

April 2013 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 A Model for Debug Complexity
Sergey Ignatchenko and Dmytro Ivanchykhin
model the complexity of debugging.

6 Valgrind Part 6 – Helgrind and DRD
Paul Floyd demonstrates Helgrind and DRD.

10 Quality Matters #7
Exceptions: the story so far
Matthew Wilson continues Quality Matters by
recapping exceptions.

18 Causality – A Mechanism for Relating
Distributed Diagnostic Contexts
Chris Oldwood introduces Causality.

24 Executable Documentation Doesn't Have
To Slow You Down
Seb Rose shows how to write executable
documentation.

27 Why Dysfunctional Programming Matters
Teedy Deigh considers functional programming.

OVERLOAD 114

April 2013

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 115 should be submitted
by 1st May 2013 and for
Overload 116 by 1st July 2013.

EDITORIAL FRANCES BUONTEMPO
Knitting Needles and Keyboards
Traditionally, both journals and developers have editors.
Frances Buontempo considers the role of an editor, in
another attempt to avoid writing an editorial.
A recent discussion started on accu general about
editors, specifically asking for helpful top-tips for
gvim or emacs, rather than starting yet another editors'
war. This halted all noble thoughts of finally writing
an Overload editorial, since I couldn’t remember the
first editor I used. The internet came to my rescue, and

I whiled away minutes speed reading the BBC user manual. The keyboard
was an integral part of the Beeb. It had a break key: “This key stops the
computer no matter what it is doing. The computer forgets almost
everything that it has been set to do” [BBCUserGuide]. Commands
typed at a prompt were executed immediately whereas a series of
numbered instructions formed a program. The user guide is littered with
instructions on how to type, such as “If you want to get the + or * then
you will have to press the SHIFT key as well as the key you want. It’s
rather like a typewriter: while holding the SHIFT key down, press the
+ sign once.“ [op cit]

Being able to type well seemed to be important back then, if slightly
esoteric. After all, computers do often come with a keyboard, though not
always. Can you imagine programming on your mobile phone using
predictive text? Many years ago, people’s first encounter with
programming might have been via a programmable calculator, which
posed similar editing problems. I’m sure most of us have seen rants from
Jeff Atwood and Steve Yegge on typing, or rather many programmers’
inability to type [Atwood]. Though typing is very important, I think my
first interaction with a computing device was sliding round beads on an
abacus, later followed by ‘needle cards’ [NeedleCards]. Allow me to
explain – I dimly recall punching holes in a neat line along the top of cue
cards, writing something on the cards, quite possibly names of polygons
and polyhedra (ooh – I have just discovered polytopes, but I digress) and
using each hole to indicate whether a property held true or held false for
the item on the card. If the property were true, you cut the hole out to form
a notch, and if false, you left the hole (or possibly vice versa). To discover
which shapes involved, say, triangles you stuck a knitting needle in the
pile of cards through the hole representing the property ‘Triangle?’, and
gave the stack of cards a good shake. The relevant ones then fell in front
of you (or stayed on the needle depending – it is a tad hazy). My
introduction to knitting was therefore derailed and I still can’t knit.

Historically inputs to a variety of machines involved holes in card or
paper. Aside from the pianola, or autopiano, using perforated paper to
mechanically move piano keys, it is often claimed that computers trace
back to the Jacquard loom. According to one Wikipedia page, “The
Jacquard loom was the first machine to use punched cards to control
a sequence of operations” [Jacquard]. Eventually, computers used

punched cards, for example Hollerith cards,
prepared using key punch machines. On a

trip to Bletchley Park a couple of years
ago, I was surprised to learn that the paper

