

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Move with the Times
Alan Griffiths considers the role of the ACCU, and its
future.

6 The Eternal Battle Against Redundancies, Part I
Christoph Knabe sees how it has influenced
programming languages.

11 From the Age of Power to the Age of Magic and
beyond...
Sergey Ignatchenko takes a historical perspective on
dominant societies.

14 RAII is not Garbage
Paul Grenyer compares RAII to garbage collection.

16 Why Polynomial Approximation Won't Cure Your
Calculus Blues
Richard Harris tries another approach to numerical
computing.

25 Concurrent Programming with Go
Mark Summerfield introduces some of the concurrent
programming approaches in a new language.

OVERLOAD 106

December 2011

ISSN 1354-3172

Editor

Ric Parkin
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simon.sebright@ubs.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 107 should be submitted
by 1st January 2012 and for
Overload 108 by 1st March 2012.

EDITORIAL RIC PARKIN
Patently Ridiculous!
Software patents have a chequered history.
Ric Parkin looks at some of the problems.
Anyone who has followed the technical news over the
last decade or so will have surely have thought that the
whole area of software patents is fraught with
difficulty, and has led to some cases of sheer
absurdity. But is it just me or have things become
worse in the last year or so, with news of lots of legal

spats over supposed patent infringing?
Disclaimer: as with any legal issues, this whole area is a minefield and
should be treated with extreme caution. I’ve checked things as well as I
can but there are bound to be mistakes, misinterpretations, and subjective
opinions. If you want proper advice, be prepared to pay for an expert!

What is a patent?
It consists of a set of exclusive rights granted by a sovereign state
to an inventor or their assignee for a limited period of time in
exchange for the public disclosure of an invention. [Patent]

Let’s examine the important parts
exclusive rights
Exclusivity is important – no one else will have these rights. What
these rights are will vary between jurisdictions, but the basic idea
will be that no one else can use the invention without your
permission.
granted by a sovereign state
This is really so that there is some legal framework. In particular,
this means the legal system will back you up if someone steals your
idea or violates some of the rights granted. Note though that this is
limited to a particular legal framework – unless there’s agreement
between different systems, there may well be places that do not
recognise these rights.
an inventor or their assignee
You can keep these right to yourself, or transfer them, perhaps by
licensing or selling outright. Who the ‘inventor’ is depends – I
expect that in the software industry most employment contracts will
have a section saying that anything you invent belongs to the
company. Some even try to include anything you do outside of your
work, although I’m not sure how enforceable that is. There is some
variation about who the ‘inventor’ can actually be – some
jurisdictions say that whoever had the idea first is entitled to the
patent, which is why it is a good idea to document your engineering
ideas as much as possible, so it can be used to back up a claim.

However, others go with the first person to
apply for the patent, which could in fact lead

to an unpatented idea being patented later
by someone else, resulting in the original
inventor infringing the patent!

limited time
These rights are yours, but it is not open ended. What is a suitable
timescale is debatable, however.
in exchange for the public disclosure
This is the quid pro quo for the granting of the rights – once you’ve
reaped your reward from your idea, it is in the public domain and
can now be used by anyone.
of an invention
You have to invent something. So it has to be new and never done
before, right? Unfortunately this seems to be the most awkward
area. Some definitions use phrases like ‘novel’, ‘non-obvious’ or
‘inventive’ to define an invention worthy of such rights. There are
also other ideas, such as checking against ‘prior art’, which roughly
means if an idea can be shown to have existed before, and is perhaps
widely used already, then you cannot patent it. There’s also
variation in how rigorously these checks are performed – some
places do a proper search for pre-existing patents and prior art,
others do much less and assume a legal challenge will be made if
there’s a dispute. There’s also the subtle issue of whether the
subject matter is patentable – many restrict it to a physical
implementation and exclude abstract ideas, algorithms, and
software. But this varies wildly, and is still in flux [SubjectMatter].

So why do patents exist? What purpose do they serve?
From the point of view of the inventor the important thing is that they
provide guaranteed ownership rights backed by the relevant legal
framework. This gives an incentive to actually try and invent things as you
can exclusively use your idea how you like – manufacture and sell it, or
license the right to do so, or just give it away – with the protection that
others can’t steal it. It also encourages you to tell people about it and get
it used as widely used as possible – perhaps in return for a fee each time
– rather than try and keep it secret so that only you can use it.
From the point of view of the wider society, it encourages people to invent
so you get more innovation. But also it encourages a faster and more open
spread of good ideas, especially if the inventor is not themselves in a
position to use their idea directly. And once the exclusivity expires, the
invention is now available for other to exploit, driving down the cost of
using it or allowing further uses and refinements.
To illustrate these aspects, consider the Chamberlen family of surgeons.
[Chamberlen]. Around 1634 or so, they invented the forceps, and
successfully used them to assist in difficult childbirths. Rather than
disseminate this discovery so it could be widely used, they kept it a
carefully guarded secret (to the extent that the mother would be
blindfolded) for approximately 150 years! While this allowed them to
have exclusive use of a lucrative invention, many more people’s lives
could have been saved if it had been more widely used. Lacking the

Ric Parkin has been programming professionally for around 20 years, mostly in C++, for a range of
companies from tiny startups to international corporations. Since joining ACCU in 2000, he’s left a trail
of new members behind him. He can be contacted at ric.parkin@gmail.com.
2 | Overload | December 2011

EDITORIALRIC PARKIN
protection of their idea, it made sense to keep it secret. If they’d had a
patent, it could have been licensed, manufactured and used widely, and
they’d have still profited from their idea.
Contrast this with the current system of drug patents. It is extremely
expensive to develop a new drug, mainly due to the huge effort involved
in research and testing, especially when you take into account the
amortized cost of the ones that fail. By allowing an exclusive patent for a
period that money can be recouped. And once the patent has expired,
generic copies can be made by others that drives the price down and
spreads usage, especially in poorer parts of the world. This isn’t perfect
by a long shot though – for example this gives incentives to develop drugs
for diseases that are relevant to the richer countries that can pay, rather than
develop cheap fixes for poorer countries where there would be less profit.
But despite such flaws the basic idea of the patent does seem to work to
at least some degree.

Software patents
So how do these ideas map work in the world of software? The main issue
is that people are still deciding what size is a suitable unit to be patented,
or even if it should be. One problem is what is actually patented? The old
restriction to the physical implementation doesn’t work, and even defining
a software implementation is difficult. Many software patents go for
patenting an algorithm, often for a particular purpose. This can be very
controversial though. It seems reasonable to me to be able to patent a
complex, truly novel algorithm with useful non-trivial applications. Two
examples quickly come to mind: complex encryption algorithms [RSA],
and Penrose Tiles [Penrose]. (This last is actually quite controversial if
you’re a Platonist, but you can argue that the possible applications are
indeed patentable.)
Poor examples abound however. There’s the notorious patent of using XOR
to add and remove a screen cursor [XOR], but while researching I found
one that is quite frankly amazing. I’ll quote the entire abstract:

A computerized list is provided with auxiliary pointers for traversing
the list in different sequences. One or more auxiliary pointers enable
a fast, sequential traversal of the list with a minimum of
computational time. Such lists may be used in any application where
lists may be reordered for various purposes.

Sound familiar? The simplest implementation I can think of that this patent
covers is std::list.
I hope the claimant submitted this either to show how bad the system is,
or perhaps as a ‘White Knight’ to prevent anyone else getting the patent
and trying to charge for it. Can you actually believe this was granted in
April 2006! [Wang]
Unfortunately sorting out this mess can be very expensive. Take for
example the JPEG format. [JPEG]. Lots of fees were paid, and lots of
costly legal cases, and it’s not really clear if anyone actually owned suitable
patents.
And we seem to be in a period of particularly many loud and high-profile
cases as major companies sue and counter-sue, especially over patents
relating to smartphones and tablets. There are many examples, such as
[Groklaw] and [Galaxy], and given the potential market and the spare
money these companies have, I can’t see it getting better any time soon.

Release cycles
Some of you might actually wonder what happens to produce an issue of
Overload, and what the editor actually does. There are three main parts.

Part 1: getting articles
This is more of a rolling effort, as people submit articles every now and
again or ask for feedback on an idea or early draft. As the new submission
deadline approaches you get an idea of how much material you have, and
perhaps ask around for more articles, or hunt interesting blog entries that

can be turned into material. Sometimes a few emails to chase up promises
are needed. I add all articles to a GoogleDocs spreadsheet (so I can update
it from anywhere), tracking its status and any actions I need to do.

Part 2: reviewing the articles
This tends to happen after the ‘new submission’ deadline has passed. It
consists of about three weeks of to-and-froing reading the articles, passing
new versions to reviewers, and returning feedback to the authors.
Sometimes an article is pretty much ready to be published, perhaps some
rewriting is needed (usually to expand on an important point), and
occasionally a heavy edit is needed, perhaps to polish up the language of
a non-native speaker. Reviewing articles can be a bit of an effort, but the
review team can help out here. But most important here is to be prompt in
passing feedback and new versions. Finally, at this stage it’s also a good
idea to get the author biographies, and check that any graphics are suitable
for publication (we print at a quite high DPI and many graphics produced
onscreen tend to be a much lower resolution, so we need scalable vector
graphics or high resolution bitmaps).

Phase 3: produce the magazine
Once the articles are ready, I zip them all up and send to our production
editor. She does the magic of typesetting and laying out everything, and
also casts a watchful eye for typos and odd sentences (it’s amazing how
many things you overlook because you’ve read an article multiple times,
and seeing fresh in a new form can really expose flaws you’d missed).
There tends to be a week where I hear little as the bulk of the work happens,
and then there’s a flurry of PDFs of the articles to proofread. This involves
lots of checking for typos, looking for odd code line-wraps, suggestions
for pull-quotes, straplines, and contents descriptions, and checking that
everything lines up nicely and looks good. Pete, who came up with the
graphic design style of the magazine, also helps with this, and in parallel
produces the cover so needs to know which articles are in. While this is
going on I also have to write the editorial – I should really start it earlier,
but always seem to find ways to put it off! Fortunately the layout is
relatively easy. A final proofread of the entire magazine, and it’s off to the
printers to be sent to the addresses provided by the membership secretary.
A couple of weeks of quiet, and the next cycle starts again.
I’ve been doing this for nearly 4 years now (actually just over if you include
an issue as guest editor as a try-out), and am thinking it’s time to start
looking for a new editor. It’s good fun, not too much effort if you’re
organised and prompt, you get to talk to many big
names in the industry, and you get some excellent
Kudos and lines for your CV. So if you’re interested or
curious for more information, drop me a line.

References
[Chamberlen] http://en.wikipedia.org/wiki/

Forceps_in_childbirth#History
[JPEG] http://en.wikipedia.org/wiki/JPEG#Patent_issues
[Galaxy] http://www.bbc.co.uk/news/business-15956275
[Groklaw] http://www.groklaw.net/

articlebasic.php?story=2011111122291296
[Patent] http://en.wikipedia.org/wiki/Patent
[Penrose] http://en.wikipedia.org/wiki/Penrose_tiling and US patent

4133152
[RSA] http://www.rsa.com/rsalabs/node.asp?id=2326
[SubjectMatter] http://en.wikipedia.org/wiki/Patentable_subject_matter
[Wang] US patent Number 7028023
[XOR] Claims 10 and 11 of US patent 4197590
December 2011 | Overload | 3

http://en.wikipedia.org/wiki/Forceps_in_childbirth#History
http://en.wikipedia.org/wiki/Forceps_in_childbirth#History
http://en.wikipedia.org/wiki/JPEG#Patent_issues
http://www.bbc.co.uk/news/business-15956275
http://www.groklaw.net/articlebasic.php?story=2011111122291296
http://www.groklaw.net/articlebasic.php?story=2011111122291296
http://en.wikipedia.org/wiki/Patent
http://en.wikipedia.org/wiki/Penrose_tiling and US patent 4133152
http://en.wikipedia.org/wiki/Penrose_tiling and US patent 4133152
http://www.rsa.com/rsalabs/node.asp?id=2326
http://en.wikipedia.org/wiki/Patentable_subject_matter

FEATURE ALAN GRIFFITHS
Moving with the Times
The ACCU is primarily a way for programmers
to communicate. Alan Griffiths looks at its
past, and speculates on its future.
first became aware of the ACCU a very long time ago: in those dark days
I didn’t even have a personal email address, the world-wide-web hadn’t
yet taken off, and the primary means of communicating technical

information was in print.

In a recent C Vu article Francis Glassborow has covered much of these
early days of ACCU – or the ‘C User Group (UK)’ as it was called at first.
I don’t want to repeat too much of that, but I need to set some context for
what I have to say. It is worth mentioning that in these early days the
association was primarily its journal C Vu – there was no website, no
Overload, and no conference. And C Vu survived only through the heroic
efforts of its editor (Francis). I got involved, initially by republishing
articles I’d written for internal consumption for my employer (with the
employer’s consent obviously).

Over the course of the 1990s the organisation grew. I can’t now remember
the order in which everything happened but fairly early on someone set up
a website and mailing lists (on a box left under a desk at a university). Our
membership got a boost when we absorbed the Borland C++ User Group
(which became the ‘C++ Special Interest Group’ and provided a second
journal: Overload). As the membership expanded, and existing members
moved into new technology the ‘C’ roots became diluted and the
‘Association of C and C++ Users’ was born. Towards the end of that
decade the spring conference got started, initially as a few talks and
exhibits to make the AGM a bit more of an outing. We even, briefly, had
an autumn conference too.

