With a bit of preparation, we can make
UB work for us, rather than baffle us.
The details here are highly system specific, but so are crashes. Every
architecture and application is different, but the principles should be
widely applicable. Some techniques involve dipping into the C run time
initialisation code, and will only be possible in the more embedded (i.e.
roll your own) environments. We focus on C++, and some of its peculiar
memory problems, but some of the techniques could apply to many other
languages. YMWCV (Your Mileage Will Certainly Vary)!
Some of you might notice that a number of the tricks here are based on the
Microsoft SDK C run time debug, in particular the memory debug and
filling on initialisation [MSDN1]. Even if you are already using that it is
useful to understand the details of how and why it works.

Program behaviour
The result of what we do as programmers is mostly defined and specified:
we write source code according to a standard [C++], that a compiler
converts into object code. The behaviour of that code is well defined and
should hold no surprises.
There are a number of other kinds of behaviour, presented here in order of
increasing ‘danger’ to the programmer.

Implementation defined behaviour
Standardised behaviour is not possible because of a dependency on the
underlying platform. Word size, alignment and endianness are common
cases. Given a known platform or architecture, however, behaviour is
defined.

Unspecified behaviour
Behaviour that is not specified by the standard, but it is still good
behaviour. The standard can not make guesses about, or rely on, such
behaviour because it depends on the system context. Examples are
program performance; storage of data in memory (padding, ordering etc.,
but not alignment); or the exact instructions a compiler might generate for
a given line of code. The actual behaviour can often be changed, for
example by altering compiler settings. Even if we do not have control over
this kind of behaviour we can at least discover what it is.

Undefined behaviour
When program behaviour depends on factors entirely beyond the control
of the language specification, there is no way it can state what should
happen outside ‘normal’ behaviour: it has to be left undefined by the
language. For example some hardware will trap certain types of illegal
memory access, but other hardware doesn’t.
Undefined behaviour is traditionally, and rightly, the most feared kind. But
fear usually stems from lack of knowledge or understanding, and we
certainly can address these two deficiencies.
It was pointed out on ACCU-General recently [Henney] that on any
particular system, with a particular context, UB is repeatable:

With respect to the C and C++ standards, the use of certain
constructs can be considered to result in undefined behaviour with
respect to the relevant language standard. For a given execution of
a given program on a given platform, however, such behaviour is
normally very well defined.

When we know the system, and can see the assembly code generated by
the compiler, we do know what will happen, even though the results are
probably undesirable. So for a known context (the application we are
developing, with our particular compiler, on one particular system) our UB
usually becomes known, repeatable behaviour. There is still scope for
other factors to influence predictability (e.g. multithreading), but in
principle we can still attempt to understand and therefore control it.
The side effects of UB can often go unnoticed. Silent failures are very
dangerous because the defect leading to the UB has therefore escaped test
and will be released from development. It is often the case that a later
change to the software or system then changes the context of the defect:
the symptoms change for the worse and the failure is no longer silent. One
of our objectives should be to ensure that UB fails fast [Fowler].
Because of the lack of definition, there is potential for us to step in and not
only define the behaviour, but to ensure it is something that suits us. Since
UB usually stems from incorrect program operation, any definition we
impose should deal with, or be tolerant of, that incorrect operation. We
have seen that UB is actually predictable and repeatable: if we choose to
define an area of UB, it becomes user defined, repeatable behaviour
triggered by incorrect operation: we can make it provide useful debug
information, and turn it to our advantage. I hope to show that is feasible
to replace UB with defensive measures that are sufficient to automatically
diagnose most memory problems.

T

Matthew Jones has been programming for over 20 years, 15 of
them professionally. He started with BBC BASIC, then C whilst at
VI form. He moved on to C++ and has worked on a variety of large
embedded systems. He can be contacted at m@badcrumble.net
20 | Overload | August 2010

FEATUREMATTHEW JONES
Background
I am assuming a fair degree of familiarity with how CPUs work, how
memory is allocated, how the compiler represents objects, and so on.
Before exploring the details, this section contains definitions and
summaries of the most relevant terms. Most terms used here are explained
in depth by Wikipedia [Wikipedia1].
Figure 1 shows the memory features of a generalised system. In the
simplest scenarios the program runs within a virtual memory space, but is
unaware of this. The built-in new() and delete() are used to get
dynamic storage from the heap. These may or may not interact with the
OS and MMU to allocate memory pages. More advanced scenarios might
involve a custom allocator, which may use OS facilities to manage memory
more directly. More about custom allocators later.

Crashes
The term crash is widely used but seldom defined. In general it means
some kind of serious, often low level, error that is unrecoverable
[Wikipedia2]. A crash is usually followed by the failed system ceasing to
respond, or halting. A software application would usually have to be
restarted. An embedded system might need to be power cycled. In this
article it is used in a non-specific manner to mean incorrect operation
leading directly to an abnormal, obvious, non-recoverable state.

MMUs and illegal access
Most systems have some kind of Memory Management Unit. It might not
be called by that name, but somewhere in the system there will be a
function responsible for tasks such as logical to physical address
translation and controlling access. If you have an MMU it will probably
signal to the application, or at least the OS, when exceptions such as illegal
memory accesses occur. The definition of ‘illegal’ may vary, but usually
includes

any form of access to unmapped (i.e. invalid) addresses
writing to program/protected/read only memory
fetching instructions from non-program memory
illegal access (application doesn’t have permission)

Even if you don’t have a dedicated MMU, most advanced/modern CPUs
can be configured to convert illegal memory access into some sort of IRQ
or CPU exception.
If you have a basic CPU it should still be possible to implement a
rudimentary MMU, if you have space in an FPGA or PLD. It could be made
to can raise an IRQ to the CPU, and provide a status register or two.

Details here are necessarily vague because this subject is entirely system
dependent. But there is no getting away from the need to read and
understand your programmer’s reference manual. It is no coincidence that
the list of illegal operations above is similar to the root causes of Windows
GPF/BSoD [Wikipedia3],[Wikipedia4].

Where is everything?
When the linker takes your object files and links them into a library or
executable, it can usually be commanded to output a map file. This lists
symbols and their addresses. Details are specific to the tools used, but the
map file or equivalent is an extremely useful tool when debugging memory
problems. Given a word of memory, it is possible to deduce what it might
be, by referring to the map file, and the system’s memory map. The word
might fall into one of a number of address ranges, and these indicate likely
interpretations of the meaning of that value.

(*) these might have been allocated from the heap so can be hard to
distinguish. In a more static, embedded, system, they might be global
data allocated at startup.

Note that if your code is relocatable, a shared library, DLL etc., the
addresses in the map file will not be the final addresses. In this case map
file addresses will simply be offsets. The final addresses are only known
once the library has been loaded.

What is stored in memory?
If we want to decipher the clues left by a memory related crash, we have
to know exactly what we’re looking at. Memory is just bits, bytes and
words, but it is given meaning when interpreted by code. Problems, and
sometimes crashes, occur when the code interprets some piece of memory
incorrectly. If we can understand correct operation, then when we are
faced with a crash (incorrect operation) we can look for specific symptoms
that might lead us back to a root cause based on misinterpretation.
The canonical example is interpreting a number as a pointer, with null
pointer the most frequent case. The code is interpreting some memory as
a valid pointer, but actually it is misinterpreting a number. Whether this
was meant to be a valid pointer, or is some other stray value, is moot. If
the number is zero, the outcome is at least partly predictable: memory at
(or offset from) address 0 will be accessed. If the number being
misinterpreted is some other (essentially random) value, the outcome
depends on the value in question.

Raw data
When raw data is stored in memory, aside from decoding it, we can’t tell
much about it. Its appearance is governed by the source code, and there
are few compiler generated clues to its nature. However, if it has been
allocated we can find out when, by whom, and possibly why. This may
give further clues about the content. See later for more on unused/deleted
blocks.