tape input for Colossus (more holes in paper) was read by light, rather than
mechanically, and could therefore achieve a comparatively high reading
speed. Generating input in this forward-only format must have been quite
time consuming. Without a backspace key, if you make a mistake, “You
have to throw the card out and start the line all over again.” [R-inferno]
Aside from getting the hole in the punched cards correct and the cards
themselves arranged in the correct order, they need carrying around: “One
full box was pretty heavy; more than one became a load” [Fisk]. Not
all machine inputs were holes in card or paper. Consider the ‘Electronic
Numerical Integrator and Computer’, ENIAC. Though it would accept
punched cards, its programming interface originally “required physical
stamina, mental creativity and patience. The machine was enormous,
with an estimated 18,000 vacuum tubes and 40 black 8-foot cables.
The programmers used 3,000 switches and dozens of cables and digit
trays to physically route the data and program pulses.” [ENIAC]

Eventually random-access editing became possible, with punched cards
being replaced by keyboards. On a typewriter, it was possible to wind the
paper back and use Tipp-Ex to edit previous mistakes, though it would
help if you wanted to replace the mistake with the same number of
characters, or fewer. Tipp-Ex cannot change the topology of the paper you
are typing on. “In 1962 IBM announced the Selectric typewriter”
[Reilly]. This allowed proportional font and had a spherical ‘golf-ball’
typing head that could be swapped to change font. The ball would rotate
and pivot in order to produce the correct character. These electronic
typewriters eventually morphed into a machine with memory thereby
allowing word-processing. They were also used as computer terminals
after the addition of solenoids and switches, though other purpose built
devices were available [Selectric]. A computer interface that allows
editing changes the game. Emacs came on the scene in 1976, while Vim
released in 1991, was based on Vi, which Wikipedia claims was also
written in 1976 [vi]. Many editors allow syntax highlighting now, adding
an extra dimension to moving backwards and forwards in the text. This
requires the ability to parse the language being input which is leaps and
bounds beyond making holes in card. Parsing the language on input also
allows intellisense or auto-completion, though I tend to find combo-boxes
popping up in front of what I am trying to type very off-putting. After a
contract using C# with Resharper for a year, my typing speed has taken a
nose-dive, and my spelling is now even worse. I tend to look at the screen
rather than the keyboard since I can type, but when the screen is littered
with pop-ups I stop watching the screen and look out of the window
instead. If only that particular IDE came with a pop-up blocker.

In order to use these text editors, a keyboard obviously is required.
QWERTY keyboards have become the de-facto standard. Why? “It
makes no sense. It is awkward, inefficient and confusing. We’ve been
saying that for 124 years. But there it remains. Those keys made their
first appearance on a rickety, clumsy device marketed as the ‘Type-
Writer’ in 1872.” [QWERTY] This article debunks the myth that its

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | April 2013

EDITORIALFRANCES BUONTEMPO
inventor Sholes deliberately arranged his keyboard to slow down fast
typists who would otherwise jam up the keys. The arrangement seems
rather to have been designed to avoid key jams directly rather than slowing
down typists and hoping this avoided key jams. Surprisingly the keyboard
in the patent has neither a zero nor a one. I am reliably told that the letters
‘l’ and ‘O’ would be used instead. Not only have typewriters left us with
the key layout, but also archaic terms like carriage return, line feed and
shift. There are other keyboard layouts, such as Dvorak, which you can
switch to in order to confuse your colleagues or family silly. I am
personally tempted to get a Das keyboard. From their marketing spiel,
“Efficient typists don’t look at their keyboards. So why do others insist
on labelling the keys? Turns out you’ll type faster than you ever dreamed
on one of these blank babies. And that’s not to mention its powers of
intimidation.” [DASKeyboard]