But Francis edited C Vu, managed printing of C Vu and Overload, handled
the review books, chaired meetings, and organised the conference. All this
thanks to Francis’s abundant energy. The only problem with this was that
even Francis could only do so much – and he was involved in nearly
everything the organisation did. There were a few individuals who helped
out: there was a someone handling the webserver and mailing lists, there
was a separate editor for Overload – there was even, briefly an
‘International Standards Development Fund’ newsletter. But everything
went through Francis – or it didn’t get done. Eventually, even Francis
reached a limit and the effect of this could be seen in the membership
numbers: they stopped rising.

By the end of the 20th century the ACCU was doing as much as Francis
could cope with (and his wife was begging people to take some of the load
off his shoulders). When Francis announced he’d stand down I thought
‘good – someone can reorganize things so that we don’t burn one guy out’.

I little thought that it would be me – until the AGM; when the election came
and it became apparent that there was no candidate for Chair.

Something needed to be done and I took on the challenge. There was no
way I was going to try to do everything, or be involved in everything. I
chose to delegate. The next few years were spent building some teams to
handle aspects of the organisations activities.

It wasn’t always easy – people were used to Francis/the chair doing
everything. But somehow things moved forward. John Merrills set up an
editorial team for Overload; we separated out content editing for both C Vu
and Overload content from the publication work (and then contracted out
the publication and distribution). We formed a team to decide the
conference content and outsourced the actual running of the conference. I
even used one AGM to bully Paul Grenyer into joining the committee to
represent the ‘mentored developers’ projects that he was so keen on ACCU
providing.

Each of these teams was represented on the committee and I tried to avoid
being directly involved in any of them. The committee were responsible
to the membership for getting things done and I made sure that the
committee was able to do its job. This model means that a lot of people
contributed – I won’t try to list them here.

We had a committee meeting every couple of months and most of the
committee was able to report progress and go away with a couple of action
points. These points were minuted and the minutes distributed in a timely
manner so that people were aware of what was expected of them and
others. You might think these were long ‘iterations’, but even the
committee have to fit ACCU business around a full time job – the important
thing is that they were long enough to get some stuff done and short enough
to maintain momentum.

Things got done and the membership numbers started to rise again.

While there were many successes, one thing we attempted didn’t go too
well – and I feel it is time to mention it. We (the committee) decided the
website needed to be revised and the content brought up to date. There was
a lot of discussion about how to do this – I was very keen to find a way of
producing interesting web content (the best thing we had then was our book
review database). Others on the committee felt that the technology
supporting the website needed to be replaced first and set about doing that.

Our first attempt at replacing the website was a failure. After this a team
driven by Allan Kelly at least got as far as replacing the outdated
technology. This took a lot of time and energy – so much so that I quit the
chair and Allan the committee before the process of managing the website
content got addressed. Sadly, it never has: the book review database has
faced repeated problems, and the ‘Overload online’ content is buried and
poorly indexed.

Despite problems with the website, many of the successes live on: teams
are still doing the things they did then – there’s still a conference team,
Overload still has an editorial team, nowadays C Vu also has an editorial

I

Alan Griffiths has been developing software through many fashions
in development processes, technologies and programming
languages. During that time, he’s delivered working software and
development processes to a range of organizations, written for a
number of magazines, spoken at several conferences, and made
many friends. He can be contacted at alan@octopull.co.uk.
4 | Overload | December 2011

FEATUREALAN GRIFFITHS

the constitution only allows voting by
those present at a general meeting ... the

cost of voting can be a substantial trip.
There has to be a better way!
team. We now outsource the web hosting (having replaced the box under
a desk), journal publication and conference organisation. The committee
is responsible for all of this – and, for the most part, follows the model of
having a committee member heading each team.

The spring conference has gone from strength to strength, and is a much
more significant part of our activities. We have a second conference again
and there are some lively local groups organising regular meetings.

However, over the same period membership numbers have first levelled
off and then declined.

The committee has once more decided that the technology behind the
website needs to be changed. I’m in no position to argue with that, but we
can’t afford to repeat our past mistake – we also need to put in place a
mechanism for creating and maintaining our web content. Our Overload
articles and those in C Vu (since the new editorial process improved the
quality) could form the basis of an attractive web resource.

There is a lot of work needed to make that happen – not just migrating the
text and images from one form to another, but also making sure that links
and indexes are put in place. That’s far more than a part time job for a
volunteer! We employ a professional to get the journal material into print,
but a professional appearance on the internet is far more important!

Publishing the material we produce on the website does reduce the
opportunity for ‘selling’ the journals. On the other hand the journals are
our biggest cost and there’s been discussion recently about whether the
journals should be published electronically. I would be sad to see the
printed version go – as that is still my preferred format for reading material.
However, while I read the paper form I don’t think that format is the way
things are best disseminated these days.

Another thing that has changed is communications technology. The ACCU
purports to be a world spanning organisation. Yet almost all of its activities
are in the UK and, most particularly, the constitution only allows voting
by those present at a general meeting (usually the AGM, but potentially a
Special General Meeting). Even for those in the UK the cost of voting can
be a substantial trip. There has to be a better way!

To address this there’s a need for those not able to attend the AGM in
person to be aware of the issues to be voted beforehand, and for them to
attend remotely, pre-register votes or appoint proxies. Indeed, there are
good reasons for informing members of constitutional motions before the
AGM – that may effect a decision to attend and vote.

As a case in point, there was a very significant constitutional motion
proposed at the last AGM, and were it not for Allan Kelly starting a

discussion on accu-general beforehand the first anyone would have known
would be when it was raised at the AGM. Even so, this motion was not
even voted on – as people didn’t feel informed enough to deal with it then
and there.

In the early days of ACCU these constitutional requirements were
unexceptional – the only forum for getting together was the AGM, so
people made the effort. Physical meetings are less important now: email,
blogs, mobile phones, video calls and other media are available and fewer
people find the AGM as important as it was.

This doesn’t mean I don’t think face-to-face meetings are unimportant. In
fact, I find it very worrying that the current committee has only met twice
since the last AGM. (I also find it worrying that the minutes of the last
meeting assign almost all of the ‘actions arising’ to two individuals.)

We need to understand what the ACCU offers today, and how best to
deliver it. A recent survey found the following points (in no particular
order):

1. Finding other people who will stimulate, enthuse or enable
becoming a better programmer

2. Socialising with other geeks (preferably under the influence of
alcohol)

3. Programming tips, techniques, craft and lore
4. Discussion of programming languages (except VB and, possibly,

Perl but particularly C++)

In the past ACCU was the way for us to get things published, this is no
longer true. There are a couple of recent cases that illustrate this: recently
Olve Maudal published his ‘Deep C’ slides [Deep C], not through ACCU
but on slideshare. Similarly, Paul Grenyer is talking of taking his ‘Desert
Island Books’ to another forum. They have good reasons for their choices
– but it shows that we’ve moved a long way from where the ACCU started,
as the only way to get the news out.

The ACCU isn’t dead yet, but it needs work to keep itself relevant.

That work has to be done by you – an ACCU member – working together
with other members. The ACCU can be the forum for that work, but it
needs to be updated. Don’t expect the people in place to do more – they
are already busy doing what they can. Don’t even expect them to carry on
– they get tired. If everyone does a little a lot can be done.

Reference
[Deep C] http://www.slideshare.net/olvemaudal/deep-c
December 2011 | Overload | 5

http://www.slideshare.net/olvemaudal/deep-c

FEATURE CHRISTOPH KNABE
The Eternal Battle Against
Redundancies, Part I
The drive to remove redundancies is widely seen
as a good thing. Christoph Knabe sees how it has
influenced programming languages.
ince the beginning of programming, redundancies in source code
have prevented maintenance and reuse. By ‘redundancy’ we mean
that the same concept is expressed in several locations in the source

code. Over the last 50 years the efforts to avoid redundancies [Wikipedia]
have inspired a large number of programming constructs. This relationship
is often not obvious to the normal programmer. Examples include relative
addressing, symbolic addressing, formula translation, parameterizable
subroutines, control structures, middle-testing loops, symbolic constants,
preprocessor features, array initialization, user defined data types,
information hiding, genericity, exception handling, inheritance, dynamic
dispatch, aspect oriented programming, functional programming, and
even program generators and relational databases. These constructs are
discussed using examples from 14 widely used programming languages.
Whosoever understands the common concept is well equipped for the
future.

What can the Zuse computer say today?
In 1971 my (high) school inherited a 12-year-old Zuse 22 and I learned
programming on it. In the rapidly moving computer domain we would
usually consider using such obsolete technology to be a waste of time. But
this has provided me with the background for a survey of the programming
techniques developed over the last 50 years. The Zuse 22 of the German
computer pioneer Konrad Zuse was one of the first mass produced
computers in the world (55 machines was a lot in those days!). It had a
highly economical construction and was programmed in a machine level
language: the Freiburgian Code. The example program in table 1 adds the
natural numbers from n decrementing to 1, and prints the result (tested by
the Z22 simulator of Wolfgang Pavel [Pavel]). In practice only the contents
of the Instruction column were punched onto paper tape and read by the
computer as a program. The Address column indicates into which word
the instruction was stored, and the Comment column corresponds to
comments in contemporary languages.
The instructions can have symbolic, combinable operation letters :
B=Bring, A=Add, S=Subtract, T=Transport, U=Umspeichern (store to),
C=Const-Value, PP=if Positive, E=Execute from (go to), D=Drucken
(print), Z=Stop. But the addressing was purely numeric with absolute
storage addresses. Here the variables i and sum are stored at the addresses
2048 and 2049 respectively. The algorithm itself is stored from address
2050, where we jump back using the instruction PPE2050 , if the value
of i is still positive.
Redundancies appear here in the addresses: 2048 for i appears 4 times,
2049 for sum 3 times, 2050 for the beginning of the program and the loop
twice explicitly and once implicitly (two cells after where the tape content
is stored). As a consequence the program is neither relocatable in the

working storage nor simply extendable. So there are big difficulties in its
maintenance.

Relative and symbolic addressing
Progress came later for the transistorized Zuse 23 by the development of
‘Relative Addressing’. This enabled a programmer to write a subroutine
as if it was located at address 0. A certain prefix instruction told the loading
program to store the actual start address in a load-time base register, which
was usually register 26. Appending A26 to an address caused the loading
program to add the content of register 26 to the value to form an absolute
address before storing the instruction to be executed later. So when using
relative addressing the conditional jump instruction to the beginning of the
program in table 1 would be PPE2A26 instead of PPE2050. By this means
the program has become relocatable. Relative addressing was still very
economic: it did not need more resources than the register 26 at load time.
True, relative addressing facilitates relocating a subroutine in working
storage, but inside the subroutine it is as inflexible as absolute addressing.
If we wanted to extend the example by inserting a prefix action before the
calculation loop, we would have to shift the relative jump goal 2A26, too.
Thus ‘symbolic addressing’ was introduced with the Zuse 23 (sold from
1961). See the German programming manual for the Z23 [Zuse23] p. 65ff.
The Z23 loading program substituted each bracketed identifier of up to 5
characters by its address. The program from table 1 could be rewritten with
the symbolic addresses (I), (SUM), and (BEGIN) as in Listing 1.
Now it is possible to insert further instructions at any place without
destroying the program. This improvement was such a big one that the
assembler for the Siemens 2002 was named after this technique, PROSA
(Programming with Symbolic Addresses). Necessary resources for
symbolic addressing were an addressing program and a symbol table.

S Table 1

Address Instruction Comment

T2048T Transport the following to words 2048 ff.

2048 10' i: Initial value for i is n, here the natural number 10.

2049 0' sum: Initial value is the natural number 0.

2050 B2049 Bring the sum into the accu(mulator).

2051 A2048 Add i to the accu.

2052 U2049 Store (Umspeichern) accu to sum.

2053 B2048 Bring i into the accu.

2054 SC1 Subtract the Constant value 1 from the accu.

2055 U2048 Store (Umspeichern) accu to i.

2056 PPE2050 If accu Positive Execute from (go to) 2050

2057 B2049 Bring sum into the accu.

2058 D Print (Drucke) accu.

2059 Z0 Stopp

E2050E Execute now from 2050

Christoph Knabe learned programming at high school on a discarded
Zuse 22, studied computer science from 1972, worked as a software
developer at www.psi.de, and since 1990 is professor of software
engineering at the Beuth University of Applied Sciences Berlin
www.bht-berlin.de. Scala is the 14th language in which he has
programmed intensively.
6 | Overload | December 2011

FEATURECHRISTOPH KNABE

relative addressing facilitates relocating a
subroutine in working storage, but inside

the subroutine it is as inflexible as
absolute addressing
We are now acquainted with the most common procedure for redundancy
elimination: The redundant code part gets a name and we use that name
instead of the former, redundant code parts.

Formula translation
In the beginning, technical and scientific calculations dominated computer
applications. But as we can see in the words 2050…2053 of the Z22
example, a simple addition needed three instructions (bring, add, store).
For the formula (a+b)*(a-b) we would need about 7 instructions. So the
need quickly arose for simplifying formula calculations. This was enabled
by formulae with variable identifiers, literals, operator signs, operator
priorities, and parentheses. The programming language FORTRAN got its
name by this feature (Formula Translator). Fortran I was defined in 1956.
At that time there was no possibility of defining your own operators.