Objects and object pointers
To exist at run time, an object is either allocated its own memory from a
memory pool, or it is an automatic variable on the stack. Either way, it
occupies an area of memory. But what is in that memory?
Every instance of any object must include at least the non-static, data
members. These will appear in memory according to platform and
compiler dependent rules on data size, ordering, and endianness rules.
They will often be separated by padding to satisfy the data alignment rules
of either the compiler or the processor.
If there is no polymorphism, the compiler knows the type of the object at
compile time. No metadata is required to identify the type and only the

Figure 1

Memory range Possible Use

ROM, .text, code segment, program area vtable, function pointer

data segment, .data, .bss global variable

task stack (*) automatic variable

RAM, heap dynamically allocated memory
August 2010 | Overload | 21

FEATURE MATTHEW JONES
object’s data members need be stored. When we find an object of such a
class in memory, we typically see just its data members. It can be very hard
to tell that the memory contains an object unless we know in advance.
Often the pattern of data can be a clue but we can’t assume that there will
be anything definite to go on. Listing 1 shows an example of a trivial object
and the resulting map and memory layout.
If polymorphism is involved, when the code is running and wishes to
access an object, it has to find out the actual type of the object. The code
therefore has to store in memory with the data members some information
that identifies the object’s type, initialised when the object is created.
When virtual functions are called, the object is accessed and the code first
reads this key to determine what type it is, and therefore exactly how to
access it. Without this the code doesn’t know what methods could be
called, or even what data members the object might have. To meet this
requirement gcc [gcc] and many other compilers use the address of the
object’s virtual function table (vtable) as this identifier, and it is stored in
memory with the data members. Every class that has virtual functions has
its own vtable, and conversely the vtable uniquely identifies the class. The
vtable is essential for the compiler: it defines the specific overridden
function to call when the code calls a virtual function on objects of that
class.
The fact that the vtable pointer is stored with the object is extremely useful:
given any pointer to memory, if we know that it is a (polymorphic) object,
we simply find the vtable pointer, then look in the map file produced by
the linker, and thereby divine the run time type of the object. If you are
debugging memory problems, get familiar with your map file! It tells you
most of what you need to know.
Given an unknown chunk of memory, if we spot a word that appears to be
an address in program memory, that word really ought to be a pointer to
a function, either global or a member of some class; or a pointer to a vtable.
If we see the latter we are probably looking at an object, and can quickly
confirm this by looking in the map file. Note that this relies on ‘program
memory’ being contiguous, and being an identifiable region of memory.
See the later section about controlling your memory map.
Listing 2 shows a trivial class hierarchy and a function to exercise instances
of the classes. Listing 3 shows the resulting map file, Listing 4 the virtual
function tables, and Listing 5 the contents of the pointers in Listing 2.

Note that the memory blocks shown in Listing 5 have some of the debug
features described later: guard blocks (FDFDFDFD), inter-block filling
(0x31), and the word before the start block is the block size. Each pointer
points to a block that starts with the object’s vtable. It is interesting to
compare the type of the vtable with actual type of each pointer. Note that
due to the mysterious ways of gcc 3.4.3, each vtable starts with two empty
words, then two distinct (but identical) destructors. The pointer stored with
each object instance is always to the first destructor, not the start of the
table.

Common types of memory fault
In this section a number of familiar memory faults are introduced. One of
the simplest memory faults is to leak allocated memory. This is such a
widely experienced problem that it does not warrant its own section here.
Later we will discuss a number of techniques to defend against these faults,
or to analyse their aftermath.

Null pointer access
Because null pointers are usually represented by the value zero, they
inadvertently point to the memory at address 0. They are not meant to be
dereferenced, but when they are, the code inevitably reads or writes to the
memory at or near address 0.
When a piece of code dereferences a null pointer, the first thing that will
happen is the compiler generated assembly code will read a word from
address 0 onwards. If this in itself does not trigger an exception, the word
will be interpreted.
If the pointer is to raw data, the outcome is application specific. If the
pointer is to an object, the contents of memory at 0 will be assumed to be

Listing 1

class BoringThing
{
public:
 int a;
 int b;
 BoringThing() : a(0), b(1) {}
 void Function () { a = 10; }
};
void boring (void)
{
 BoringThing *b = new BoringThing;
 b->Function();
 // resulting assembly code: note address
 // of function is absolute
 // lwz r3,0x2C(r31) ; r3,44(r31)
 // bl 0xA24C ; BoringThing::Function
}
// Map file extract
 .gnu.linkonce.t._ZN11BoringThing8FunctionEv
 0x0000a24c BoringThing::Function()
 .gnu.linkonce.t._ZN11BoringThingC1Ev
 0x0000a278 BoringThing::BoringThing()

// Contents of memory at 'b' (0d5267e0):
 address|_0________4________8________C________
 0D5267D0| 00000000 053635F8 00000008 FDFDFDFD
 0D5267E0| 00000000 00000001 FDFDFDFD

Listing 2

class Thing
{
public:
 int a;
 int b;
 Thing (): a(0), b(0) {}
 virtual ~Thing() {}
 void Apple ();
 virtual void Banana () { a = 1; }
 virtual void Cherry () { b = 2; }
};
class DerivedThing : public Thing
{
public:
 virtual void Banana () { a = 2; }
};
class MoreDerivedThing : public DerivedThing
{
public:
 virtual void Cherry () { b = 3; }
};
void foo (void)
{
 Thing * t = new Thing;
 DerivedThing * dt = new DerivedThing;
 MoreDerivedThing * mdt
 = new MoreDerivedThing;
 Thing * t1 = new Thing;
 t1->Banana();
 t1->Cherry();
 Thing * t2 = new DerivedThing;
 t2->Banana();
 t2->Cherry();
 Thing * t3 = new MoreDerivedThing;
 t3->Banana();
 t3->Cherry();
}

22 | Overload | August 2010

FEATUREMATTHEW JONES
the pointer to the vtable for the object. Depending on which virtual function
the code intends calling, the bogus vtable will be indexed into and the
function pointer in question will be read, and then jumped to. Depending
on the data, the address might be valid, data that looks like a valid address,
or completely invalid. If you are lucky, the jump will be to an illegal
address and the MMU will step in.
If the pointer is being used to access object data, the memory near address
0 will be read and misinterpreted.
Address 0 is the start of the zero page [Wikipedia5]. The zero page has
special meaning in some systems, and might not be ‘normal’ memory.
What is at address 0 in your system? You should familiarise yourself with
it, because it defines what happens when null pointers are accessed. Often
its some sort of interrupt or exception table. It might be an invalid address,
and the MMU will already be catching illegal access. If reading from/near
address 0 does get past the MMU, what are the symptoms? If we are
reading ROM (fixed data, code, etc.) we get very obscure, but completely
repeatable tell-tale values. It took me a long time to understand that when

Listing 3

 .gnu.linkonce.t._ZN5Thing5AppleEv
 0x0000a470 Thing::Apple()
 .gnu.linkonce.t._ZN16MoreDerivedThingC1Ev
 0x0000a490
 MoreDerivedThing::MoreDerivedThing()
 .gnu.linkonce.t._ZN12DerivedThingC2Ev
 0x0000a4d8 DerivedThing::DerivedThing()
 .gnu.linkonce.t._ZN5ThingC2Ev
 0x0000a520 Thing::Thing()
 .gnu.linkonce.t._ZN12DerivedThingC1Ev
 0x0000a568 DerivedThing::DerivedThing()
 .gnu.linkonce.t._ZN5ThingC1Ev
 0x0000a5b0 Thing::Thing()