Research into computer interfaces has a surprisingly long history. “The
principles for applying human factors to machine interfaces became the
topic of intense applied research during the 1940s” [HCI] Human-
computer interaction is still an active area of research today, covering
many inter-disciplinary areas from psychology to engineering. Input
methods have moved away from knitting needles and even keyboards.
Starting with text editing, in the 1950s, through to the mouse (1968) and
gesture recognition (1963), notice all in the 60s, to the first WYSIWYG
editor-formatter Xerox PARC’s Bravo (1974) [Meyers], new ways of
telling a computer what to do are constantly being created. Perhaps we are
moving closer to the realisation of a futuristic cyberpunk dream or virtual
reality. “By coupling a motion of the user’s head to changes in the
images presented on a head-mounted display, the illusion of being
surrounded by a world of computer-generated images or a virtual
environment is created. Hand-mounted sensors allow the user to
interact with these images as if they were real objects located in space
surrounding him or her” [HCI] Mind you, Meyers tells us virtual reality
was first worked on in 1965–1968, using head-mounted displays and ‘data
gloves’ [op cit], so perhaps it is more a dystopian cyberpunk dream that is
constantly re-iterated. Let’s keep our eyes on the latest virtual reality,
Google glass [Glass].

A variety of programming languages have sprung up now we can type
words into machines, or click on words in intellisense. Some programming
languages do seem to be easier to edit than others. APL springs to mind.
APL had its own character set, and required a special typeball. “Some APL
symbols, even with the APL characters on the typeball, still had to be
typed in by over-striking two existing typeball characters. An example
would be the ‘grade up’ character, which had to be made from a ‘delta’
(shift-H) and a ‘Sheffer stroke’ (shift-M). This was necessary because
the APL character set was larger than the 88 characters allowed on the
Selectric typeball.” [APL] It seems likely that making input to a computer
easier than punching cards or swapping cables and flipping switches gave
rise to high-level programming languages. I wonder if any new ways of
interacting with computers will further change the languages we use.
Perhaps the growth of test-driven development, TDD, will one day be
taken to its logical conclusion: humans will write all the tests then
machines can generate the code they need to pass the tests. Genetic
programming was introduced to perform exactly this task, possibly before
TDD was dreamt of [GP]. If this became the norm, another form of human

computer interaction we have not considered would become obsolete:
compilers. They exist purely to turn high-level languages, understood by
humans, into machine language. If programs are eventually all written by
machines, there will be no need for a human to ever read another line of
code again. Electronic wizards can automatically generate all the code we
need; we are only required to get the tests correct.

We have considered a variety of ways of editing inputs for computers, so
should step back and consider editors in the more usual sense of the word.
An editor is “in charge of and determines the final content of a text”,
according to Google. It is striking that this is remarkably like the definition
of a computer editor. Now, an editor needs something to edit, which
ultimately needs the invention of printing. Originally, scribes would hand-
copy texts self-editing as they went, but eventually books and pamphlets
could be mass-produced. This allowed arguments about spelling and an
insistence on accuracy, with such characters as Frederic Madden coming
to the fore [Matthews]. Perhaps with the prevalence of blogs and other
means of self-publishing, things have come full circle, leaving people
tending to self-edit.

We have seen the historical forms and roles of editors,
and glimpsed a fifty-year old dream of the future. I feel
more prepared to attempt a proper editorial next time,
but suspect I might need to learn to type properly first.
Hoorah for spell checkers and the Overload review
team.

References
[APL] http://en.wikipedia.org/wiki/APL_(programming_language)
[Atwood] http://www.codinghorror.com/blog/2008/11/we-are-typists-

first-programmers-second.html
[BBCUserGuide] http://bbc.nvg.org/doc/BBCUserGuide-1.00.pdf
[DASKeyboard] http://www.daskeyboard.com/#ultimate
[ENIAC] http://abcnews.go.com/Technology/

story?id=3951187&page=2
[Fisk] http://www.columbia.edu/cu/computinghistory/fisk.pdf
[Glass] http://www.google.com/glass/start/
[GP] http://www.genetic-programming.com/
[HCI] ‘Human-Computer Interaction: Introduction and Overview’

K Butler, R Jacob, B John, ACM Transactions on Computer-Human
Interaction, 1999

[Jacquard] http://en.wikipedia.org/wiki/Jacquard_loom
[Matthews] The Invention of Middle English: An Anthology of Primary