Subroutines
If you needed an instruction sequence several times, on the Zuse 22 you
could jump there by using the call instruction F from different program
locations. Besides doing the actual jump, this instruction loaded a ‘jump
back’ instruction into register 5. That is why you had to begin each
subroutine by copying the contents of register 5 to the end of the subroutine
using a U-instruction. This assured a jump back to the calling location
when reaching the end of the subroutine.
But often you don’t need identical, but only similar processing. In this case
Freiburgian Code had the convention of reserving cells before the
subroutine for arguments and results. These had to be filled by the caller
before the call instruction and retrieved afterwards, respectively. Then it
had to jump to the first instruction of the subroutine, which always had to
be B5 followed by a U with the address of the last instruction cell of the
subroutine. So the program from listing 1, converted into a Zuse23
subroutine with entry address SUMUP for summing up the integer numbers
from 1 to n, is shown in listing 2.
In order to print the sum of the numbers from 1 to 20, you could call SUMUP
as follows:
 BC20 U(N) F(SUMUP) B(SUM) D

While this had to be obeyed as a convention on the Zuse 23, nowadays it
is automated in all higher programming languages by the concept of a
subroutine call with an argument list and return value. FORTRAN II and

Listing 1

T2048T
(I) 10'
(SUM) 0'
(BEGIN) B(SUM)
A(I)
U(SUM)
B(I)
SC1
U(I)
PPE(BEGIN)
B(SUM)
D
Z0
E(BEGIN)E

Listing 2

T2048T
(N) 10'
(SUM) 0'
(SUMUP) B5
U(BACK)
B(SUM)
A(N)
U(SUM)
B(N)
SC1
U(N)
PPE(SUMUP)
(BACK)Z0

The design of the Z22 was finished by about 1955, and 55 machines of
this type were produced. It formed a whole generation of computer
specialists in central Europe. The Z22 was characterized by:

hardware logic implemented by 600 tubes

working storage: a magnetic drum of 8192 words @ 38-bit

registers: a core memory of 14 words @ 38-bit

peripheral storage: 5 hole punched paper tape

console I/O: push buttons, glow-lamps, teletype with paper tape
reader

operating frequency: 3 kHz

An instruction consisted of 38 bits: 2 with the value 10, then 5 for
conditions, 13 for operations, 5 for a register address, and 13 for a
working storage address. Each of the condition and operation bits was
programmed by a specific letter and switched a specific gate.

The registers could be accessed by their address, but some were used
for special purposes by some operations. Access time for registers was
always one CPU cycle, for drum words only if they were accessed in
sequence.

Some Registers of the Z22

The Zuse 23 of 1961 was logically equivalent, but was implemented using
transistors. It had 40-bit words and up to 255 registers.

Number Special Usage

2 Testable by P or Q if positive or negative

3 Overflow area for accumulator, last bit testable by Y

4 Accumulator, filled by B, added by A, etc., testable by PP etc.

5 Stores return address for subroutines, filled by F

Architecture of the Zuse 22
December 2011 | Overload | 7

FEATURE CHRISTOPH KNABE

By combining these facilities
you could construct
arbitrarily complex algorithms
Algol introduced the concept of named, parameterized subroutines around
1958. The possibilites for redundancy elimination were enormous and
gave rise to the style of procedural programming. A subroutine in
FORTRAN II for summing up the numbers from 1 to n by a counting loop
is shown in listing 3. Identifiers starting with I to N are considered integers.

Control structures
The building blocks by which programs got their high flexibility and
reusability were conditional jumps such as the PPE instruction of the Zuse
22. Conditional forward jumps could be used to implement conditional
branches. A conditonal backward jump could be used to implement
repetition, which would terminate when the condition no longer held. By
combining these facilities you could construct arbitrarily complex
algorithms. As conditional branches and limited repetitions with or
without a control variable were needed frequently, the popular
programming languages introduced such constructs. In FORTRAN I
(1957) you could sum up the integer numbers from 1 to n by the following
counting loop:
 ISUM = 0
 DO 99 I = 1, N
 99 ISUM = ISUM + I
C HERE ISUM CONTAINS THE SUM OF THE NUMBERS
C FROM 1 TO N

FORTRAN had half-symbolic addressing. A statement could be identified
by a freely electable number, a so-called ‘label’. The statement DO 99 I
= 1, N incremented the control variable I from 1 to N, and each time all
statements up to and including the statement labeled by 99 are repeatedly
executed. For branching FORTRAN I offered the arithmetic IF:
 IF (expression) negativeLabel,zeroLabel,positiveLabel
This statement jumps to one of the three enumerated labels depending on
the sign of the expression result.
Algol 60 had already introduced nowadays common control structures:

1. A multi-branches cascadable IF: if cond then expr else expr
2. A universal loop with control variable, for example:

for i := 1 step 1 until 100 do print(i) prints
the numbers from 1 to 100
for i := 1, i*2 while i<2000 do print(i) prints
the powers of 2 from 1 to 1024.

Modern control structures with the purpose of being able to completely
avoid jump instructions were introduced by Pascal (1970). Pascal
distinguished the pre-testing WHILE-DO-loop, the post-testing REPEAT-
UNTIL-loop, and the counting FOR-DO-loop. Nevertheless Pascal still
contained the GOTO statement, as non-local termination could not be done
otherwise
Unfortunately the WHILE-loop, planned for repetitions where the number
of iterations is not known in advance, implies redundancies in the
following use case, which occurs extremely often in practice: We want to
process an unknown number of elements, maybe even none. The code in
listing 4 reads positive numbers and prints their sum. The procedure
readNumber is understood to deliver -1 if it can’t find any further
number. The keywords are typed in upper case, although this is not
important in Pascal.
We see, that the procedure readNumber has to be called redundantly:
Once before the WHILE-loop, the second time at the end of the loop body,
in order to prepare the variable x for the next test of the WHILE-condition.
That is why C (1973), Modula-2 (1978), and Ada (1980) introduced the
possibility of leaving an arbitrary loop by a special jump instruction, in
particular an endless loop. Using this we could solve the above task without
redundancies (C syntax, listing 5).
This corresponds to the general pattern for processing an unknown-in-
advance number of records in a middle-testing loop (listing 6).
Recursion: Recursion is when a function calls itself either directly or
indirectly. The ability to do so was introduced by LISP and Algol at around
the same time, but the then predominant languages FORTRAN and
COBOL did not allow recursion. Some tasks, e.g. traversing trees, are most

Listing 3

C COMPUTES THE SUM OF THE NUMBERS FROM 1 TO N
 FUNCTION ISUMUP(N)
 ISUM = 0
 DO 99 I = 1, N
 99 ISUM = ISUM + I
 ISUMUP = ISUM
 RETURN
 END

Listing 4

VAR
 x: integer;
 sum: integer := 0;
BEGIN
 readNumber(x);
 WHILE x>0 DO BEGIN
 sum := sum + x;
 readNumber(x);
 END;
 writeln;
 writeln('The sum is ', sum, '.');
END

Listing 5

int sum=0, x;
for(;;){
 readNumber(&x);
 if (x<=0) break;
 sum += x;
}

8 | Overload | December 2011

FEATURECHRISTOPH KNABE

The ability for programmers to
define their own control

structures was born in LISP
elegantly expressed by recursion. Recursion does not directly contribute
to the elimination of redundancies. If the recursive call is the last statement
of a function, the compiler can replace it by a simple, storage-efficient
loop. Compilers of functional programming languages regularly do this
optimization.

User-defined control structures
The ability for programmers to define their own control structures was
born in LISP (1958), as in this language instructions and data were notated
in the same form, the so-called S-expressions. They also had the same
internal representation. For example, (TIMES N 7) on the one hand
means the multiplication of N by 7. On the other hand it is simply a list
with the elements TIMES, N, and 7. A function in LISP I, which was
defined as FEXPR instead of the usual EXPR, had a special property. It
evaluated its passed arguments not before executing its function body, but
left this until the explicit usage of the function EVAL in the function body.
So a function body could arbitrarily control the frequency and order of
evaluation of its argments.
Later on when the power of this concept was found out, LISP dialects
introduced comfortable notations to define FEXPRs. For example in
MacLISP you could define an if-then-else construct, which was not
contained in early LISP, by the traditional COND as follows:
 (defun IF fexpr (args)
 (let ((predicate (car args))
 (then (cadr args))
 (else (caddr args)))
 (cond
 ((eval predicate) (eval then))
 (t (eval else)))))

The IF function gets all arguments unevaluated as a list with the name
ARGS. LET assigns the individual arguments to the values PREDICATE,
THEN, and ELSE. COND evaluates THEN or ELSE depending on the
evaluation of PREDICATE. Example from Steele and Gabriel [LISP].
As a lover of redundancy-free solutions I missed middle-testing loops in
the modern object-functional language Scala (2001). But I could define
one myself (listing 7).
The function loopGetTestProcess has 3 parameter lists. In the first it
expects an expression getItem for obtaining a next item, in the second
a boolean function shouldContinue for judging the success of the
obtainment, and in the third a function processItem for processing the
obtained item. By using the generic parameter [Item] it is assured that

the types fit together. The redundant call of getItem is well encapsulated
in the function body and is not visible in the using source code.
As syntactic sugar in Scala you can write an argument list of length 1 with
curly brackets thus enabling the following usage:
 def printLines(in: java.io.BufferedReader){
 loopGetTestProcess(in.readLine())(_!=null){
 println
 }
 }

In Java this could be done by break; and would look like in listing 8.
The big achievement in Scala is that the programmer has defined this
control structure himself and can define others too.

Constants
In working storage every cell is modifiable. That is why there were no
constants in Freiburgian code. By around 1960, the predominant higher
programming languages FORTRAN, Algol, and COBOL had only
variables and literals, usable in expressions. e.g. the literal 2 in the
FORTRAN expression A**2 + 2*A*B + B**2 with ** meaning ‘to
the power of’. A redundancy problem arises, if you must use the same
literal several times. In COBOL 66 you could also use literals to dimension
a variable, for example a west-German ZIP code, which consisted of four
digits, as ZIP PICTURE 9(4). But if you had done it this way at several
locations in your program code, the reorganisation of the German postal
systems in 1993 obliged you to change all these locations to five digits:
ZIP PICTURE 9(5). In the early higher programming languages there
was no possibility to declare variable or array sizes free of redundancy.

Listing 6

initialize
for(;;){
 retrieve
 if (notSuccessful) break;
 process
}

Listing 7

def loopGetTestProcess[Item]
 (getItem: => Item)
 (shouldContinue: Item=>Boolean)
 (processItem: Item=>Unit)
{
 var item = getItem
 while(shouldContinue(item)){
 processItem(item)
 item = getItem
 }
}

Listing 8

void printLines(final java.io.BufferedReader
in){
 for(;;){
 final String line = in.readLine();
 if(line==null)break;
 println(line);
 }
}

December 2011 | Overload | 9

FEATURE CHRISTOPH KNABE
Pascal (1970) solved this problem very cleanly by declarable, symbolic
constants, which could be used for dimensioning arrays, as well. E.g.:
 CONST zipLength: integer := 4;
 TYPE ZipCode = PACKED ARRAY[zipLength] OF
 character;
 VAR clientZip: ZipCode;
 BEGIN
 FOR i := 1 TO zipLength DO write(clientZip[i]);

Pascal also introduced the concept of user-defined data types (here the type
ZipCode). Along with the symbolic dimensioning constants this enabled
you to define sizes for a whole software system free of redundancies.
C (1973) solved the dimensioning problem less elegantly, as you had to
use preprocessor macros instead of symbolic constants. But on the other
hand you could even do it without explicit size constants, if you used the
sizeof operator. So the same thing expressed in C:
 typedef char ZipCode[4];
 ZipCode clientZip;
 int i=0;
 for(; i<sizeof(clientZip); i++){
 putchar(clientZip[i]);
 }

C++ (1983) introduced the ability to declare frozen variables at any
location in the program code by the keyword const and by that to build
calculated ‘constants’. Beginning with Java (1995) it became normal to
dimension arrays only at runtime, or to work with the growable collections.

Preprocessor features
Often a preprocessor was used in order to avoid redundancies. So it is
possible to include declarations, which are needed in the same wording in
several compilation units, from one single file. This technique was used
in COBOL (COPY), FORTRAN (INCLUDE), and C (#include). In this
way you could build a data abstraction module in C. You had to write the
function declarations of the module in its header file, and the function
definitions along with the managed module variables in its implementation
file. As an example see the header file stack.h for a stack of characters.
The lines starting with # contain preprocessor directives.
 #ifndef stack_h
 #define stack_h

 #define MAX_STACK_SIZE 10
 void stack_push(char item);
 char stack_pop(void);

 #endif

Every client of this stack has to include the header file stack.h and then
you can call the functions declared therein:
 #include "stack.h"
 ...
 stack_push('X');

About 1985–1995 this was the predominant modularization technique in
industry, before it was superseded by object orientation.
Stringize Operator: The C/C++ preprocessor contains the # operator,
which delivers the name of a given macro argument as a string. With this
you can program without redundancies simple dialogs, e.g. for test
purposes. So you can use in C++ the following macro PROMPT_READ in
order to print the name of the passed variable, and to read a value into it
afterwards:
 #define PROMPT_READ(var) \
 { cout << #var << "? "; cin >> var;}

Using this macro you can program a console dialog as in listing 9.
A typical dialog usage could look as follows:
 name? Ulf
 age? 22
 Ulf is 22 years old.

Generally preprocessors are considered an inelegant solution. That is why
the majority of cases for which you used the preprocessor in C or C++, are
solvable in Java by its own language constructs without a preprocessor.
However in Java the following is not possible:

determination of the name of a variable as by the stringize
operator in C
delegation of the abortion of a method execution and some
accompanying action, e.g. errno=FAILURE; return; to
another method
delegation of a certain pattern of exception handling to another
method.
If we had C-like macros in Java we could write
TRANSACTION(myAction1(); myAction2())

which would be useful to transform a statement sequence into a
database transaction by

 #define TRANSACTION(stmts) \
 {try{stmts; commit();}catch(Exception e) \
 {rollback(e);}}

Array initialization
Pascal introduced redundancy-free array dimensioning, but initialization
still had a problem. As an example we want to declare and initialize an
array in Pascal, which contains codes for three allowed actions. Even in
modern GNU Pascal you have to indicate the array size 3:
 VAR actions: ARRAY[1..3] OF char = ('G','P','D');

But the size is redundant in relation to the number of initialization
elements. The more actions you need, the more difficult becomes the
manual numbering.
C introduced to derive an array’s size from the length of its initialization
list: static char actions[] = {'G','P','D'};. Java inherited
this useful feature.