 .gnu.linkonce.t._ZN5Thing6BananaEv
 0x0000b28c Thing::Banana()
 .gnu.linkonce.t._ZN5ThingD0Ev
 0x0000b2b8 Thing::~Thing()
 .gnu.linkonce.t._ZN5ThingD1Ev
 0x0000b314 Thing::~Thing()
 .gnu.linkonce.t._ZN5Thing6CherryEv
 0x0000b370 Thing::Cherry()
 .gnu.linkonce.t._ZN12DerivedThingD0Ev
 0x0000b39c DerivedThing::~DerivedThing()
 .gnu.linkonce.t._ZN5ThingD2Ev
 0x0000b400 Thing::~Thing()
 .gnu.linkonce.t._ZN12DerivedThingD1Ev
 0x0000b45c DerivedThing::~DerivedThing()
 .gnu.linkonce.t._ZN16MoreDerivedThing6CherryEv
 0x0000b4c0 MoreDerivedThing::Cherry()
 .gnu.linkonce.t._ZN12DerivedThing6BananaEv
 0x0000b4ec DerivedThing::Banana()

 .gnu.linkonce.t._ZN16MoreDerivedThingD1Ev
 0x0000ba90
 MoreDerivedThing::~MoreDerivedThing()
 .gnu.linkonce.t._ZN12DerivedThingD2Ev
 0x0000baf4 DerivedThing::~DerivedThing()
 .gnu.linkonce.t._ZN16MoreDerivedThingD0Ev
 0x0000bb58
 MoreDerivedThing::~MoreDerivedThing()

 .gnu.linkonce.r._ZTV16MoreDerivedThing
 0x00391e88 vtable for MoreDerivedThing
 .gnu.linkonce.r._ZTV12DerivedThing
 0x00391ea0 vtable for DerivedThing
 .gnu.linkonce.r._ZTV5Thing
 0x00391eb8 vtable for Thing

Listing 4

0x00391e88 vtable for MoreDerivedThing

address|__________
 00391E88| 00000000
 00391E8C| 00000000
 00391E90| 0000BA90
MoreDerivedThing::~MoreDerivedThing()
 00391E94| 0000BB58
MoreDerivedThing::~MoreDerivedThing()
 00391E98| 0000B4EC DerivedThing::Banana()
 00391E9C| 0000B4C0 MoreDerivedThing::Cherry()

0x00391ea0 vtable for DerivedThing

address|__________
 00391EA0| 00000000
 00391EA4| 00000000
 00391EA8| 0000B45C
DerivedThing::~DerivedThing()
 00391EAC| 0000B39C
DerivedThing::~DerivedThing()
 00391EB0| 0000B4EC DerivedThing::Banana()
 00391EB4| 0000B370 Thing::Cherry()

0x00391eb8 vtable for Thing

address|__________
 00391EB8| 00000000
 00391EBC| 00000000
 00391EC0| 0000B314 Thing::~Thing()
 00391EC4| 0000B2B8 Thing::~Thing()
 00391EC8| 0000B28C Thing::Banana()
 00391ECC| 0000B370 Thing::Cherry()

Listing 5

t (0D5267E0):
address|_0________4________8________C________
 0D5267D0| 00000000 053635F8 0000000C FDFDFDFD
 0D5267E0| 00391EC0 00000000 00000000 FDFDFDFD

dt (0D5267AC):
address|_0________4________8________C________
 0D5267A0| 053635F8 0000000C FDFDFDFD 00391EA8
 0D5267B0| 00000000 00000000 FDFDFDFD 31313131

mdt (0D526778):
address|_0________4________8________C________
 0D526770| 0000000C FDFDFDFD 00391E90 00000000
 0D526780| 00000000 FDFDFDFD 31313131 31313131

t1 (0D526744):
address|_0________4________8________C________
 0D526740| FDFDFDFD 00391EC0 00000001 00000002
 0D526750| FDFDFDFD 31313131 31313131 31313131

t2 (0D526710):
address|_0________4________8________C________
 0D526700| 00000000 053635F8 0000000C FDFDFDFD
 0D526710| 00391EA8 00000002 00000002 FDFDFDFD

t3 (0D5266DC):
address|_0________4________8________C________
 0D5266D0| 053635F8 0000000C FDFDFDFD 00391E90
 0D5266E0| 00000002 00000003 FDFDFDFD 31313131
August 2010 | Overload | 23

FEATURE MATTHEW JONES
I kept on seeing an exception saying that an instruction was being read from
an invalid address, 0x9561FFFC, it was because of this:
 address|_0________4________8________C________
 00000000| 3821FFF8 91810000 9561FFFC 9541FFFC
 00000010| 9521FFFC 7D9A02A6 9581FFFC 7D9B02A6
 00000020| 9581FFFC 7D9A0AA6 9581FFFC 7D9B0AA6
 00000030| 9581FFFC 39600000 9561FFFC 7D4902A6
 00000040| 3D200002 61292EEC 7D2903A6 4E800420
 00000050| 3821FFF8 91810000 9561FFFC 9541FFFC

The seemingly random value was actually one of the words near address
0. Always check suspect values against the memory contents near address
0. See later for a way to prevent this.
To understand the details of a null object pointer, let’s look at the sequence
of events during a normal virtual function call. If we consider a single line
of Listing 2:
 t3->Banana();

then the compiled assembly code and its interpretation are shown in Figure
2.

Accessing deleted memory
Accessing deleted memory is a very grey area. It depends not only on the
compiler, but on the memory allocation strategy and the dynamics of the
system.
The least harmful case is that the memory has not changed since de-
allocation, and is therefore effectively valid. This will pass unnoticed. In
some respects a silent failure is the worst possible outcome, because we
don’t fail fast.
If the memory has been re-allocated it begins a new life that the original
code is unaware of. If the memory is written to by the new owner, and the

original code reads it, this new data will be misinterpreted. Then depending
on the nature of the new data, and what the old code does with it, it might
lead to a crash or less severe erroneous behaviour. It is equally disastrous
if the original code writes to the memory, and the new owner then
misinterprets it. Again, the worst possible outcome is that this goes
unnoticed. If the side effects appear much later, the original code might
have moved on from abusing the re-allocated block, and the trail will have
gone cold when the problem is investigated.
In some systems de-allocated blocks, or the memory pages containing
them, are given back to the OS, to be protected by the MMU. In this case
access should immediately trigger an MMU exception. Here the
architecture is already helping us and there is nothing to add.
Note that if the deleted memory contained a polymorphic object, the vtable
pointer will have been changed to that of the base class when delete()
worked its way through the hierarchy of destructors. If the memory is
unaltered, using the vtable as a clue about the type of the object could be
misleading.

Off the end of an array
The effect of writing off the end of an array depends on memory alignment,
memory allocation strategies, the nature of the array, and the purpose of
the memory surrounding the array. For example if the array is an odd
number of bytes in length, and memory is allocated on word boundaries,
there will be a small number of empty padding bytes after the array.
Writing over these (and then reading them back) has no noticeable effect,
and will be a silent failure. If we write far off the array, or it adjoins another
allocated area, then other data will be overwritten. If this is accessed later,
it might be misinterpreted.

Figure 2
24 | Overload | August 2010

FEATUREMATTHEW JONES
Since the side effects depends on so many factors, they can be very hard
to spot, and will often fail silently. We will look at ways to make if fail
fast later.

Defence
Once we understand the nature of problems that stem from memory abuse,
we can start to defend ourselves against them. Here are a variety of tried
and tested techniques.

Tools
You should always start by attacking any problem with tools. If you are
not using some form of static analysis tool as you write your code, you are
leaving yourself open to the full spectrum of human fallibility. Lint will
spot obvious memory leaks, null pointer use and so on, the moment you
compile your code. Most systems come with some form of run time
analysis tool: perfmon, UMDH (windows); valgrind (*nix).
Some of the techniques described next might replace or even interfere with
mechanisms employed by COTS tools. You must investigate, understand,
and experiment with your environment before committing to using them.

Block allocator
Anyone can write a block allocator, or get one off the web. A quick Google
for ‘memory block allocator’ or ‘memory pool allocator’ will start you off.
When a block allocator is available, it is easy to override the global
operator new() and delete() so that it is used in preference to whatever
heap allocator is provided by the language support library. A further
improvement is to provide dedicated allocators for, and override the
allocation operators of, specific classes that are in some way interesting
(frequently allocated, troublesome etc.).
Once memory allocation is under our control (rather than part of the
hidden, built in, language support) we can start to instrument it, and add
defensive features.
If you can build the language support library yourself, it is possible to add
everything discussed here to the built in new() and delete().