Sources David Matthews
[Meyers] A Brief History of Human-Computer Interaction Technology,

Brad A. Myers
[NeedleCards] http://en.wikipedia.org/wiki/Needle_card
[QWERTY] http://home.earthlink.net/~dcrehr/whyqwert.html
[R-inferno] Partick Burns 2011 (http://www.burns-stat.com/pages/Tutor/

R_inferno.pdf)
[Reilly] Milestones in Computer Science and Information Technology,

Edwin D. Reilly 2003
[Selectric] http://en.wikipedia.org/wiki/IBM_Selectric_typewriter
[vi] http://en.wikipedia.org/wiki/Vi
April 2013 | Overload | 3

http://en.wikipedia.org/wiki/APL_(programming_language)
http://www.codinghorror.com/blog/2008/11/we-are-typists-first-programmers-second.html
http://www.codinghorror.com/blog/2008/11/we-are-typists-first-programmers-second.html
http://bbc.nvg.org/doc/BBCUserGuide-1.00.pdf
http://www.daskeyboard.com/#ultimate
http://abcnews.go.com/Technology/story?id=3951187&page=2
http://abcnews.go.com/Technology/story?id=3951187&page=2
http://www.columbia.edu/cu/computinghistory/fisk.pdf
http://www.google.com/glass/start/
http://www.genetic-programming.com/
http://en.wikipedia.org/wiki/Jacquard_loom
http://en.wikipedia.org/wiki/Needle_card
http://home.earthlink.net/~dcrehr/whyqwert.html
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
http://en.wikipedia.org/wiki/IBM_Selectric_typewriter
http://en.wikipedia.org/wiki/Vi

FEATURE SERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
A Model for Debug Complexity
Debugging any program can be difficult. Sergey
Ignatchenko and Dmytro Ivanchykhin develop a
mathematical model for its complexity.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide with the opinions of
the translator or the Overload editor. Please also keep in mind that
translation difficulties from Lapine (like those described in
[Loganberry04]) might have prevented providing an exact
translation. In addition, both the translators and Overload expressly
disclaim all responsibility from any action or inaction resulting from
reading this article.

ebugging programs is well-known to be a complicated task, which
takes lots of time. Unfortunately, there is surprisingly little research
on debugging complexity. One interesting field of research is related

to constraint programming ([CP07][CAEPIA09]), but currently these
methods are related to constraint-based debugging, and seem to be of
limited use for analysis of debugging complexity of commonly used
program representations. This article is a humble attempt to propose at
least some mathematical models for the complexity of debugging. It is not
the only possible or the best possible model; on the contrary, we are aware
of the very approximate nature of the proposed model (and of all the
assumptions which we’ve made to build it), and hope that its introduction
(and following inevitable criticism) will become a catalyst for developing
much more precise models in the field of debugging complexity (where,
we feel, such models are sorely needed).

Basic model for naïve debugging
Let’s consider a simple linear program which is N lines of code in size.
Let’s see what happens if it doesn’t produce the desired result. What will
happen in the very simplistic case is that the developer will go through the
code in a debugger, from the very beginning, line by line, and will see what
is happening in the code. So, in this very simple case, and under all the
assumptions we’ve made, we have that

where Tline is the time necessary to check that after going through one line,
everything is still fine.

So far so obvious (we’ll analyze the possibility for using bisection a bit
later).

Now, let’s try to analyze what Tline is about. Let’s assume that our program
has M variables. Then, after each line, to analyze if anything has gone
wrong, we need to see if any of M variables has gone wrong. Now, let’s
assume that all our M variables are tightly coupled; moreover, let’s assume
that coupling is ‘absolutely tight’, i.e. that any variable affects the meaning
of all other variables in a very strong way (so whenever a variable changes,
the meaning of all other variables may be affected). It means that, strictly
speaking, to fully check if everything is fine with the program, one would
need to check not only that all M variables are correct, but also (because
of ‘absolutely tight’ coupling) that all combinations of 2 variables (and
there are C(M,2) such combinations) are correct, that all combinations of
3 variables (and there are C(M,3) such combinations) are correct, and so
on. Therefore, we have that

where

and Tsinglecheck is the time necessary to perform a single validity check.