Summary and prospects
The early higher programming languages introduced the possibility of
avoiding redundancies by extraction, parameterization, and naming of a
repeated code snippet. Such code snippets could be: addresses, values, size
indications, declarations, and statement sequences. Some code patterns
were invoked by syntactical units of the programming language, e.g. loops.
In the better case the programmer could give a freely electable name to a
code pattern. If a programming language helped to eliminate redundancies
better than a competing language, this was a relevant advantage in the
battle for dissemination.
In the 2nd part of this article we will deal with the more modern techniques
‘information hiding’, genericity, exception handling, object-oriented,
aspect-oriented, and functional programming as well as domain specific
languages and relational data bases, and how they all contribute to
redundancy elimination.

References
[LISP] Steele/Gabriel: The Evolution of LISP, p. 9:

http://www.dreamsongs.com/Files/HOPL2-Uncut.pdf
[Pavel] http://www.wpavel.de/zuse/simu/
[Wikipedia] http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
[Zuse23] http://www.weblearn.hs-bremen.de/risse/RST/WS04/Zuse23/

Z23Programmierungsanleitung.pdf

Listing 9

 string name;
 int age;
 PROMPT_READ(name);
 PROMPT_READ(age);
 cout << name << " is " << age <<
 " years old." << endl;
10 | Overload | December 2011

http://www.dreamsongs.com/Files/HOPL2-Uncut.pdf
http://www.wpavel.de/zuse/simu/
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://www.weblearn.hs-bremen.de/risse/RST/WS04/Zuse23/Z23Programmierungsanleitung.pdf
http://www.weblearn.hs-bremen.de/risse/RST/WS04/Zuse23/Z23Programmierungsanleitung.pdf

FEATURESERGEY IGNATCHENKO
From the Age of Power to the Age
of Magic and beyond...
Certain abilities allowed some societies to dominate their
peers. Sergey Ignatchenko takes a historical
perspective on dominant societies.

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with opinions of the translator or
Overload editors; please also keep in mind that translation difficulties from
Lapine (like those described in [LoganBerry2004]) might have prevented
from providing an exact translation. In addition, both translator and
Overload expressly disclaim all responsibility from any action or inaction
resulting from reading this article.

Hray, u hraithile!
Run, for the thousandth time!

ometimes, to get a better understanding of where we’re standing now,
it helps to take a look back, sometimes even a long while back, to the
very beginnings of rabbitkind. The history of rabbitkind can be

classified in a number of different
ways, but this time let’s take a
l oo k a t i t f r om t he
following points of
view.

Age of Power
A very long time
ag o , t he re w e r e
caverabbits. A lot of
d i f f e re n t and
interesting things
can be said about
t he m , b u t
wha t i s
important
for us now
is which characteristic was the most important factor in the success of
societies back there (we will not address individual success now,
concentrating on societies). What we can say rather easily, is that back at
the very beginning the most important property which has dominated the
world, was power. The most physically powerful and aggressive rabbit
tribes easily dominated the others. This raw power wasn’t offset by other
things like the quality of weapons – with the only weapons being a simple
club, it was the rabbit who was able to carry a bigger one that won. Let’s
name this rough period in the rabbit’s history an ‘Age of Power’.

Age of Skill
As time has passed, raw power appeared to be somewhat affected by other
things, such as military skill and quality of weapons. One prominent
example of is ancient Greek and Roman rabbits – while they weren’t more
physically powerful than their neighbours, they still managed to dominate
them mostly because of superior organizational and military skills. Later
on, skills continued to affect societies a great deal, with one prominent
example (in addition to an obvious Renaissance period) being the Dutch
Golden Age of the XVI–XVII centuries, when tiny Netherlands had risen
to one of superpowers of that time based mostly on promotion of various
skills, in particular naval expertese. Let's name this period the ‘Age of

Skill’. One major characteristic of this Age is that skills were passed from
one generation to another as a part of the process of informal education,
mostly based on apprenticeships. It was also the way how skills were
improved, and the process was rather slow by today’s standards.

Age of Knowledge
As time went on, the situation changed again. Very
roughly, at the end of XVIII century, mere skills
weren’t enough to dominate anymore, and it
became people such as engineers who started to

bring nations to domination, spearheading the
Indus t r ia l Revolu t ion . The

fundamental difference between
Age of Skill and this new

age, is that in the new age
the primary and the most
efficient way to pass

information between
generations, and to

develop skills
and
k n ow l e dg e

further, was not
apprenticeships,

but the application of formal
education, such as university
education. Accordingly, let’s

n a m e t h i s p e r i o d ‘Ag e o f
Knowledge’. Universities have made

S

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams [Adams].

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
December 2011 | Overload | 11

FEATURE SERGEY IGNATCHENKO
a huge impact on the way skills and knowledge have improved; and one
of major improvements achieved by universities was that a lot of people
specializing in the same area were brought together, increasing both the
exchange of ideas and level of competition (and competition is necessary
to achieve top-level results, see, for example, [Parkinson72]).
Accordingly, it was people with university education (mostly engineers)
who were a symbol of Industrial Revolution and Age of Knowledge.

Age of... ?
...now British people often incorrectly use the term ‘Engineer’

to describe Plumbers and Mechanics.
~ Wikipedia

By the end of the XX century, things had changed once
again. With the advent of the Internet, search engines
(and later Wikipedia), knowledge as such has became
easily available and therefore has lost its value (the
model of supply and demand works
surprisingly well even in such
matters). Such loss of value is
i nd i c a t ed by m ul t i p l e
symptoms, in particular by the
loss of respect to engineers
(who were once one of the
symbol s o f t he Age o f
Knowledge). In addition, similar
to the way the creation of universities
has allowed thousands of people to work
together, now millions are collaborating at the
same time, which again makes a significant
impact on the way knowledge is accumulated
and created. So, where we are heading now?
What is indeed valuable in the modern world?
It looks that (though it is only a rather wild guess on
my part) that what is of value now is the ability to
combine knowledge from several different
sources, to produce a new piece of knowledge.
It might be a small step within the grand scheme
of things, but I feel it is quite essential to justify calling it a new age. For
the purposes of the rest of this article, let's take it as a working hypothesis.
But how to name this new age? Age of Combining Knowledge is too
bulky, Age of Combination is quite unclear, and Age of Combinatorics is
outright misleading. Let’s think about it a little bit...

Why not ‘Age of Magic’?
Any sufficiently advanced technology is indistinguishable

from magic.
~ Arthur C. Clarke

Similar to engineers being a symbol of Age of Knowledge, this new Age,
where it is combining knowledge to create new knowledge which really
counts, also has a symbol – it is us, software engineers (which, for the
purposes for this article, includes both software developers and
administrators). The aura around us, software engineers, at the
boundary of the XX and XXI centuries is somewhat similar to the aura
around engineers a century earlier – we are perceived as difficult to
understand people with high salaries (and people are not sure if such
salaries are justified, because they cannot understand us), who can
do strange things which ordinary people cannot do. Let’s try to look
at us with the eyes of your neighbour (the one who has nothing to do
with IT). If he takes a look (in the movies, or in real life), how will software
engineer look to him? We’re sitting typing some very strange stuff on our
keyboa rds , mumbl ing some words wh ich a r e comple t e l y
incomprehensible for outsiders (and often the words are incomprehensible
even for fellow software developers from another company), and from
time to time achieving some things which look completely unrelated to our
words or actions. But isn’t it exactly the way mages are described in
fantasy? They also mumble strange words, make strange gestures with
their hands, and sometimes get results which they want – which seem

completely unrelated to the nature of the words said or written. Aren’t these
two things the very same thing if observed from the outside? If you still
have any doubts, think how stuff like
 copy (v.begin(), v.end(),
 ostream_iterator<int>(cout, "\n"));

or
 growisofs -Z /dev/cdrw -r -J /home/nobugs/
 archive/20111029

looks to your neighbour? If it is not a spell as described in a fantasy book,
what is?
Based on the logic above, I hereby propose to name this new age as the
Age of Magic.

Ethics of the Mages
Primum non nocere

~attributed to Thomas Sydenham

Whenever somebody has a power to affect others significantly, it is
vital to have certain ethical standards to follow. Professionals of

various flavours have had established ethical standards for centuries.
The very first professional ethical standard in the history of

rabbitkind is, most likely, the Hippocratic Oath, taken by doctors
since around the 5th century BC. Much closer to the Age of
Magic are the engineering codes of ethics, which originated in
the US around 1910 after series of spectacular bridge disasters.
It is interesting to note that the first information about an

engineering code of ethics in the UK that I was able to find is
from 1991, more than half a century later. The main reason behind
these professional codes of ethics is to avoid potential harm which can
arise from irresponsible actions of professionals (in the case of doctors

it is potential death or harm to the patient, for engineers it is a potential
failure like collapsed bridge). But is software any different in this regard?

Bugs in software have already caused deaths [Therac-25] [Patriot], and
have already caused the loss of huge amounts of money [Ariane 5],
which already indicates the potentially dangerous impact of Mages on
society, and therefore the need for a code of ethics. It has already been

recognized, and associations like IEEE or BSC already have their
codes, though quality of them may vary; still, what matters the most for
the fellow Mage is not to follow instructions set in formal codes blindly,
but to understand their responsibility to society.
12 | Overload | December 2011

FEATURESERGEY IGNATCHENKO
Education in the 'Age of Magic'
 The mind is not a vessel to be filled, but a fire to be kindled.

~ Plutarch, On Listening to Lectures

As it was noted above when discussing differences between the Age of
Skill and Age of Knowledge, the way knowledge is passed between
generations is critical for our analysis. The interesting thing about it
is that educational system had started to drift towards the goals of Age
of Magic quite long ago. If the knowledge itself was the ultimate goal
then the system of memorizing everything would be perfect for this
purpose. Still, over the course of the XX century the concept of
memorizing, so predominant in Victorian schools, was slowly replaced
(at least at the best schools) with a concept which can be roughly
described as ‘teach pupils to think’, which is a perfect match to the goals
of Age of Magic (opposed to the goals of Age of
Knowledge). It is interesting to note that our previous
analysis didn’t reveal what was exactly the reason for the
switch to the Age of Magic, so while it indeed might be
the Internet which triggered the change, it
could also easily be progress in the
education system towards ‘teach
pupils to think’ which has caused
the Age of Magic.

In any case, what is rather obvious is that ‘teaching pupils to think’ (as
opposed to ‘make pupils memorize tons of stuff’) is very important to
ensure that society flourishes within the new Age of Magic. Moreover, it
can be easily shown that such an approach not only makes societies
succeed, but also makes individuals succeed within societies.
Unfortunately, the whole system of formal exams is not a good fit with this
concept [Hyman2009], which means that this approach, while popular in
the best schools, is far from being universal, so we can conclude: ‘if you
want your children to succeed in life – find a school which will teach them
to think’.

The final step? Of course not!
The next question which inevitably arises is: shall we expect that this new
Age of Magic is the ultimate step in this direction? Of course not. The
history of rabbitkind shows that there is no such thing as an ‘ultimate step’
in any direction and this area is not an exception. Later on, we can expect
that simple combining knowledge won't be enough anymore, and that
rabbitkind will move towards the next age, towards an Age of Creativity;
at this point it is too early to say what exactly will be the next step on this
way, so I just hope that I’ll live long enough to see it.

References and further reading
[Adams] http://en.wikipedia.org/wiki/Lapine_language
[Ariane 5] ‘The Ariane 5 bug and a few lessons’ Les Hatton, Oakwood

Computing, U.K. and the Computing Laboratory, University of
Kent, UK. www.leshatton.org/Documents/Ariane5_STQE499.pdf

[Hyman2009] Peter Hyman. ‘Drop GCSEs. We should be teaching our
children to think’ http://www.guardian.co.uk/commentisfree/2009/
aug/16/peter-hyman-education-teaching-exams

[Loganberry2004] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[Patriot] ‘Patriot Missile Software Problem’ Andrew Lum
http://sydney.edu.au/engineering/it/~alum/patriot_bug.html

[Parkinson72] The fur-lined mousetrap, C.N. Parkinson, 1972
[Therac-25] An Investigation of the Therac-25 Accidents Nancy Leveson,

University of Washington; Clark S. Turner, University of California,
Irvine http://courses.cs.vt.edu/cs3604/lib/Therac_25/

Therac_1.html
December 2011 | Overload | 13

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
www.leshatton.org/Documents/Ariane5_STQE499.pdf
http://sydney.edu.au/engineering/it/~alum/patriot_bug.html
http://courses.cs.vt.edu/cs3604/lib/Therac_25/Therac_1.html
http://courses.cs.vt.edu/cs3604/lib/Therac_25/Therac_1.html
http://www.guardian.co.uk/commentisfree/2009/aug/16/peter-hyman-education-teaching-exams
http://www.guardian.co.uk/commentisfree/2009/aug/16/peter-hyman-education-teaching-exams

FEATURE PAUL GRENYER
RAII is not Garbage
Many think that Garbage Collection frees the
programmer from cleanup tasks. Paul Grenyer
compares and contrasts it with a classic C++ idiom.
RAII is the greatest contribution C++ has made to
software development. ~ Russel Winder

anaged and non-managed programming languages have very
different ways of approaching resource management. Ever since I
created my first resource leak (Windows handles in an MFC

application) I have been fascinated by resource and memory management
and the ways of preventing leaks. In this article I am going to compare the
ways a non-managed programming language like C++ manages resources
compared to managed languages like Java and C#.