Guard blocks
The most common addition is a pair of guard words (or bookends,
goalposts, etc.). When the application asks for a block of memory we
allocate more than was asked for, and place a guard word at the start and
end. The guard words surround the exact number of bytes asked for, not
the entire block, because this may well be larger than was asked for. The
pointer returned to the caller is to the memory just after the first guard
(highlighted in Listing 6).
Now we can check the block for corruption: if the application writes off
the end of the block (or off the front), the guard word is altered, and this
can be detected. Normally the guard blocks would be checked in operator
delete(), i.e. when the block is de-allocated, but this is often too late.
To be more proactive, the list of currently allocated blocks can be
periodically checked by a background task or on demand when certain
conditions arise. The value of the guard block is not particularly important,
but it would be foolish to use 00! It is worth ensuring that it can not be
misconstrued as a valid address, just in case faulty code reads it as real data.
If we add a guard area at the end of our block, we can catch the most
common error, off by one, without it damaging anything else.

Metadata
It is often useful to know more than just the address of an allocated memory
block. If we reserve extra space in the block, we can store metadata such as:

time of allocation (not usually very interesting in itself)
allocating thread/task/process
size asked for (this may be different from the size allocated if the
blocks are fixed sizes)
source file and line of code.1

This data will normally be ignored, but when something goes wrong, post
mortem analysis (whether manual or automatic) can put it to good use. It
can’t be added after the incident, so you must pay the price of putting it in
place for every block, every time.

Fill values
A surprisingly useful trick is to fill every block with a tell tale value before
giving it to the application. The fill value should be obvious, and as ever,
should not look like a valid address when consecutive bytes are taken to
be a pointer. Although this impacts performance, the price is usually worth
paying due to the obvious benefits:

Using uninitialised data. If the block is not filled, the previous
contents, or fresh 00s, will be read, resulting in random behaviour,
and possibly silent errors. The best culprit here is uninitialised
pointers: if the fill value is an invalid address, as soon as the pointer
is dereferenced, the MMU will step in and raise an exception.
Unused blocks. If the fill values are still there in delete() the
block was not used. Why?
Under-used blocks. If a ‘tide mark’ is visible in the block, why is the
application using less of the block than it asked for?

When the block is deallocated, it should be filled with a second, distinct,
value. This allows access of deleted data to be caught (until the block is
reallocated). Again the fill value should not look like a valid address, so
that the MMU can catch illegal pointer dereferencing.
Note that the Microsoft Developer Studio C++ compiler does this in Debug
mode [MSDN1].

Tie down the memory map
If your environment allows you control of the linker script and/or memory
map, it is possible to define your memory map in the most defensive
manner possible. This ensures maximum scope for help from the MMU.
Arrange program sections with different access criteria (read, write,
execute) to be grouped together, and to be on boundaries and/or page sizes
that the MMU can control independently. The aim is to restrict access as
far as possible, and to be as strict as you can.
Once the program has been loaded into RAM and the data section is
initialised, but before main() is called; make the pages containing the
program and data sections effectively ROM by restricting memory access
to execute only and read only respectively.
Ensure that the zero page has no write access, regardless of its contents,
so that writing to null pointers is caught. If possible, make the zero page
completely inaccessible, at the MMU level, to catch all null pointer action.
The ideal system would have access rights as follows:

Listing 6

 char * x = new (10);

For block size 18 (0x12):

_offset__|__0__1__2__3___4__5__6__7_
00000000 | GG GG GG GG 00 00 00 00
00000008 | 00 00 00 00 00 00 GG GG
00000010 | GG GG

1. This will involve turning new() into an evil macro involving
__FILE__ and __LINE__

r/w/x (read write execute)

ROM r

.rodata r

.text x

.data r

.bss r/w

RAM r/w
August 2010 | Overload | 25

FEATURE MATTHEW JONES
Fill the zero page with known illegal values
We have already seen that null pointers are intimately connected with the
contents of memory at address 0, and the confusion that arises from
misinterpreting it. If the context allows it, reserve the first 256 bytes or so,
and fill it with with a tell-tale value which, when misinterpreted via a null
pointer, is an illegal addresses. The aim is to trigger an MMU exception
as soon as the pointer is dereferenced. This is what mine looks like:
 address|_0________4________8________C________
 00000000| BAD00000 BAD00000 BAD00000 BAD00000
 00000010| BAD00000 BAD00000 BAD00000 BAD00000
 ...
 000000E0| BAD00000 BAD00000 BAD00000 BAD00000
 000000F0| BAD00000 BAD00000 BAD00000 BAD00000
 00000100| 3821FFF8 91810000 9561FFFC 9541FFFC
 00000110| 9521FFFC 7D9A02A6 9581FFFC 7D9B02A6

Fill the zero page with pointers to a debug function
An extension to the previous technique is to fill memory after 0 with valid
pointers, pointing to a debug function which raises an exception within the
application. At the very least it should print "null pointer" and call
exit().
The drawback with this is that reading raw data from near zero will now
read a valid address and possibly fail silently. The address of the debug
function, although generated by the linker, is still a tell-tale value and
should be kept in the back of the mind when investigating memory faults.

MMU exceptions should dump all pertinent registers
Most MMUs have a number of status registers which can be read when an
access violation is detected. One of them will be the address which
triggered the exception. All pertinent registers should be saved and made
accessible to debug code, the user, etc. Armed with this data it is possible
to produce very useful messages to the user. There are some examples
later.

Run time checks
If you have instrumented or protected your memory blocks as described
earlier, a background task can periodically analyse all blocks for integrity.
This introduces the possibility of finding errors while objects are still alive,
shortly after the fault occurred; rather than when they are deleted, which
may be far too late, or even never.

Pool analysis
If a memory leak has evaded static analysis, it must be caught at run time.
It is feasible to stop the program and analyse the heap, either by inspecting
the memory directly (e.g. using a debugger), or by calling a dedicated
function. Microsoft’s Developer Studio IDE performs memory block
analysis to detect memory leaks in Debug mode [MSDN2].
Now that we know that any block of memory containing an object will
probably start with a pointer to that object’s vtable, one approach is to
simply walk the list of allocated blocks, summing the instances of each
vtable. By counting these, we are counting instances of each object type.
If we are leaking objects, then over time one object count will have an
obvious growth trend.
A more involved technique is to use a series of fixed size block allocators
and iteratively tune the block sizes to narrow down the size of object, or
piece of data, being leaked. Eventually this will lead to a short list of objects
which can be debugged directly.
Analysing your memory pool usage can be very illuminating, whether in
response to a problem, or simply as a background activity. The analysis
can be as detailed as your imagination allows, but bear in mind any
intrusion on a running system. Analysis is possible with any memory
allocation strategy, although it is easier if you use an allocator that you
control. If you want to analyse the built-in C or C++ heap you must first
find out how it works.
Recalling the earlier section about how objects are stored in memory, a
very interesting analysis is to examine the first word of every block. This

gives us a picture of what is going on in our block. Below is a real (but
slightly contrived) example, where FDFDFDFD is the memory block guard,
AA is the allocate fill value, and DD is the delete fill value.
 Heap at 0D3B003C:
 Data Size Count

 00391E90 C 27760(1)
 00391EC0 C 1236(2)
 00391EA8 C 502(3)
 003C2FC0 1C 176(4)
 FDFDFDFD 0 54(5)
 42537472 14 2(6)
 ...
 AAFDFDFD 1 1(7)
 ...
 AAAAAAAA 20 1(8)
 ...
 00FDFDFD 1 1(9)
 ...

1. A lot of 00391E90’s. If we look back to the virtual function call
example above, we’ll see that this is 0x8 into the vtable for
MoreDerivedThing, so we have 27760 instances of this object.