Therefore, if we have a very naïve developer who checks that everything
is correct after each line of code, we’ll have

which is obviously (see picture) equivalent to

Optimizations
Now consider what can be done (and what in the real-world is really done,
compared to our hypothetical naïve developer) to reduce debugging time.
Two things come to mind almost immediately. The first one is that if a
certain line of code changes only one variable X (which is a very common
case), then the developer doesn’t need to check all 2M combinations of
variables, but needs to check only variable X, plus all 2-variable
combinations which include X (there are M-1 of them), plus all 3-variable
combinations which include X (there are C(M-1,2) of them), and so on.
Therefore, assuming that every line of code changes only one variable
(including potential aliasing), we’ll have

or

D

T N Tdbg line

T C M i Tline singlecheck
i

M

 (,)

1

C M i
M

i M i
(,)

!

! !

T N C M i Tdbg singlecheck
i

M

 (,)

1

T N Tdbg
M

singlecheck 2 1 *

T N C M i Tdbg
i

M

singlecheck

1 1
1

1

,

T N Tdbg
M

singlecheck 2 1

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
and Dmytro Ivanchykhin using the classic dictionary collated by
Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including architecture of a system which handles hundreds of millions
of user transactions per day. He is currently holding the position of
Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com

Dmytro Ivanchykhin has 10+ years of development experience,
and has a strong mathematical background (in the past, he taught
maths at NDSU in the United States). Dmytro can be contacted at
d_ivanchykhin@yahoo.com
4 | Overload | April 2013

FEATURESERGEY IGNATCHENKO AND DMYTRO IVANCHYKHIN
Therefore, while this first optimization does provide significant benefits,
the dependency on M is still exponential.

The second optimization to consider is using bisection. If our program is
deterministic (and is therefore reproducible), then instead of going line-
by-line, a developer can (and usually will) try one point around the middle
of the program, check the whole state, and then will see if the bug has
already happened, or if it hasn’t happened yet. The process can then be
repeated. In this case, we’ll have

Note that we cannot easily combine our two optimizations because the first
one is essentially incremental, which doesn’t fit the second one. In practice,
usually a ‘hybrid’ method is used (first the developer tries bisection, and
then, when the span of a potential bug is small enough, goes
incrementally), but we feel that it won’t change the asymptotes of our
findings.

Basic sanity checks
Now, when we have the model, we need to check how it corresponds to
the real world. One can build a lot of internally non-contradictory theories,
which become obviously invalid at the very first attempt to match them to
the real world. We’ve already made
enough assumptions to realize
the need for sanity checks. We
also realize that the list of our
sanity checks is incomplete and
that therefore it is perfectly
possible that our model won’t
stand further scrutiny.

The first sanity check is against
intuitive observations, that the
longer the program, and the
more variables it has, the more
difficult it is to debug. Our
formulae seem to pass this
check. The next sanity check is
against another intui t ive
observation that debugging
complex i ty g rows non-
linearly with the program
size; as usually both N and
M grow with the program
size, so our formulae
seem to pass this check
too.