Resource Acquisition Is Initialisation
Resource Acquisition is Initialisation, which is often abbreviated to RAII,
although badly named is as Dr. Winder says the greatest contribution C++
has made to software development. Unlike garbage collected languages
memory in C++ is not cleaned up automatically. If you or something you
are using allocates memory on the free-store, you or that other something
must delete it when it’s finished with. In his article ‘Garbage Collection
and Object Lifetime’, Ric Parkin [Parkin] discusses the different ways
memory is handled in C++ and C# in a reasonable amount of detail so I
won’t go into it too deeply here.
So what is RAII? It is a mechanism that is available as a direct result of
C++ having classes with constructors and automatic, and deterministic
destructors. It is probably best demonstrated with a simple example. The
ScopedFile class in listing 1 allocates a C FILE pointer in its constructor
and closes it in its destructor.
If an instance of ScopedCFile is created on the stack its destructor is
guaranteed to be called when it goes out of scope. This is automatic and
deterministic destruction. The destructor cleans up by closing the file. As
the client of the ScopedCFile instance you do not have to take any action
to ensure clean-up. Of course if you create the instance on the free-store,
you become responsible for deleting it. Deleting the instance causes the
destructor to be called and ensures clean-up as before. The calling of the
destructor is still deterministic, but it is not longer automatic.
Smart pointers such as std::unique_ptr can be used to manage free-
store memory in C++. They are generally stack based objects that employ
RAII to make free-store based object deletion automatic. They are not
usually restricted to dealing just with memory and can also deal with
resources.
Of course the C++ standard library has its own file handling classes that
do all of the resource handling for you so you don’t actually need to write
a ScopedCFile class in most cases.

Garbage collection and destructors
It seems to me that most modern languages are garbage collected. In fact
I would go so far as saying that most languages have some sort of automatic

memory management and C++ is an example of one of the very few
languages that don’t (leaving managed C++ to one side). Therefore I am
going to pick two languages that I am familiar with, Java and C#, to
demonstrate resource management in a garbage collected language.
In garbage collected languages memory deletion is done for you
automatically. Objects are generally created on the heap, although there
are some exceptions. Every so often the garbage collector is invoked and
determines which objects are no longer referenced. These objects are then
marked for deletion and subsequently deleted. The upshot of this is that
after you create an object you don’t have to worry about deleting it again
as the garbage collector will do it for you. Sounds wonderful, doesn’t it?
The truth is it’s not bad, but it’s not perfect either. You have little control
over when the garbage collector is called. Even when it is invoked directly
the best you can hope for is that the runtime agrees it’s a good time to
garbage collect. This means that there is no way of determining when or
even if an object will ever be destroyed.
What about destructors? C# has destructors and Java has finalizers. Both
are methods that are called just before an object is deleted. Therefore it
cannot be determined when or even if (in the case of Java) they will be
called. C# destructors and Java finalizers are automatic, but not
deterministic. That’s not much good for resource clean up. If for example
you’re opening a lot of files you may well run out of operating system file
handles before the garbage collector runs to free them all up again, if it
runs at all.
So how do you make sure resources are cleaned up as soon as they are no
longer needed? Both Java and C# support try-catch-finally
(Listing 2).
Clean-up code is placed in the finally block so that even in the presence
of exceptions resources are released. C# also has the IDisposable
interface, which together with the using declaration provides a shorthand
for try-catch-finally.

M

Paul Grenyer An active ACCU member since 2000, Paul is the
founder of the Mentored Developers. Having worked in industries as
diverse as direct mail, mobile phones and finance, Paul now works for
a small company in Norwich writing Java. He can be contacted at
paul.grenyer@gmail.com.

Listing 1

class ScopedCFile {
private:
 FILE* file;
public:
 ScopedCFile(const std::string& filename) {
 file = fopen(filename.c_str(), "r");
 // ..
 }
 ~ScopedCFile() {
 // ..
 close(file);
 }
};
int main(int argc, char* argv[]) {
 ScopedCFile file(argv[1]);
 return 0;
}

14 | Overload | December 2011

FEATUREPAUL GRENYER
 static void Main(string[] args)
 {
 using(var fileStream =
 new FileStream(args[1], FileMode.Open))
 {
 // ..
 }
 }

In the newly released Java 7 try has been overloaded to provide a similar
short hand.
 public static void main(String[] args)
 throws IOException
 {
 try(InputStream inputStream =
 new FileInputStream(args[1]))
 {
 // ..
 }
 }

RAII vs try-catch-finally
Despite five wonderful years of C++, I am now a big fan of memory
managed languages. That’s not quite the same as being a fan of garbage
collection. What I like is being able to allocate memory without having to
worry about deallocating it. However the non-deterministic destruction
behaviour of garbage collected languages pushes the responsibility for
cleaning up resources from the encapsulating class to the client of the class.
As I have shown, when using RAII in C++, no clean-up is required by the
client:
 int main(int argc, char* argv[])
 {
 ScopedCFile file(argv[1]);
 return 0;
 }

but in a garbage collected language such as C# clean-up code must be
written by the client or left for finalisation, which is never a good idea:
 static void Main(string[] args)
 {
 using(var fileStream = new FileStream(args[1],
 FileMode.Open))
 {
 // ..
 }
 }

Therefore RAII is the clear winner in terms of resource management, as
the client is not relied upon to notice that the class they are using requires
clean-up. It also keeps the client code cleaner and more readable as its

intention is not littered with code that serves no purpose other than to clean-
up.

Execute Around Method
There are ways to move the resource handling from the client into an
encapsulating class and Kevlin Henney discusses this in his article
‘Another Tale of Two Patterns’ [Henney]. The basic idea is that you have
a class that manages the resource and passes it to another class, a delegate
or something to use it. In the C# example in Listing 3, the execute
method creates a FileStream object and passes it to a delegate. The
implementation of the delegate does what needs to be done with the
FileStream object and when it returns the execute method cleans up.
For such a simple example as a FileStream the only advantage is
making sure the client cannot forget to clean-up and a timely manner. With
more complex resources such as the various classes that collaborate
together to access a database the boilerplate becomes a far more useful
encapsulation.
Although Execute Around Method in garbage collected languages solves
the same problem as RAII In C++ it is still inferior due to the amount of
boilerplate required and the complexity and verbosity of the client code.

Finally
It is clear that the encapsulated resource management provided by RAII
in C++ is vastly superior to the client responsible approach of the try-catch-
finally pattern in garbage collected languages like Java and C#. I would
go so far as to say that the language designers of garbage collected
languages have dropped the ball where resource management is
concerned. In fact C# using was added as an afterthought. Try-catch-
finally is very much treating a symptom, rather than fixing the problem.
This is about the third version of this article. In the previous version I fell
into the trap of trying to provide a solution, when really that is an article
all to itself. When I started this article I set out only to highlight that what
many people see as good enough in garbage collected languages is actually
nowhere near enough. Yet all is not lost. In a follow up article I’ll describe
some of the concerns in creating a solution to encapsulated resource
management in garbage collected languages.

References
[Henney] Another Tale of Two Patterns: http://www.two-

sdg.demon.co.uk/curbralan/papers/AnotherTaleOfTwoPatterns.pdf
[Parkin] Garbage Collection and Object Lifetime: Overload 68

http://accu.org/index.php/journals/244

Acknowledgements
Thank you to Russel Winder for inspiration and Ric Parkin for review.
Further thanks go to Phil Nash, Alan Stokes and Nick Butler.

Listing 2

public static void main(String[] args)
 throws IOException
{
 InputStream inputStream =
 new FileInputStream(args[1]);
 try
 {
 // ..
 }
 catch(Exception e)
 {
 // ..
 }
 finally
 {
 inputStream.close();
 }
}

Listing 3

static class FileStreamTemplate {
 public static void Execute(string filename,
 FileMode fileMode,
 Action<FileStream> action) {
 using (var fileStream =
 new FileStream(filename, fileMode)) {
 action(fileStream);
 }
 }
}
static void Main(string[] args) {
 FileStreamTemplate.Execute(args[1],
 FileMode.Open,
 delegate(FileStream fileStream) {
 // ..
 };
}

December 2011 | Overload | 15

http://www.two-sdg.demon.co.uk/curbralan/papers/AnotherTaleOfTwoPatterns.pdf
http://www.two-sdg.demon.co.uk/curbralan/papers/AnotherTaleOfTwoPatterns.pdf
https://accu.org/index.php/journals/244

FEATURE RICHARD HARRIS
Why Polynomial Approximation
Won't Cure Your Calculus Blues
We’re still trying to find a good way to approach numerical
computing. Richard Harris tries to get as close as possible.
e began this arc of articles with a potted history of the differential
calculus; from its origin in the infinitesimals of the 17th century,
through its formalisation with Analysis in the 19th and the

eventual bringing of rigour to the infinitesimals of the 20th.
We then covered Taylor’s theorem which states that, for a function f

where f'(x) stands for the first derivative of f at x, f"(x) for the second and
f(n)(x) for the nth with the convention that the 0th derivative of a function
is the function itself.
We went on to use it in a comprehensive analysis of finite difference
approximations to the derivative in which we discovered that their
accuracy is a balance between approximation error and cancellation error,
that it always depends upon the unknown behaviour of higher derivatives
of the function and that improving accuracy by increasing the number of
terms in the approximation is a rather tedious exercise.
Of these issues, the last rather stands out; from tedious to automated is
often but a simple matter of programming. Of course we shall first have
to figure out an algorithm, but fortunately we shall be able to do so with
relatively ease using, you guessed it, Taylor’s theorem.

Finding the truncated Taylor series
The first step is to truncate the series to the first n terms and make the simple
substitution of y for x+δ, giving

or

to nth order in y-x.
Next we evaluate f at n points in the vicinity of x, say y1 to yn, yielding

Now the only unknowns in these equations are the derivatives of f so they
are effectively a set of simultaneous linear equations of those derivatives
and can be solved using the standard technique of eliminating variables.
By way of an example, consider the equations

To recover the value of x, we begin by eliminating z from the set of
equations which we can do with

Next, we eliminate y with

and hence x is equal to 1.
At each step in this process we transform a system of n equations of n
unknowns into a system of n-1 equations of n-1 unknowns and it is
therefore supremely well suited to a recursive implementation, as shown
in listing 1.
The first thing we need to do before we can use this to compute the
derivative of a function is to decide what values we should choose for each
yi.
We can do this by extrapolating our analysis of finite differences; for an
nth order approximation, we should choose

to yield an error of order .
Following a similar argument to that we used to choose the values of δ for
our finite difference approximations, we shall choose

W
f x f x f x f x

f x Rn
n n

n

n

+() = () + × ′() + × ′′() +
+ × () +

+

δ δ δ

δ

1
2

2

1

1

...

min

!
()

11
1 1

1
1

1 1

()
+ +()

+()
+ +()

× +()() ≤
≤ × +()()

!

!max

δ θδ

δ θδ

n n
n

n
n n

f x R

f x for 0 1≤ ≤θ

f y f x y x f x

y x f x y x f xn
n n

() ≈ () + −()× ′() +
−() × ′′() + + −() × (1

2
2 1... !

()))

y x f x y x f x

y x f x f y f xn
n n

−()× ′() + −() × ′′() +
+ −() × () = () − (

1
2

2

1

...

!
()))

y x f x y x f x

y x f x f yn
n n

1
1
2 1

2

1
1 1

−()× ′() + −() × ′′() +
+ −() × () = ()

...

!
() −− ()

−()× ′() + −() × ′′() +
+ −() × ()

f x

y x f x y x f x

y x f xn
n n

2
1
2 2

2

1
2

...

!
() == () − ()

−()× ′() + −() × ′′() +
+ −()

f y f x

y x f x y x f x

y x
n n

n n

2

1
2

2

1

...

...

!
nn n

nf x f y f x× () = () − ()()

E x y z
E x y z
E x y z

1

2

3

2 4 3 20
3 2 2 13
4 3 4 21

:
:
:

+ + =
+ + =
+ + =

E E E x y
E E E x y

4 1
3
4 3

7
4

17
4

5 2
1
2 3

1
2

5
2

= − × − + =

= − × + =

:
:

E E E x6 4
7
2 5

9
2

17
4

35
4

18
4

9
2= − × − = − = − = −:

O y xi
n−() = +ε

1
1

ε
n

n+1

y x i n xi
n= + × +()×() × +()+1 1

1
1ε

Richard Harris has been a professional programmer since 1996. He
has a background in Artificial Intelligence and numerical computing
and is currently employed writing software for financial regulation.
16 | Overload | December 2011

FEATURERICHARD HARRIS

as we increase the order of our
polynomials the number of accurate

digits grow exactly as expected
Polynomial derivative approximation
Listing 2 gives the class definition for a polynomial derivative
approximation function object based upon these observations.
The constructor is relatively straightforward, as shown in listing 3. Note
that the epsilon function is represented here by the typesetter-friendly
abbreviation eps<T>).
Once again we assume that we have specialisations of both
std::numeric_limits and pow for the function’s argument type.
Listing 4 provide the definition of the function call operator.
Note that if the argument and result types are different we shall very likely
introduce a potential source of numerical error. Consequently we should
ideally only use this class for functions with the same argument and result
types.