2. By the same analysis, 1236 instances of Thing.
3. And 502 DerivedThings.
4. 176 instances of some other class, whose vtable is near 003C2FC0.
5. Why are we allocating 54 arrays of size 0? Something to investigate.
6. Looks like ASCII, or some other data: its certainly not an object

because interpreting that word as an address results in an area of
memory that is not the program (i.e. it is not within the linker .text
section).

7. A chunk of data, of size 1, that’s been allocated but not used yet. We
can see one byte of AA (allocated marker) and 3 of the 4 bytes of the
trailing guard area (FDFDFD).

8. The first word of a chunk of data, size 0x20, that hasn’t been written
to yet.

9. Very probably a zero length string: 1 byte has been requested, and
already set to 0, the string terminator. Worth investigating why the
application is asking for 0 length strings.

Diagnostic library
This set of diagnostic tools can be gathered together into a library allowing
it to be selectively linked (or dynamically loaded) with the application only
when needed. This avoids the performance impact of some techniques (the
block allocator in particular), but means the ability to diagnose problems
is a conscious decision. With unrepeatable faults it may be too late.

Examples
This section shows a number of real world examples. They are typical
failure scenarios, and all have been automatically caught by one of the
techniques described here. Each example shows the output from my own
MMU exception handler. All five of the CPU’s exception registers are
dumped just in case, but SRR0 (Save/Restore Register) and DEAR (Data
Exception Address Register) are usually the only two that are directly
relevant. In later examples only the important lines are shown.

Accessing deleted data
 >>> Unhandled Data Storage IRQ <<<
 >>> current task: 'PrxS_1', time: 2010 JUN 17
 17:54:15 <<<

 SRR0 : 0010F9FC <- likely instruction which
 caused the problem
 SRR1 : 00028000
 CSRR0 : 00029EB4
 CSRR1 : 00000000
 DEAR : DDDDDDDD <- data exception address

Here we can see that the instruction at 0010F9FC attempted to read or
write data at address DDDDDDDD (our fill value for deleted memory). The
26 | Overload | August 2010

FEATUREMATTHEW JONES
data address has not been modified, so this is probably a pointer to data,
not an object.
 >>> Unhandled Data Storage IRQ <<<
 SRR0 : 002BDF08
 DEAR : DDDDDDE1

In this variation the data address is DDDDDDDD + 4, so we are probably
looking at code that is indexing from a deleted data or object pointer.
Examination of the assembly code at 002BDF08 would confirm this.

Corrupt pointer
 >>> Unhandled Data Storage IRQ <<<
 SRR0 : 00381154
 DEAR : 4E495077

This shows what is effectively a random data address, but one that luckily
was invalid, causing an MMU exception. We would suspect a pointer that
has been scribbled over by other data. We can look at the code at address
00381154 and work out which pointer, and what it was trying to do.

Null pointer read
 >>> Unhandled Data Storage IRQ <<<
 SRR0 : 0035312C
 DEAR : BAD00030

Here we can see that the fill value for the zero page (BAD00000) has
caused the null pointer to indirect to an invalid address, and 0x30 was
added to the pointer before indirection.

Null pointer write
 >>> Unhandled Data Storage IRQ <<<
 SRR0 : 00018D58
 DEAR : 00000000

In this example a null pointer was written to. In fact the bug was that
memcpy() had been passed a null pointer. So the tell-tale values at address
0 were never read: the code simply tried to write to address 0, triggering
an MMU exception.

Corrupt function pointer
 >>> Unhandled Instruction Storage IRQ <<<
 SRR0 : 08E12C40
 DEAR : 0E0C0E8F

Note that the exception type is instruction, not data. This is evidence of an
invalid function pointer, which was still pointing to valid memory, just not
to a section of code. The instruction address that the CPU attempted to read
was in an MMU page that was not marked as executable. This immediately
triggered an instruction storage exception.

Bad pointer leading to an illegal instruction
 >>> Unhandled Program IRQ <<<
 SRR0 : 00BAD000
 DEAR : 7D35CF83
 *(SRR0): FFFFFFFF

Again, note the different exception type. This exception is triggered by an
illegal instruction, in this case FFFFFFFF. The tell-tale value in SRR0
looks like it came from the zero page, but is not correctly aligned. This
implies some bad pointer manipulation, possibly unchecked C style
casting in the code. An invalid function pointer has been created somehow,
which itself was a valid address, but pointing to program memory that did
not contain valid code.

Corrupt memory block
This example shows how operator delete() can be used to check the
integrity of every returned block. The diagnostic output dumps the head
and tail of the block for immediate analysis. We ca n see that the block
size was 0xBC, and when we look for the guard block at this offset, we
find 30FDFDFD rather than FDFDFDFD. Therefore the code has written off

the end of the block. Due to blocks being allocated on word boundaries,
this error would not normally have been found.
 >>> AllocateError(): Delete() failed due to heap
 corruption. Allocator = Block5, param = 161B1FAC
 <<<

 161B1FA0 0DB01F4C 000000BC FDFDFDFD 47432110
 161B1FB0 0001F0B5 4C612C20 4C612C20 4C612C20
 161B1FC0 4C612C20 4C612C20 4C612C20 4C612C20
 ...
 161B2050 4C612C20 4C612C20 4C612C20 4C612C20
 161B2060 32333435 36373839 30FDFDFD DDDDDDDD
 161B2070 DDDDDDDD DDDDFDFD FDFD0000 00000000
 161B2080 00000000 00000000 00000000 00000000

It is interesting to note that the line starting at 161B2070 shows
archaeological evidence of an earlier use of the block: we can see another
terminating guard block that was not corrupted, and the deleted block fill
value, 0xDD.

Conclusion
The overriding theme of this article is to take control of as much of your
UB as your system allows. If ‘U’ is replaced by ‘D(efined)’, the ‘magic
stuff’ under the bonnet can be tamed and turned to your advantage.
With careful preparation of your memory map you can force the run time
system to tell you more about crashes than it normally would. If you can
control the MMU (or equivalent), you can force access errors to be flagged
rather than hidden. Subtle problems which might go unnoticed can be made
to fail fast, and crashes can even diagnose themselves.
By taking control of, and instrumenting, memory allocation, you can
prepare yourself for a number of failure scenarios, and provide very useful
run time analysis of memory usage and leaks.
Know your enemy (memory contents) and, like a good boy scout, be
prepared.
This article is a summary of personal experience: I have used nearly every
technique that I describe. It is my toolbox. It is not a survey of the state of
the art. If you have comments or better techniques, please get in touch, start
a discussion on accu-general, or better still, write a follow-up article.

Acknowledgements
Thanks to my colleagues (myself included) for producing a selection of
interesting bugs which lead to the development of these techniques.
Thanks also to Ric ‘Overlord’ Parkin for considerable editorial help.

References
[C++] C++ standard: ISO/IEC (2003). ISO/IEC 14882:2003(E):

Programming Languages – C++
[Fowler] http://www.martinfowler.com/ieeeSoftware/failFast.pdf
[gcc] http://gcc.gnu.org/
[Henney] Kevlin Henney, ACCU general:

http://lists.accu.org/mailman/private/accu-general/2010-
June/021847.html

[MSDN1] http://msdn.microsoft.com/en-us/library/Aa260966 (table 1)
[MSDN2] http://msdn.microsoft.com/en-

us/library/e5ewb1h3%28VS.80%29.aspx
[Wikipedia1] http://en.wikipedia.org/
[Wikipedia2] http://en.wikipedia.org/wiki/Crash_%28computing%29
[Wikipedia3] http://en.wikipedia.org/wiki/GPF
[Wikipedia4] http://en.wikipedia.org/wiki/BSoD
[Wikipedia5] http://en.wikipedia.org/wiki/Zero_page
August 2010 | Overload | 27

http://msdn.microsoft.com/en-us/library/Aa260966
http://msdn.microsoft.com/en-us/library/e5ewb1h3%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/e5ewb1h3%28VS.80%29.aspx
http://lists.accu.org/mailman/private/accu-general/2010-June/021847.html
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
http://gcc.gnu.org/
http://en.wikipedia.org/
http://en.wikipedia.org/wiki/Crash_%28computing%29
http://en.wikipedia.org/wiki/GPF
http://en.wikipedia.org/wiki/BSoD
http://en.wikipedia.org/wiki/Zero_page

FEATURE MATTHEW WILSON
Quality Matters: The Worst Form of
‘Error’ Handling Except For All The Others
Dealing with errors is a vital part of good programming.
Matthew Wilson specifies a taxonomy.
he next two instalments of Quality Matters document another
deconstructionist taxonomic journey into the essence of software
development, the subject being exception handling. Along the way

I consider arguments from both sides of the exception debate – those that
think they’re a curse, and those that think they’re a godsend – and come
to the not-entirely-unpredictable conclusion that exceptions are a curse and
a godsend. To paraphrase Winston Churchill, exceptions are the worst
form of ‘error’ handling, except for all the others.
I shall postulate that much of what is seen as wrong with exceptions arises
from them being used for things for which they’re unsuitable, albeit some
of these misuses are necessary given the syntactic limitations imposed by
some languages. I identify four types of actions/circumstances in which
exceptions are used, suggest that only two of these are appropriate, and
argue that we could all get a little more godsend and a little less curse if
programmers, particularly language and library designers, would be more
circumspect in their application of what is a very big hammer.
I consider some effects of exceptions on the intrinsic characteristics of
s o f t w a r e q ua l i t y , i n p a r t i cu l a r w i t h r e s p ec t t o
correctness/robustness/reliability [QM-2], and discoverability and
transparency [QM-1]. I’ll consider how exceptions affect other aspects –
the (removable) diagnostic measures and applied assurance measures – in
later instalments.
As by-products of this latest expedition into nomenclatural contrarianism,
I rant lyrical about the abject mess that is .NET’s near-unworkable
definition and classification of exceptions, lament quizzical about
Python’s iterable mechanism, and wax nostalgic for the simplicity of C’s
(near) total absence of hidden flow-control mechanisms. I also have a go
at the logical contradiction of C++’s logic_error exceptions, and,
surprisingly – most surprising to me! – largely change my mind about
Java’s checked exceptions.

Introduction
Having dedicated all my scripting language attention to Ruby over the last
five years, I’m currently refreshing my Python knowledge. I’m reading a
nice book on Python 3, by an accomplished Python expert, published by
a quality publisher. I’m not naming it, however, since I’m going to be
criticising specific aspects of the book, rather than providing a proper
review, and I don’t want to negatively affect the sales of what is otherwise
a good book. (It’s blessed with a breadth and concision I’ve never achieved
in any of my books so far!) Furthermore, some of the criticisms are of the
language, rather than the book’s examples or philosophy.
The problems I’m having with the book’s content, and with Python itself,
include:

the use of subscript-out-of-range exceptions as a ‘convenient’ way
of avoiding an explicit bounds check when accessing
sys.argv[1] (see Listing 1, which is a much-simplified Python 2
equivalent)
the use of exceptions for ‘regular’ flow-control, e.g. synthesising
three-level break semantics (in a case where a worker function
would have been simpler and clearer)
that iterators indicate (to the Python runtime) that they are complete
by throwing an instance of StopIteration.

There’s actually nothing unequivocally wrong per se with the program in
Listing 1. But I would never write code like that. (It may be that the author
was being pedagogical and would never write code like that either, but
that’s not indicated in the text, so I am compelled to take him at face value
as advocating this coding style.)
The code relies on IndexError being thrown if the user fails to specify
a command-line argument, whereby sys.argv contains only the program
name. I have two problems with this. First, such a situation could hardly
be called an exceptional condition. It’s not only anticipated, it’s
overwhelmingly likely to happen many times in the lifetime of such a
program. Handling it as an exception at once muddies the waters from truly
exceptional conditions (such as failing to be able to create a file), and also
moves the handling of such an eventuality far away, in terms of the logical
flow of a program, from where it is to be detected and, in my opinion,
should be handled.
In a larger program, this would mean a large amount of code between the
access(es) of sys.argv and the requisite catch clause. That would not
be transparent, and would be very fragile to maintenance change. In a non-
trivial program, you might imagine, as would I, that there would be many
causes to issue a USAGE message. In which case, one would be likely to
implement a separate consolidating usage() function (which may also
call exit()). In such a case, it’s hard to argue that catching IndexError
is preferable to simply testing len(sys.argv).
The second issue is of much more moment. Exceptions such as
IndexError are (if not wholly, then at least in part) used to detect
mistakes on the part of the programmer. Coupled with the fact that almost
any non-trivial program will contain multiple array indexed accesses,
interpreting all IndexErrors to mean that the user has forgotten their
command-line arguments is drawing a very long bow. (Strangely, the full
example in the book does indeed contain multiple array accesses!)

T

Figure 1

import sys
try:
 n = sys.argv[1]
 y = int(n)
except IndexError:
 print 'USAGE: Listing1.py <number>'
except ValueError, x:
 print x, "in", n

Matthew Wilson is a software development consultant and
trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of
articles and books that attempt to do the same. He can be
contacted at matthew@synesis.com.au
28 | Overload | August 2010

FEATUREMATTHEW WILSON

I suggest that we need a new vocabulary,
and am (humbly?) proposing one here
If, as I hope, you agree that even this small example reveals, and is
representative of, a troubling misapprehension as to the use of exceptions
in programming, read on. If you don’t, well, read on anyway, as I plan to
change your mind.
In this instalment (and all subsequent instalments), I will be eschewing the
use of ‘error’. It is a term, like ‘bug’, that has been overloaded to the point
of being more hindrance than help for discussing software behaviour.
(There is a useful definition that will be introduced when we discuss
contract programming, but it’s probably not the one that tallies with most
programmers’ understanding. Until that time, any use of the term ‘error’
will be presented in quotes as a reminder that it’s vague, unspecific, and
largely unhelpful.)

Groundwork
In my own work I’ve experienced more than one bout of doubt about
exceptions. In the next instalment, I’ll describe three concrete cases to act
as material for the discussion. Before that, though, I need to establish new
terminology to deal with our ‘error’ issue. And before that, I’m going to
establish some stereotypical positions that one encounters – some more
than others – in the wider development community. And before that …
nope; just kidding.

Execution states and actions
Every program has a purpose. Much of the intention and, usually, much
of the programming effort is spent to define the program to achieve that
purpose. It is reasonable to say that the purpose should accord with the
intentions, and the expectations, of its users.
Consider the following four use scenarios of a word-processing program.
Scenario A: A user kicks off an instance of the program – the process –
and waits for it to be loaded by the operating environment. Once it’s loaded
and ready to use, he/she writes some text, formatting as necessary until a
point at which he/she decides to save or discard the work. We’ll assume
the choice is to save. The save is successful. The user closes the process.
All that was intended to be done has been achieved. All is right with the
world.
Scenario B: When the user elects to save the file-system rejects their
request, due to perfectly reasonable causes: the disk is full, or they do not
have the requisite permissions, or the network is down, and so on. What
should the process do? Presumably we would like it to detect that the file
cannot be written and take some action, rather than giving the tacit
impression that all that was intended to be done has been achieved when
that is not the case. That action might be to clear out any temporary files
it was using to cache information, and retry. Alternatively, it might be to
open a modal dialog and request that the user attempts to save to a different
location. Either way, the process is not performing the program’s main
purpose, but it is reacting to anticipated non-main conditions in a planned
fashion, in an attempt to get back to performing its main purpose.