Figure 1 plots the negation of the base 10 logarithm of the absolute error
in this approximate derivative of the exponential function at zero,
equivalent to the number of accurate decimal places, against the order of
the approximation. The dashed line shows the negation of the base 10
logarithm of the expected order of the error in the approximation, .
This certainly seems to be a step in the right direction; as we increase the
order of our polynomials the number of accurate digits grow exactly as
expected. We should consequently expect that by increasing the order of
the polynomials we should bring the error arbitrarily close to ε, as shown
in figure 2.
Something has gone horribly wrong! As we expend ever increasing effort
in improving the approximation, the errors are getting worse.
The reason for this disastrous result should be apparent if you spend a little
time studying our simultaneous equation solver. We are performing large
numbers of subtractions and divisions; if this doesn’t scream cancellation
error at you then you haven’t been paying attention!

Listing 1

template<class T>
T
solve_impl(std::vector<std::vector<T> > &lhs,
 std::vector<T> &rhs,
 const size_t n)
{
 for(size_t i=0;i!=n;++i)
 {
 for(size_t j=0;j!=n;++j)
 {
 lhs[i][j] -= lhs[i][n]*lhs[n][j]/lhs[n][n];
 }
 rhs[i] -= lhs[i][n]*rhs[n]/lhs[n][n];
 }
 return n!=0 ? solve_impl(lhs, rhs, n-1)
 : rhs[0]/lhs[0][0];
}
template<class T>
T
solve(std::vector<std::vector<T> > lhs,
 std::vector<T> rhs)
{
 if(rhs.empty())
 throw std::invalid_argument("");
 if(lhs.size()!=rhs.size())
 throw std::invalid_argument("");
 for(size_t i=0;i!=lhs.size();++i)
 {
 if(lhs[i].size()!=rhs.size())
 throw std::invalid_argument("");
 }
 return solve_impl(lhs, rhs, rhs.size()-1);
}

Listing 2

template<class F>
class polynomial_derivative
{
public:
 typedef F function_type;
 typedef typename F::argument_type argument_type;
 typedef typename F::result_type result_type;

 polynomial_derivative(const function_type &f,
 unsigned long n);

 result_type operator()(
 const argument_type &x) const;

private:
 function_type f_;
 unsigned long n_;
 argument_type ef_;
};

Listing 3

template<class F>
polynomial_derivative<F>::polynomial_derivative(
 const function_type &f, const unsigned long n)
: f_(f),
 n_(n),
 ef_(pow(argument_type(n+1)*
 eps<argument_type>(),
 argument_type(1)/argument_type(n+1)))
{
 if(n==0) throw std::invalid_argument("");
}

ε
n

n+1
December 2011 | Overload | 17

FEATURE RICHARD HARRIS

our higher order polynomial
approximations are suffering from
massive loss of precision
We can demonstrate the problem quite neatly if we use interval arithmetic
to keep track of floating point errors. You will recall with interval
arithmetic we keep track of an upper and lower bound on a floating point
calculation by choosing the most pessimistic bounds on the result of an
operation and then rounding the lower bound down and the upper bound
up.
Figure 3 plots the approximate number of decimal places of agreement
between the upper and lower bound of the interval result of the
approximation as a solid line and the expected order of the error as a dashed
line.
This clearly shows that our higher order polynomial approximations are
suffering from massive loss of precision. We can’t plot results above 11th

order since the intervals are infinite; these calculations have effectively lost
all digits of precision.
Note that the intersection of the two curves provides a reasonable choice
of 4 for the polynomial order we should use to calculate this specific
derivative.

Improving the algorithm
Our algorithm is, in fact, the first step in the Gaussian elimination
technique for solving simultaneous linear equations. The second stage is
that of back-substitution during which the remaining unknowns are
recovered by recursively substituting back to the equations each unknown
as it is revealed. We are able to skip this step because we are only interested
in one of the unknowns.
However, as it stands, our algorithm is not particularly well implemented.

Listing 4

template<class F>
typename polynomial_derivative<F>::result_type
polynomial_derivative<F>::operator()(
 const argument_type &x) const
{
 std::vector<std::vector<result_type> >
 lhs(n, std::vector<result_type>(n));
 std::vector<result_type> rhs(n);
 const argument_type abs_x =
 (x>argument_type(0)) ? x : -x;
 const result_type fx = f_(x);
 for(size_t i=0;i!=n_;++i)
 {
 const argument_type y =
 x +argument_type(i+1)*ef_*(
 abs_x+argument_type(1));
 result_type fac(1);
 for(size_t j=0;j!=n_;++j)
 {
 fac *= result_type(j+1);
 const result_type dn = pow(result_type(y-x),
 result_type(j+1));
 lhs[i][j] = dn/fac;
 }
 rhs[i] = f_(y)-f_(x);
 }
 return solve_impl(lhs, rhs, n_-1);
}

Figure 1

Figure 2
18 | Overload | December 2011

FEATURERICHARD HARRIS

 we have automated the annoying process
of working out the formulae
Firstly, if every value in a column in the left hand side is zero, an unlikely
but not impossible prospect, we shall end up dividing zero by zero.
Secondly, and more importantly, by eliminating rows in reverse order of
the magnitude of δ, we risk dividing by small values and unnecessarily
amplifying rounding errors; a far better scheme is to choose the row with
the largest absolute value in the column we are eliminating.
Listing 5 provides a more robust implementation of our simultaneous
equation solver that corrects these weaknesses.
Unfortunately, whilst this certainly improves the general stability of our
algorithm, it does not make much difference to its accuracy.
A more effective approach is to try and minimise the number of arithmetic
operations we require for our algorithm. We can do this by exploiting the
very same observation that led us to the symmetric finite difference; that
the difference between a pair of evaluations of the function an equal
distance above and below x depends only on the odd ordered derivatives.

This will yield an error of the same order as our first implementation with
approximately half the number of simultaneous equations and
consequently roughly one eighth of the arithmetic operations.
Listing 6 shows the required changes in the polynomial_derivative
member functions.
Figure 4 illustrates the impact upon the number of accurate digits in the
results of our improved approximations.

Clearly, this is far better than our first attempt; the observed error is
consistently smaller than expected. However, on performing the
calculation using interval arithmetic, we find that we are still restricted by
cancellation error, as shown in figure 5.
If we choose the point at which the observed cancellation error crosses the
expected error, shown as a dashed line, we should choose a 7th order
polynomial, corresponding again to 4 simultaneous equations.
These polynomial approximation algorithms are certainly an improvement
upon finite differences since we have automated the annoying process of
working out the formulae. However, we are still clearly constrained by the
trade off between approximation and cancellation error.
This problem is fundamental to the basic approach of these algorithms;
computing the coefficients of the Taylor series by solving simultaneous
equations is inherently numerically unstable.

Figure 3

δ δ

δ δ

× ′() + × ′′′() +
+ × () = +()−()

− −

f x f x

f x f xn
n n

1
6

3

1
2 1

2 1 2 1 1
2

...

!
() −− −()()f x δ

Listing 5

template<class T>
T
solve_impl(std::vector<std::vector<T> > &lhs,
 std::vector<T> &rhs,
 const size_t n)
{
 T abs_nn =
 lhs[n][n]>T(0) ? lhs[n][n] : -lhs[n][n];
 for(size_t i=0;i!=n;++i)
 {
 const T abs_in =
 lhs[i][n]>T(0) ? lhs[i][n] : -lhs[i][n];
 if(abs_in>abs_nn)
 {
 abs_nn = abs_in;
 std::swap(lhs[i], lhs[n]);
 std::swap(rhs[i], rhs[n]);
 }
 }
 if(abs_nn>T(0))
 {
 for(size_t i=0;i!=n;++i)
 {
 for(size_t j=0;j!=n;++j)
 {
 lhs[i][j] -=
 lhs[i][n]*lhs[n][j]/lhs[n][n];
 }
 rhs[i] -= lhs[i][n]*rhs[n]/lhs[n][n];
 }
 }
 return n!=0 ? solve_impl(lhs, rhs, n-1) :
 rhs[0]/lhs[0][0];
}

December 2011 | Overload | 19

FEATURE RICHARD HARRIS
To understand why, it is illuminating to recast the problem as one of linear
algebra.

A problem of linear algebra
By the rules of matrix and vector arithmetic we have, for a matrix M and
vectors v and w

where subscripts i,j of a matrix denote the jth column of the ith row, a
subscript i of a vector denotes its ith element and the capital sigma denotes
the sum of the expression to its right for every valid value of the symbol
beneath it.
We can consequently represent the simultaneous equations of our
improved algorithm with a single matrix-vector equation if we choose the
elements of M, v and w such that

for i and j from one up to and including n.
Those matrices with the same number of rows and columns, say n, whose
elements are equal to one if the column index is equal to the row index
and zero otherwise we call identity matrices, denoted by I. These have the
property that for all vectors v with n elements

If we can find a matrix M-1 such that

known as the inverse of M, we have

Our algorithm is therefore, in some sense, equivalent to inverting the
matrix M.
That this can be a source of errors is best demonstrated by considering the
geometric interpretation of linear algebra in which we treat a vector as
Cartesian coordinates identifying a point.
For example, in two dimensions we have

Listing 6

template<class F>
polynomial_derivative<F>::polynomial_derivative(
 const function_type &f,
 const unsigned long n)
: f_(f), n_(n),
 ef_(pow(argument_type(2*n+1)
 *eps<argument_type>(),
 argument_type(1)/argument_type(2*n+1))),
 lhs_(n, std::vector<result_type>(n)),
 rhs_(n)
{
 if(n==0) throw std::invalid_argument("");
}
template<class F>
typename polynomial_derivative<F>::result_type
polynomial_derivative<F>::operator()(
 const argument_type &x) const
{
 const argument_type abs_x =
 (x> result_type(0)) ? x : -x;
 for(size_t i=0;i!=n_;++i)
 {
 const argument_type y =
 abs_x + argument_type(i+1)*ef_*(
 abs_x+argument_type(1));
 const argument_type d = y-abs_x;
 result_type fac(1);
 for(size_t j=0;j!=n_;++j)
 {
 const result_type dn =
 pow(result_type(d), result_type(2*j+1));
 lhs_[i][j] = dn/fac;
 fac *=
 result_type(2*j+2) * result_type(2*j+3);
 }
 rhs_[i] = (f_(x+d)-f_(x-d)) / result_type(2);
 }
 return solve_impl(lhs_, rhs_, n_-1);
}

Figure 4 Figure 5

w M v
w M v

= ×

= ×∑i i, j
j

j

M

v

w

i, j j
j

j
j

i

i

f x

f x i f x i

= ×()
= ()
= + ×() − − ×()(

−()
−

−

1
2 1

2 1

2 1

1
2

!

()

δ

δ δ))

I v v× =

M M I− × =1

M w M M v
M w I v
M w v

− −

−

−

× = × ×

× = ×

× =

1 1

1

1

20 | Overload | December 2011

FEATURERICHARD HARRIS
Hence every two by two matrix represents a function that takes a point in
the plane and returns another point in the plane.
If it so happens that c÷a equals d÷b then we are in trouble since the two
dimensional plane is transformed into a one dimensional line.
For example, if

then

Given the result of such a function there is no possible way to identify
which of the infinite number of inputs might have yielded it.
Such matrices are known as singular matrices and attempting to invert
them is analogous to dividing by zero. They are not, however, the cause
of our problems. Rather, we are troubled by matrices that are nearly
singular.
To understand what this means, consider the two dimensional matrix

Figure 6 shows the result of multiplying a set of equally spaced points on
the unit square by this matrix. The points clearly end up very close to a
straight line rather than exactly upon one.
To a mathematician, who is equipped with the infinitely precise real
numbers, this isn’t really a problem. To a computer programmer, who is
not, it causes no end of trouble. One dimension of the original data has been
compressed to small deviations from the line. These deviations are
represented by the least significant digits in the coordinates of the points
and much information about the original positions is necessarily rounded
off and lost. Any attempt to reverse the process cannot recover the original

positions of the points with very much accuracy; cancellation error is the
inevitable consequence.
That our approximations should lead to such matrices becomes clear when
you consider the right hand side of the equation. We choose δ as small as
possible in order to minimise approximation error with the result that the
function is evaluated at a set of relatively close points. These evaluations
will generally lie close to a straight line since the behaviour of the function
will largely be governed by the first two terms in its Taylor series
expansion.
Unfortunately, the approach we have used to mitigate cancellation error is
horribly inefficient since we must solve a new system of simultaneous
equations each time we increase the order of the approximating
polynomials.
The question is whether there is there a better way?

Ridders’ algorithm
The trick is to turn the problem on its head; rather than approximate the
function with a polynomial and use its coefficients to approximate the
derivative we treat the symmetric finite difference itself as a function of δ
and approximate it with a polynomial.
Specifically, if we define

and we vigorously wave our hands, we have

Now, if we approximate with an nth order polynomial then we
can approximate the derivative of f by evaluating it at 0

We could try to find an explicit formula for by evaluating at n
non-zero values of δ and solving the resulting set of linear equations, as
we did in our first polynomial algorithm, but we would end up with the
same inefficiency as before when seeking the optimal order.
Ridders’ algorithm [Ridders82] avoids this problem by evaluating the
polynomial at zero without explicitly computing its coefficients. That this
is even possible might seem a little unlikely, but nevertheless there is more
than one way to do so.

M

v

M v

=
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

× =
× + ×
× + ×

⎛

⎝
⎜

⎞

⎠
⎟

a b
c d

x
y

a x b y
c x d y

′
′

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟×

⎛

⎝
⎜

⎞

⎠
⎟ =

+
+

⎛

⎝
⎜

⎞

⎠
⎟

x
y

x
y

x y
x y

2 4
3 6

2 4
3 6

′ = ′y x1 1
2

M =
⎛

⎝
⎜

⎞

⎠
⎟

2 4
3 5 1

2

g
f x f x

f x, δ
δ δ

δ
() =

+() − −()
2

′() = ()f x g f x, 0

g f x, ,ˆ n
f xg

() (),ˆ 0n
f xf x g′ ≈

,ˆ n
f xg g f x,

Figure 6
December 2011 | Overload | 21

FEATURE RICHARD HARRIS
Neville’s algorithm
We can easily compute the value of the polynomial that passes through a
pair of points, trivially a straight line, without explicitly computing its
coefficients with a kind of pro-rata formula.
Given a pair of points (x0,y0) and (x1,y1), the line that passes through them
consists of the points (x,y) where

This can be rearranged to yield an equation for the line

Neville’s algorithm, described in Numerical Recipes in C [Press92],
generalises this approach to any number of points, or equivalently any
order of polynomial, and takes the form of a recursive set of formulae.
Given a set of n points (xi,yi) and a value x at which we wish to evaluate
the polynomial that passes through them, we define the formulae

from which we retrieve the value of the polynomial at x with p1,n(x).
If we arrange the formulae in a triangular tableau, we can see that as the
calculation progresses each value is derived from the pair above and below
to its left.

This shows why this algorithm is so useful; adding a new point introduces
a new set of values without affecting those already calculated. We can
consequently increase the order of the polynomial approximation without
having to recalculate the entire tableau.
Further noting that we actually only really need the lower diagonal values
when we do so allows us to implement Neville’s algorithm with minimal
memory usage, as shown in listing 7.
The constructor simply initialises the point at which the polynomial will
be evaluated, xc_, and pre-allocates some space for the x_ and p_ buffers,
as shown in listing 8.
The body of the algorithm is in the refine member function, given in
listing 9.
It might not be immediately obvious that this function correctly applies
Neville’s algorithm due to its rather terse implementation. I must confess
that once I realised that I didn’t need to keep the entire tableau in memory
I couldn’t resist rewriting it a few times to improve its efficiency still
further.
The key to understanding its operation is the fact that the x values are
iterated over in reverse order.

y y
x x

y y
x x

−
−

=
−
−

0

0

1 0

1 0

y y
y y
x x

x x= +
−
−

× −()0
1 0

1 0
0

p x y i n

p x
x x p x x x p x

x

i i i

i j
j i j i i j

i

,

,
, ,

() = ≤ ≤

() =
−()× () + −()× ()− +

1

1 1

−−
≤ < ≤

x
i j n

j

1

p x
p x

p x p x
p x p x

p x p x
p

1 1

1 2

2 2 1 3

2 3 1 4

3 3 2 4

3

,

,

, ,

, ,

, ,

()
()

() ()
() ()

() ()
,,

,

4

4 4

x
p x

()
()

Listing 7

template<class T>
class neville_interpolate
{
public:
 typedef T value_type;
 explicit neville_interpolate(
 const value_type &xc);
 value_type refine(
 const value_type &x, value_type y);
private:
 value_type xc_;
 std::vector<value_type> x_;
 std::vector<value_type> p_;
};

Listing 8

template<class T>
neville_interpolate<T>::neville_interpolate(
 const value_type &xc)
: xc_(xc)
{
 x_.reserve(8);
 p_.reserve(8);
}

Derivation 1

The result of Neville’s algorithm for n points is trivially an n-1th order
polynomial since each value in the tableau is one order higher in x than
those to its left used to calculate it and the leftmost values are constants
and hence of order 0.

All that remains is to prove that it passes through the set of points (xi,yi).

Consider a single point (xk,yk), some i less than k and some j greater than k

If we apply these equalities recursively, we have

so that there are two diagonal lines of yk’s running up and down from
pk,k(xk) on the left of the tableau, albeit not necessarily of the same length
or of more than the leftmost value.

If the final value lies on one of these diagonals, we are done. If not, then
consider the value calculated from the second on each of these diagonals

If we continue to fill in the tableau we find that every value lying between
the diagonals in the tableau, including p1,n(xk), must therefore be equal
to yk.

p x y

p x

x x p x x x p x
x

k k k k

i k k

k k i k k i k i k k

,

,

, ,

() =
()

=
−()× () + −()× ()− +1 1

ii k

i k i k k

i k
i k k

k j k

k j

x
x x p x

x x
p x

p x

x x p

−

=
−()× ()

−
= ()

()

=
−()×

+
+

1
1

,
,

,

kk j k k k k k k

k j

k j k j k

k j

x x x p x

x x

x x p x

x x

, ,

,

− +

−

() + −()× ()
−

=
−()× ()

−

1 1

1 == ()−p xk j k, 1

p x y

p x y
i k k k

k j k k

,

,

() =
() =

p x
x x p x x x p x

xk k k
k k k k k k k k k k

k
− +

+ − − +

−

() =
−()× () + −()× ()

1 1
1 1 1 1

1
,

, ,

−−

=
−()× + −()×

−

=
− × + ×

+

+ −

− +

+ −

x
x x y x x y

x x
x y x y

k

k k k k k k

k k

k k k k

1

1 1

1 1

1 1

xx x
y

k k
k

− +−
=

1 1
22 | Overload | December 2011

FEATURERICHARD HARRIS
The tableau representation of the algorithm is also helpful in demonstrating
why Neville’s algorithm works, as shown in derivation 1.

A better polynomial approximation
We could use interval arithmetic again to decide when to stop increasing
the order of the approximating polynomial. Ridders’ algorithm takes a
different approach, however.
As the order of the polynomial increases we expect the result to get
progressively closer to the correct value until the point at which
cancellation error takes over. The absolute differences between successive
approximations should consequently form a more or less decreasing
sequence up to that point.
The algorithm therefore begins with a relatively large δ and, shrinking it
at each step, computes the symmetric finite difference and refines the
polynomial approximation for δ equal to 0. The value with the smallest
absolute difference from that of the previous step is used as the
approximation of the derivative with the algorithm terminating when the
step starts to grow.
Now there is almost certainly going to be some numerical noise in the value
of the polynomial at each step, so rather than stop as soon as the difference
increases we shall terminate when the difference is twice the smallest
found so far.
Note that the smallest absolute difference provides a rough estimate of the
error in the approximation.
The rate at which we shrink δ and the termination criterion are based upon
the implementation of this algorithm given in Numerical Recipes in C.
There are a couple of important differences however.
Firstly, they use the penultimate value in the final row of the Neville’s
algorithm tableau as a second approximation to the derivative, having the
same polynomial order as the previous iteration’s approximation but with
a smaller δ. This is used to improve the termination criterion for the
algorithm.
Secondly, we exploit the fact that the symmetric finite difference doesn’t
depend upon the sign of δ. At each step we can refine the polynomial twice
with the same symmetric difference; once with the positive δ, once with
its negation. This doubles the order of the approximating polynomial and
forces it to be symmetric about 0 with no additional evaluations of the
function but may lead to increased cost in the application of Neville’s
algorithm. This is a reasonable trade-off if the cost of the function
evaluations is the primary concern.

Listing 10 shows the class definition for our implementation of Ridders’
algorithm.
The constructors are responsible for determining the initial δ. To avoid
rounding error we shall again use a multiple of this and 1 plus the absolute
value of the point at which we wish to compute the derivative.
If the function is reasonably well behaved from the perspective of the
symmetric finite difference, a choice of 10% is fairly reasonable and is
used in the first constructor as given in listing 11.
Note that if the approximate error is large it is worth reconsidering the
choice of the initial step size.
The refine m e m b e r f u nc t i o n i s u s e d t o r e f i n e a
neville_interpolate approximation of the derivative with the pair
of equivalent symmetric finite difference approximations, as shown in
listing 12.
The apply member function implements the body of the algorithm as
described with the function call operator simply returning its value without
providing an error estimate, as illustrated in listing 13.
Figure 7 shows the actual (solid line) and estimated (dashed line) decimal
digits of accuracy in the approximate derivative of the exponential function
using our implementation of Ridders’ algorithm.
This represents a vast improvement in both accuracy and error estimation
over every algorithm we have studied thus far. Figure 8 demonstrates the
former with a comparison of the results of Ridders’ algorithm (solid line)

Listing 9

template<class T>
typename neville_interpolate<T>::value_type
neville_interpolate<T>::refine(
 const value_type &x, value_type y)
{
 std::vector<value_type>::reverse_iterator
 xi = x_.rbegin();
 std::vector<value_type>::reverse_iterator
 x0 = x_.rend();
 std::vector<value_type>::iterator
 pi = p_.begin();
 while(xi!=x0)
 {
 std::swap(*pi, y);
 y = (y*(xc_-x) + *pi*(*xi-xc_)) / (*xi-x);
 ++xi;
 ++pi;
 }
 x_.push_back(x);
 p_.push_back(y);
 return y;
}

Listing 10

template<class F>
class ridders_derivative
{
public:
 typedef F function_type;
 typedef typename F::argument_type argument_type;
 typedef typename F::result_type result_type;
 explict ridders_derivative(
 const function_type &f)
 ridders_derivative(const function_type &f,
 const argument_type &d);
 result_type apply(const argument_type &x,
 result_type &err) const;
 result_type operator()(
 const argument_type &x) const;
private:
 result_type refine(
 neville_interpolate<result_type> &f,
 const argument_type &x,
 const argument_type &dx) const;
 function_type f_;
 argument_type d_;
};

Listing 11

template<class F>
ridders_derivative<F>::ridders_derivative(
 const function_type &f) :
 f_(f),
 d_(argument_type(1)/argument_type(10))
{
}
template<class F>
ridders_derivative<F>::ridders_derivative(
 const function_type &f,
 const argument_type &d)
: f_(f), d_(d)
{
}

December 2011 | Overload | 23

FEATURE RICHARD HARRIS
and a 7th order polynomial approximation (dashed line) using the improved
version of our original algorithm based on the truncated Taylor series.
The relative error in these results is on average roughly 2E-15, just one
decimal order of magnitude worse than the theoretical minimum.
We have thus very nearly escaped the clutches of numerical error and I
therefore declare polynomial approximation of the derivative, in this its
final and most effective form, a giant amongst ducks; QUAAAACK!

References and further reading
[Press92] Press, W.H. et al, Numerical Recipes in C (2nd ed.), Cambridge

University Press, 1992.
[Ridders82] Ridders, C.J.F., Advances in Engineering Software, Volume

4, Number 2., Elsevier, 1982.

Listing 12

template<class F>
typename ridders_derivative<F>::result_type
ridders_derivative<F>::refine(
 neville_interpolate<result_type> &f,
 const argument_type &x,
 const argument_type &dx) const
{
 const argument_type xa = x+dx;
 const argument_type xb = x-dx;
 const result_type df =
 (f_(xa)-f_(xb))/result_type(xa-xb);
 f.refine(result_type(xb-xa), df);
 return f.refine(result_type(xa-xb), df);
}

Listing 13

template<class F>
typename ridders_derivative<F>::result_type
ridders_derivative<F>::apply(
 const argument_type &x,
 result_type &err) const
{
 static const argument_type c1 =
 argument_type(7)/argument_type(5);
 static const argument_type c2 = c1*c1;
 neville_interpolate<result_type>
 f(result_type(0));
 argument_type abs_x =
 (x>argument_type(0)) ? x : -x;
 argument_type dx = d_ *
 (abs_x+argument_type(1));
 result_type y0 = refine(f, x, dx);
 result_type y1 = refine(f, x, dx/=c1);
 result_type y = y1;
 err = (y0<y1) ? (y1-y0) : (y0-y1);
 result_type new_err = err;
 while(new_err<err+err)
 {
 y0 = y1;
 y1 = refine(f, x, dx/=c2);
 new_err = (y0<y1) ? (y1-y0) : (y0-y1);
 if(new_err<err)
 {
 err = new_err;
 y = y1;
 }
 }
 return y;
}
template<class F>
typename ridders_derivative<F>::result_type
ridders_derivative<F>::operator()(
 const argument_type &x) const
{
 result_type err;
 return apply(x, err);
}

Figure 7

Figure 8
24 | Overload | December 2011

FEATUREMARK SUMMERFIELD
Concurrent Programming with Go
Concurrency is becoming ever more
important. Mark Summerfield looks at the
approach of the new language Go.
he Go programming language is in some respects a radical departure
from existing compiled languages. Its syntax, although C-ish, is much
cleaner and simpler than C or C++’s, and it supports object-

orientation through embedding (delegation) and aggregation, rather than
by using inheritance. Go has a built-in garbage collector so we never have
to worry about deleting/freeing memory – something that can be fiendishly
complicated in a multithreaded context. In this article we will focus on
another area where Go breaks new ground (at least, compared with other
mainstream programming languages): concurrency.
Go has the usual concurrency primitives, such as mutexes, read–write
mutexes, and wait conditions, as well as low-level primitives such as
atomic adds, loads, and compare and swaps. But Go programmers are
encouraged to avoid using any of these and instead to use Go’s high-level
goroutines and channels.
A goroutine is a very lightweight thread of execution that shares the same
address space as the rest of the program. The gc compiler multiplexes one
or more goroutines per operating system thread and can realistically
support hundreds, thousands, or more goroutines.
A channel is a two-way (or one-way, at our option) communications
pipeline. Channels are type safe, and when they are used to pass immutable
values (bools, ints, float64s, strings, and structs composed of
immutable values), they can be used in multiple goroutines without
formality. When it comes to passing pointers or references, we must, of
course, ensure that our accesses are synchronized.
Incidentally, goroutines and channels are an implentation of a form of CSP
(Communicating Sequential Processes), based on the ideas of computer
scientist C. A. R. Hoare.
Go’s mantra for concurrency is:

Do not communicate by sharing memory;
instead, share memory by communicating.