Question 1: Does the inability to save the file constitute an ‘error’?
Scenario C: Consider next that the user was able to save the document,
but that in doing so it filled all but a few hundred kilobytes of the only disk
available on the system. Assume that each instance of the program needs
several megabytes of working storage available on disk to fulfil its undo,
background-printing and other ‘neat’ features. The next time the user
invokes a new process, which now finds itself unable to allocate the
requisite disk space, what should it do? Presumably, we would like it to
detect the condition and its cause, and inform the user of both, since he/she
may/should be in a position to amend the situation, something that the
process cannot be expected to do. It would be unsatisfactory to have the
process silently fail, as the user would be left clicking new instances into
life until the end of time (or at least until the end of his/her rag). It would
also be unsatisfactory to have the process kick into seemingly good life,
only to fail to save (in any form, anywhere) the user’s work.

Question 2: Does the inability to allocate the working storage constitute
an ‘error’?

Scenario D: Consider, finally, that the program’s author(s) failed to
anticipate a certain condition, such as the user specifying a negative font
size, whereupon the process’s stack becomes corrupted, the process
embarks on ‘undefined behaviour’, and the execution ends up who-knows-
where (including, potentially, the document’s disk file being overwritten
with garbage and all work being lost).

Question 3: Does the failure to anticipate the negative font, and the
consequent undefined behaviour, crash, and loss of work constitute an
‘error’?

In this instalment I’m actually not interested in which, if any, of the three
questions gets a Yes. We’ll deal with that in a later instalment. (For the
record, it’s Question 3.) What I hope the distinct natures of the three
questions illustrate is that answering Yes to any more than one of them –
as many programmers would if asked each in isolation – does not make
sense. Only one of them can get a Yes. And that’s why the term ‘error’ is
so problematic.
Additionally, we have a problem with describing the four types of
behaviour of the program. There’s the main-purpose bit, the can’t-save-
but-specify-another-place-and-carry-on-working bit, the can’t-start-up
bit, and the undefined-behaviour bit.

A new vocabulary
I suggest that we need a new vocabulary, and am (humbly?) proposing one
here. With some help from the folks on the ACCU general mailing list, I
propose the following precisely-defined terms: contingent; defective;
faulted; normative ; non-normative; recoverable; practically-
August 2010 | Overload | 29

FEATURE MATTHEW WILSON

once a process has entered the realm of
undefined behaviour, there’s no way to
get home
unrecoverable. Each is derived in the following series of reductions, and
the relationships are illustrated in the state diagram shown in Figure 1.
Normative behaviour is the main business of any piece of software, its
raison d'être, represented in Figure 1 by the transition from the Normative
state to Normative state, via the normative action. Excepting the transitions
from Starting and to Stopped, everything in scenario A is encapsulated
within that single state and transition.
Rather obviously, everything that is not normative is non-normative. To
properly understand non-normative action, and to use exceptions
appropriately in accordance, we need two further reductions, delineating
on the criteria of recoverability and defectiveness. All the reductions are
shown in Table 1.
The difference between scenario A and the others is that, in scenarios B,
C, and D the user encountered a non-normative condition, one that is not

a (desired) part of the functionality that is the main-business of the
program.
Certainly, if systems could be created in which the saving of a file could
never fail, or file-systems were perfectly reliable and had infinite storage
capacity, that would be great. But since such things are impossible in
practice, it’s necessary to deal with contingencies (where possible).
Experiencing such conditions is an inevitable part of just about every
process, so the detection and handling of them is a vitally important part
of software development.
The difference between scenarios B and C is that, in scenario B, the non-
normative action could be handled in a way – for example, the user may
select a different disk, or may delete some unwanted files to make space
– that allowed the process to return to normative behaviour. In scenario C,
it was not possible to achieve normative behaviour, and the process could
not (be allowed to) continue.
I suggest that non-normative conditions that are recoverable (i.e. from
which it is possible to get back to normative conditions) and the actions
(such as opening a dialog, or deleting some temporary storage) that allow
such recovery be termed recoverable. In Figure 1, this is represented by
the transitions between the Normative and Contingent (Recoverable)
states.
That just leaves us with discriminating between the behaviour of scenarios
C and D, for which we need to consider the notion of defectiveness. As
you will remember from part 2 [QM-2], an executing software entity can
exist in three states: correct, defective, unknown. If a software entity
exhibits behaviour that contradicts its design, then it makes the transition
from correct or unknown to defective. What’s not yet been established (but
will be in a forthcoming instalment) is that the transition to defective is a
one-way trip, according to the principle of irrecoverability:

The principle of irrecoverability states: It is not possible for a
software system to operate in accordance with its design if any
component part of that system has violated its design.

Sticking with terminology that C/C++ programmers like, once a process
has entered the realm of undefined behaviour, there’s no way to get home.
In Figure 1, this is evinced by only solid arrows leading into the Faulted
state. The only arrows to emerge from the Faulted state, whence there’s
no guarantee of anything at all, not even of an eventual exit, are denoted
by being dashed. I expect most of you, gentle readers, will have pertinent
experiences as users and as programmers that attest to this uncertainty.

Figure 1

Condition Normative Defective Recoverable Designed

normative (A) Yes –

contingent recoverable (B) No Yes Yes

practically-unrecoverable (C) No
No

faulted (D) Yes No

Table 1
30 | Overload | August 2010

FEATUREMATTHEW WILSON

the failure to achieve a useful outcome is a
result of the state of the operating environment
So, the crucial difference between the behaviour of scenarios C and D is
not in terms of what the user is able to achieve with the process. In both
cases the user cannot achieve anything useful with the process. (Or at least,
we must hope that’s true, since D can do anything, which could include
appearing to behave in correct manner while silently deleting all the files
on your system.) Rather, the difference is in what causes the unusability
of the process.
In scenario C, this is caused by a runtime condition that can be experienced
by a program operating in accordance with its design. In such cases, the
failure to achieve a useful outcome is a result of the state of the operating
environment, itself operating according to its design. There does not have
to be anything wrong with either program or operating environment, it’s
merely a practical issue resulting from the confluence of their respective
states and behaviours. After long, but ultimately fruitless, search for a
better term, I suggest that this kind of non-normative condition be termed
practically-unrecoverable. (I wanted to use the term fatal, but I fear it too
has been associated with an ambiguous cloud of meanings pertaining to
things stopping for a variety reasons, including faults. In any case, the
chosen term reinforces the fact that it’s a practical matter, usually involving
a balance between exhaustion of finite resources and the amount of
development effort to work around the finitude.)
It will be useful to refer to recoverable and practically-unrecoverable
collectively. Since both involve contingent action (even if some of that is
provided by the language runtime), I suggest the term contingent.
By contrast to scenario C, the unusability in scenario D arises from
mistake(s) on the part of the software’s author(s), either in the design, or
in the reification of that design in the coding process. Since software does
exactly what it’s been programmed to do, if it’s been programmed wrong,
it is wrong. As I’ve already mentioned, I’ll be dealing with the issue of
software contracts, design violations, undefined behaviour, and so forth in
a future instalment. For now, I’ll restrict myself to simply defining the state
of being defective as faulted. Whilst it’s possibly easier to say/read, I
rejected the term defective because it already has a meaning, and because
it’s possible for a process to be defective but never fault, if the defective
part does not affect a given execution (in which case one might never know
that it’s defective).
I want to stress the point that in both recoverable and practically-
unrecoverable execution, the program is reacting to conditions that have
been anticipated in the design. The better the anticipation, and the more
detailed and sophisticated the response, the higher the quality of the
software when viewed from the perspective of the user-in-an-emergency.
It is vital to recognise the significant point is not that such
anticipation/response should be made, but that it can be made. Both
recoverable and practically-unrecoverable conditions can be anticipated.
It’s almost a tautology that for a condition to be recoverable, it must have
been anticipated. But the anticipation does not have to be precise. In
scenario B, it’s possible to handle the general case of fail-to-save and use
the associated information provided with the condition by the software
component asked to perform the file operation, so long as appropriate

information is provided. (This is where exceptions can have a significant
advantage over return codes, if used well.)
In some cases where the condition has not been explicitly anticipated by
the programmer, the language runtime may do that on his/her behalf. An
obvious example is C++’s new operator throwing bad_alloc if it cannot
fulfil the allocation request, which, if not caught, results in terminate()
begin invoked, which causes the process to be terminated. Thus, the set of
practically-unrecoverable conditions can comprise those that have been
anticipated by the programmer of the software as well as those that have
been anticipated by the language/library designer.
By contrast, conditions (marked ‘fault’ in Figure 1) which lead to the
faulted state are those that do not constitute part of, and in fact contravene,
the design. To hammer the point home I’ve denoted it in the
‘Designed’column in Table 1.