In this article we will review a simple concurrent program called
headcheck, that, given a list of URLs, performs an HTTP HEAD request
on each one and reports its results. We will look at a few different ways
the program can implement concurrency using Go’s goroutines and
channels, to give a flavour of the possibilities.
Listing 1 shows the structs the program will operate on. We made Job
a struct because this is syntactically more convenient when giving it
methods.
Listing 2 shows the main() function. The built-in make() command is
used to create channels (as well as values of the built in map and slice
collection types).
In Listing 2, both nWorkers and bufferSize are constants (6 and 24;
not shown).
The main() function begins by creating three channels, one for passing
jobs to worker goroutines, one for receiving all the results, and another to
keep track of when each worker goroutine has finished.
By default channels are unbuffered (their size is 0) which means that a
receive will block until there is a send and a send will block if there’s a

sent item that hasn’t been received. By buffering we allow a channel to
accept as many sends as the size of the buffer, before sends are blocked.
Similarly, we can do as many receives as there are items in the buffer, only
blocking when the buffer is empty. The purpose of buffering is to improve
throughput by minimizing the time goroutines spend being blocked.
In this example we have buffered all the channels by giving make() a
second buffer-size argument. We have made the jobs channel large
enough to accept (an average of) two jobs per worker goroutine and made
the results channel big enough to accept plenty of results without blocking
the workers. The done channel’s buffer’s size is the same as the number
of workers since, as we will see, each worker sends to that channel exactly
once.
To execute code in a separate goroutine we use the go keyword. This
keyword must be followed by a function call (which could be a call on a
function literal – which is also a closure). The go statement completes
‘immediately’ and the called function is executed in a newly created
goroutine. When the function finishes the Go runtime system
automatically gets rid of its goroutine and reclaims the memory it used.

T

Listing 1

type Result struct {
 url string
 status int
 lastModified string
}
type Job struct {
 url string
}

Listing 2

func main() {
 jobs := make(chan Job, nWorkers * 2)
 results := make(chan Result, bufferSize)
 done := make(chan bool, nWorkers)

 go addJobs(jobs)
 for i := 0; i < nWorkers; i++ {
 go doJobs(jobs, results, done)
 }
 go wait(results, done)
 process(results)
}

Mark Summerfield is an independent programmer, author, and trainer.
His book, Programming in Go ISBN 0-321-77463-9, is due to be
published Q1 2012. He can be contacted at www.qtrac.eu.
December 2011 | Overload | 25

FEATURE MARK SUMMERFIELD

Once the main goroutine has finished, the
program will terminate – even if there are
other goroutines still executing
Here, the main() function executes the addJobs() function in its own
separate goroutine, so execution continues immediately to the for loop.
In the for loop six separate goroutines are created, each one executing an
instance of the doJobs() function. All the newly created goroutines share
the same jobs channel and the same results channel. The for loop
completes as soon as the goroutines have been created and started and then
another function is called, wait(), again in its own separate goroutine.
And finally, we call the process() function in the current (main)
goroutine.
Figure 1 schematically illustrates the relationships between the program’s
goroutines and channels.
Once the main goroutine has finished, the program will terminate – even
if there are other goroutines still executing. So, we must ensure that all the
other goroutines finish their work before we leave main().
The addJobs() function is used to populate the jobs channel and is
shown in Listing 3, but with the code for reading in the URLs elided.
Each job simply consists of a URL to check. URLs are read from
os.Stdin (e.g., by using redirection on the command line). At each
iteration we read both a line and an error value; if the error is io.EOF
we have finished and break out of the for loop. (All of this has been
elided.)
Once all the jobs have been added the jobs channel is closed to signify
that there are no more jobs to be added. Sending to a channel is done using
the syntax channel <- item. Items can be received from a channel that
is non-empty, even if it is closed, so no jobs will be lost. When the

addJobs() function has finished the Go runtime system will take care
of removing the goroutine in which it ran and reclaiming its memory.
The doJobs() function is shown in Listing 4. It is simple because it
passes all its work on to a method of the Job type (not shown). The
Job.Do() method sends one result of type Result to the results
channel using the statement results <- result.
Go’s for ... range statement can iterate over maps (data dictionaries
like C++11’s unordered_map), slices (in effect, variable length arrays),
and channels. If the channel has an item it is received and assigned to the
for loop’s variable (here, job); if the channel has no item but isn’t closed
the loop blocks. Of course, this does not hold up the rest of the program,
only the goroutine in which the loop is executing is blocked. The loop
terminates when the channel is empty and closed.
Once all the jobs are done the function sends a bool to the done channel.
Whether true or false is sent doesn’t matter, since the done channel
is used purely to keep the program alive until all the jobs are done.
The headcheck program has one goroutine adding jobs to the jobs
channel and six goroutines reading and processing jobs from the same
channel, all of them working concurrently. Yet, we don’t have to worry
about locking – Go handles all the synchronization for us.
Listing 5 shows the wait() function which was executed by main() in
its own goroutine. This function has a regular for loop that iterates for as
many worker goroutines as were created, and at each iteration it does a
blocking receive using the syntax item <- channel. Notice that it
doesn’t matter whether true or false was sent – we only care that
something was sent – since we discard the channel’s items. Once all the

Figure 1

main()

goroutine #0

addJobs()

goroutine #1

doJobs()

goroutine #2

wait()

goroutine #8

doJobs()

goroutine #7

results

.

.

.

jobs

results
and done

os.Stdout os.Stdin

results

Listing 3

func addJobs(jobs chan Job) {
 reader := bufio.NewReader(os.Stdin)
 for {
 ... // Read in a URL
 url = strings.TrimSpace(url)
 if len(url) > 0 {
 jobs <- Job{url}
 }
 }
 close(jobs)
}

Listing 4

func doJobs(jobs chan Job,
 results chan Result, done chan bool) {
 for job := range jobs {
 job.Do(results)
 }
 done <- true
}

26 | Overload | December 2011

FEATUREMARK SUMMERFIELD
workers have sent to the done channel we know that there can be no more
results added to the results channel, so we close that channel.
Listing 6 shows the process() function which is executed in the main
goroutine. This function iterates over the results channel and blocks if
no result is available. The for loop terminates when the results
channels is empty and closed, which will only happen when the wait()
function finishes. This ensures that this function blocks the main
goroutine until every result has been received and output.
We could replace the wait() and process() functions with a single
waitAndProcess() function executed in the main goroutine, as Listing
7 illustrates.
This function begins with a while loop that iterates so long as there is at
least one worker still working. The select statement is structurally like
a switch statement, only it works in terms of channel communications.
A select with no default case is blocking. So, here, the first select
blocks until it receives either a result or an empty struct.
Since we don’t care what’s sent to the done channel, only whether
something’s sent, we have defined the channel to be of type chan
struct{}. This channel’s value type specifies a struct with no fields;
there is only one possible value of such a type and this is specified using
struct{}{} which means create a (zero) value of type struct{}. Since
such values have no data they are more expressive of our semantics than
sending bools whose value we would then ignore.
After each receive the select is broken out of and the loop condition is
checked. This causes the main goroutine to block until all the workers
have finished sending their results (because they only send to the done
channel after they have finished all their jobs).

It is quite possible that after all the worker goroutines have finished there
are still unprocessed results in the results channel (after all, we buffered
the channel when we created it). So we execute a second for loop (an
infinite loop) that uses a non-blocking select. So long as there are results
in the results channel the select will receive each one and finish, and
the for loop will iterate again. But once the results channel is empty
and closed the default case will be executed, and the function returned
from. At this point all the results have been output and the program will
terminate.

A pipelining approach
Goroutines and channels are very flexible and versatile, to the extent that
we can take some quite different approaches to concurrency. Listing 8
illustrates an alternative headcheck implementation’s main() function.
Unlike the previous versions, this headcheck program only reports on
URLs for HTML files and images, and ignores anything else. We could
always add another pipeline component, say, processRemainder(), if
we didn’t want to ignore any URLs.
Figure 2 schematically illustrates the relationships between the program’s
goroutines and channels.
The function begins by creating a buffered results channel and then it
executes a pipeline in a separate goroutine. (And as we will see, each
component of the pipeline itself executes in a separate goroutine.) Control
immediately passes to the for ... range loop which blocks waiting
for results and finishes when the results channel is empty and closed.
(The Result type was shown in Listing 1.) The source() function
shown in Listing 9 is where the pipeline begins.
A Go function’s return value is specified after the closing parenthesis that
follows the function’s arguments. Multiple values can be returned simply
by enclosing them in parentheses. Here we return a receive-only channel
and a send–receive channel.

Listing 5

func wait(results chan Result,
 done chan bool) {
 for i := 0; i < nWorkers; i++ {
 <-done
 }
 close(results)
}

Listing 6

func process(results chan result) {
 for result := range results {
 result.Report(os.Stdout)
 }
}

Listing 7

func waitAndProcess(results <-chan Result,
 done <-chan struct{}) {
 for working := nWorkers; working > 0; {
 select { // Blocking
 case result := <-results:
 result.Report(os.Stdout)
 case <-done:
 working--
 }
 }
 for {
 select { // Non-blocking
 case result := <-results:
 result.Report(os.Stdout)
 default:
 return
 }
 }
}

Listing 8

func main() {
 results := make(chan Result, bufferSize)
 go sink(processImages(processHTML(
 source(results))))
 for result := range results {
 result.Report(os.Stdout)
 }
}

Figure 2

main()

goroutine #0

source()

goroutine #1

processHTML()

goroutine #2

processImages()

goroutine #3

sink()

goroutine #4

results

os.Stdout os.Stdin

results

out/results

out/results

out/results
December 2011 | Overload | 27

FEATURE MARK SUMMERFIELD
The source() function is passed the results channel, which it simply
returns to its caller. All the pipeline functions share the same results
channel. The function starts by creating a buffered output channel which
is initially bi-directional. It then creates a goroutine to populate the out
channel with jobs (in this case URL strings), after which the goroutine
closes the channel. By closing the channel, future receivers (e.g., using a
for ... range loop) will know when to finish. The go func() {
... }() creates a function literal (which is a closure) and executes it in
a separate goroutine. So processing immediately continues to the
source() function’s last statement which simply returns the out channel
as a receive-only channel thanks to the way the function’s return value is
declared, as well as the results channel.
The processHTML() function shown in Listing 10 has the same structure
as all the pipeline component functions except for the source() function.
It is passed two channels, a receive-only jobs channel (of type chan
string) which it calls in (and which was the previous pipeline
component’s out channel), and the shared results channel. The
function creates a new buffered bi-directional out channel with the same
buffer size as the capacity of the in channel the function has been passed.
It then creates a goroutine which executes a new function literal. The
goroutine reads jobs from the in channel. This channel is closed by the
previous pipeline component when it has been fully populated, so this
goroutine’s for ... range loop is guaranteed to terminate. For each
job (URL) received, for those that this function can process it performs its
processing (in this case a call to a Check() function), and sends the result
to the results channel. And those jobs the function isn’t concerned with
are simply sent to the (new) out channel. At the end the function returns
its out channel and the shared results channel.
The processImages() function has the same signature and uses the
same logic.
The sink() function takes a receive-only jobs channel and a receive-
only results channel. It is shown in Listing 11.
The sink() function is the last one in the pipeline. It iterates over the
penultimate pipeline component’s jobs channel, draining it until it is
empty. (It might be empty in the first place if every job has been done by
one or other pipeline component.)
At the end the function closes the results channel. Closing the results
channel is essential to ensure that the for ... range loop in main()
terminates. But we must be careful not to close the channel when one or
more goroutines might still want to send to it. Looking back at the
implementations of the source() and processHTML() functions we

can see that each creates its own out channel which it ultimately closes
when it has finished processing. The last of these out channels is passed
to the sink() function as its in channel – and this channel isn’t closed
until all the previous pipeline components have finished reading their in
channels and closed their out channels. In view of this we know that once
the for ... range loop in the sink() function has finished, all of the
pipeline’s preceding components have finished processing and no more
results could be sent to the results channel, and hence the channel is
safe to close.
The pipeline-based headcheck program ends up with five goroutines:
one executing sink(), one started by source(), one started by
processHTML(), one started by processImages(), and the main
goroutine that main() executes in. All of these goroutines operate
concurrently, passing type-safe values via channels, only terminating
when their work is done, and with no explicit locks.
Thinking in terms of goroutines and channels is very different from
thinking in terms of threads and locks, and may take some getting used to!
Also, keep in mind that in this article we have seen just some of the possible
ways of using goroutines and channels – many other approaches are
possible. Go is a fascinating language, not just for its innovative approach
to concurrency, but also for its clean syntax and very different approach
to object orientation, and is well worth getting to know.

Further information
The Go Programming Language: http://golang.org/

Listing 9

func source(results chan Result) (
 <-chan string, chan Result) {
 out := make(chan string, bufferSize)
 go func() {
 reader := bufio.NewReader(os.Stdin)
 for {
 ... // Read in a URL
 out <- url
 }
 close(out)
 }()
 return out, results
}

Listing 10

func processHTML(in <-chan string,
 results chan Result) (<-chan string,
 chan Result) {
 out := make(chan string, cap(in))
 go func() {
 for url := range in {
 suffix := strings.ToLower(
 filepath.Ext(url))
 if suffix == ".htm" ||
 suffix == ".html" {
 results <- Check(url)
 } else {
 out <- url
 }
 }
 close(out)
 }()
 return out, results
}

Listing 11

func sink(in <-chan string,
 results chan Result) {
 for _ = range in {
 // Drain unprocessed URLs
 }
 close(results)
}

28 | Overload | December 2011

http://golang.org/

	Patently Ridiculous!
	Moving with the Times
	The Eternal Battle Against Redundancies, Part I
	From the Age of Power to the Age of Magic and beyond...
	RAII is not Garbage
	Why Polynomial Approximation Won't Cure Your Calculus Blues
	Concurrent Programming with Go