Whose concern(s)?
Normative behaviour is exhibited when your program encounters
circumstances which your requirements and design designated as usual.
Non-normative behaviour is exhibited when your program encounters
circumstances which your requirements and design designated as unusual
(or for which the requirements and design failed to account).
For obvious reasons, normative behaviour attracts the most focus. It is the
prime concern of users, as is proper. It’s also the major concern of project
managers, requirements gatherers, business analysts, architects, and
programmers, albeit that is a little less proper. When these disparate souls
who band together to produce the software concern themselves
exclusively, or even disproportionately, with normative behaviour,
however, it’s quite improper.
Non-normative actions, like insurance policies, the police, and a healthy
immune system, are of little interest to most users until they find
themselves in need of them. When they are needed, however, their worth
multiplies enormously. (Philosophically speaking, this is one of the major
causes of failure in software projects, though that’s outside the scope of
this instalment. I think it also explains what’s wrong with democracy, but
I’m way outside my remit here …)
It is often the case that the judgement of the quality of a software product
is disproportionately biased in favour of how well it deals with non-
normative situations. (The reason I love FireFox so much is that, when it
crashes – which it does a fair bit, though usually only when a certain Jobs’-
vilified multimedia plug-in is getting a time slice – it knows the exact state
of every tab in every window – and I have lots of tabs in lots of windows!
– and restores them faithfully when next invoked.) Consequently, when
viewed from the perspective of the programmer, the non-normative actions
are very important indeed. In some senses, they’re more important than
the normative. But just as they are important, so they are also not well
understood, nor well discriminated, particularly when it comes to the
application of exceptions. Addressing this situation is the main thesis of
these instalments.
August 2010 | Overload | 31

FEATURE MATTHEW WILSON
Exception use stereotypes
Before we start looking at code, or picking at any particular
language/library scabs, let’s set the scene by stipulating some exception
use stereotypes.
The exceptions-are-evil faction holds that exceptions are merely a slight,
and inadequate, step-up from using goto for the handling of non-normative
behaviour. One of the group’s most famous members is Joel Spolsky, who
(in)famously declared his colours in [SPOLSKY]. Though he copped
cartloads of opprobrium – some suggesting he’d jumped the shark – for
having the guts to put on record what concerns many, Spolsky identified
two significant problems with the use of exceptions:

they are invisible in the source code
they create too many possible exit points

In my opinion, the two problems indicated amount to the same thing:
exceptions break code locality. One of the attractions of C programming
[C^C++] is that, absent any use of longjmp() or any capricious use of
fork() or exit()/_Exit()/abort()/raise(), it’s possible to look
at a sample of C code and understand its flow and, within the limitations
of the given level of abstraction, its semantics for both normative and non-
normative execution. Such is not the case in C++, C#, D, Java, Python,
Ruby, or any of the other host of languages that rely on exceptions. When
looking at code in such languages that is implemented in terms of other
components, it is often difficult, even impossible, to understand the flow
of control. This is a substantial detraction from transparency.
For my part, there is another important problem with the use of exceptions,
which tends to get overlooked by most commentary:

exceptions are quenchable
Regardless of the importance of a given exception, it is possible for any
part of the calling code to catch it (and not rethrow it), thereby quenching
what might have been a vital reporting of an unrecoverable condition. (The
o n ly ex ce p t io n o f wh i ch I ’m awa re i s .NET ’s
ThreadAbortException.)
Spolsky’s policy for exceptions is:

never throw an exception
catch every possible exception that might be thrown by a component
in the immediate client code and deal with it

As with his objections to the use of exceptions, this policy contains some
valuable nuggets of useful thought encapsulated within a horrifyingly-
simplistic whole.
The exceptions-for-exceptional-conditions faction (as espoused in
Kernighan and Pike’s excellent The Practice of Programming [TPoP])
holds that exceptions should be used to indicate exceptional conditions
(that fall within its design). In our terminology, this means that they should
be used to indicate contingent conditions, but not for normative action.
The exceptions-for-normative-execution faction simply uses exceptions
for any kind of programming they feel like. An example from the
aforementioned Python book does exactly this. In order to effect a three-
level break, a custom exception class is used.
The exceptions-for-fault-reporting faction holds that exceptions can be
used for reporting contract violations (in addition to the other purposes
already mentioned). Indeed, a number of languages and standard libraries
adhere to this, including those of the C++ (logic_error), and Java

(AssertionError) languages. Unfortunately, they are all wrong! Alas,
once again I’m trespassing on the forthcoming contract programming
instalment and trying your patience by teasing you with a controversial
assertion without accompanying argument, but it can’t be helped for now,
as I’m running out of space and off the point.
The exceptions-are-broken faction don’t trust their compiler to do the
right thing when exceptions are thrown. Sometimes, they have a point.
The exceptions-are-slow faction can’t use exceptions, due to performance
(time and/or space) reasons, on real-time and/or embedded systems. They
may be influenced in their views by the costs associated with the wholesale
use of exceptions by the exceptions-for-normative-execution faction.
And the exceptions-won’t-clean-up-after-me faction, populated by folks
who don’t know the techniques, like RAII, that can manage their resources
expressively, with exception-safety, and make their code clearer.
Naturally enough, none of these positions is unalloyed wisdom, but that’s
enough groundwork. In the next instalment, I’ll attempt to put flesh on the
bones of the taxonomy, establish evidence for the recommendations I’m
going to make, and illustrate the problems with each of the stereotypes, by
discussing three of my own projects’ exceptional issues.

What are exceptions?
All of the foregoing might have you wondering exactly what is an
exception. (It did me.) Here's my parting thought on which you may
cogitate until we meet again:

Exceptions: Exceptions are not an ‘error’-handling mechanism.
They are an execution flow-control mechanism.

We can say this because:
the term ‘error’, if meaningful at all, does not represent the things for
which exceptions are predominantly used under the nebulous
umbrella of ‘error-handling’
it’s possible, even if it’s not wise, to use exceptions for flow-control
of normative execution, something that no-one could ever claim to
be ‘error’

In this regard, exceptions are the same as returning status codes. Just a little
less ignorable.

Acknowledgements
I’d like to thank Ric Parkin, the Overload editor, for his customary patience
in the face of my chronic lateness and for small-but-essential suggestions
of improvement, and my friends and, on occasion, righteously-skeptical
review panel resident experts, Garth Lancaster and Chris Oldwood.

References
[C^C++] ‘!(C ^ C++)’, Matthew Wilson, CVu, November 2008
[QM-1] ‘Quality Matters: Introductions and Nomenclature’, Matthew

Wilson, Overload 92, August 2009
[QM-2] ‘Quality Matters: Correctness, Robustness, and Reliability’,

Matthew Wilson, Overload 93, October 2009
[SPOLSKY] http://www.joelonsoftware.com/items/2003/10/13.html
[TPoP] The Practice of Programming, Kernighan and Pike, Addison-

Wesley
32 | Overload | August 2010

http://www.joelonsoftware.com/items/2003/10/13.html

C

M

Y

CM

MY

CY

CMY

K

ad.pdf 1 16/07/2010 15:21:41ad.pdf 1 16/07/2010 15:21:41

	A Little Learning Is A Dangerous Thing
	“I’m a Business Analyst - Get Me Out Of Here”
	The Model Student: The ACCU 2010 Crypto Challenge
	Renovating a Legacy C++ Project
	Single-Threading: Back to the Future? (Part 2)
	Debugging Run Time Memory Problems
	Quality Matters: The Worst Form of ‘Error’ Handling Except For All The Others