Sanity check – effects of decoupling on debugging
complexity
Now we want to consider a more complicated case. Since the 70s, one of
the biggest improvements in tackling program (and debugging)
complexity has been the introduction of OO with hidden data, well-defined
interfaces, and reduced coupling. In other words, we all know that coupling
is bad (and we feel that no complexity model can be reasonably accurate
without taking this into account); let’s see how our model deals with it. If
we split M ‘absolutely tightly’ coupled variables into two bunches of
uncoupled variables, each being M/2 in size, and each such group has only
M/2×Kp2p public member variables (Kp2p here stands for ‘public-to-
private ratio’, and 0 <= Kp2p <= 1), then our initial formula [1] (without
optimizations) will become

where both Tfirstbunch and Tsecondbunch are equal to

and

After some calculations, we’ll get that

It means that if we have 10 variables, then splitting them into 2 bunches
of 5 variables each, with only 2 public member variables exposed from
each bunch (so Kp2p=0.4), will reduce debugging time from approx.
210×Tsinglecheck (according to *), to approx. (26+24)×Tsinglecheck
(according to **). So yes, indeed our model shows that coupling is a bad
thing for debugging complexity, and we can consider this sanity check to
be passed too.

Conclusion
In this article, we have built a mathematical model of debugging
complexity. This model is based on many assumptions, and is far from
being perfect. Still, we hope that it can either serve as a basis for building
more accurate models, or that it at least will cause discussions, leading to

the development of better models
in the field of debugging
complexity.

References
[CAEPIA09] On the complexity of program debugging using constraints

for modeling the program's syntax and semantics, Franz Wotawa,
Jörg Weber, Mihai Nica, Rafael Ceballos, Proceedings of the Current
topics in artificial intelligence, and 13th conference on Spanish
association for artificial intelligence.

[CP07] Exploring different constraint-based modelings for program
verification, Hélène Collavizza, Michel Rueher , Proceedings of the
13th international conference on Principles and practice of constraint
programming.

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.

T N Tdbg
M

singlecheck log2 2 1

T N T T Tdbg firstbunch secondbunch interbunch

C
M

i T
i

M

singlecheck21

2

,

T C
M

K i Tinterbunch p2p
i

K

singlecheck

M
p p

 2
2

1

22 2

,

T N Tdbg
M K

singlecheck

M
p p 2 2 1 2 12 2 **
April 2013 | Overload | 5

FEATURE PAUL FLOYD
Valgrind Part 6 –
Helgrind and DRD
Debugging multi-threaded code is hard. Paul Floyd uses
Helgrind and DRD to find deadlocks and race conditions.
he marketing department has
promised a multithreaded
version of your application,

which was designed ten years before
t h reads we re ava i l a b l e i n
commercial OSes [No Bugs]. So
you use Callgrind [callgrind] to
identify your program’s hotspots
and set about retrofitting threads to
the code. You know a bit about
threads, and manage to get a decent
speed up. Unfortunately, the results
are intermittently incorrect and the
program occasionally locks up.
Because the problems seem non-
deterministic, they are hard to
debug. What to do? Valgrind to the
rescue, again. Valgrind includes not
one but two tools for diagnosing thread hazards, Helgrind and DRD. Why
two? They perform substantially the same work, but Helgrind tends to
produce output that is easier to interpret whilst DRD tends to have better
performance. DRD means Data Race Detector and I’m not sure where the
name Helgrind comes from, maybe it just fits in with the other -grind
suffixes.

Both tools work with pthreads and Qt 4 threads (not yet Qt 5, but that
should be in Valgrind 3.9 and I believe it is in the current development
version of Valgrind under Subversion). In order to detect hazards they
record memory access ordering and also thread locking. If you use some
other threading library or write your own threading functions then you will
need to write your own wrappers in order to be able to use these tools.

Since I’ve mentioned Qt, that leads me to a slight digression on C++ and
dynamic libraries. In general, Valgrind tools intercept various C library
calls like malloc. In the case of C++, that interception has to be done with
the mangled symbols. Valgrind also needs to know the soname of the
containing dynamic library (the soname is the library name registered
within the library file). With Qt 5, libQt4Core.so became,
unsurprisingly, libQt5Core.so.

I will assume that you have a working knowledge of programming with
threads. See [threads references] if you need a refresher. In this article, I’ll
use simple examples of API misuse, race conditions and deadlock.

The basic mechanisms used for the tools are to record reads and writes at
the machine code emulation level plus to intercept calls to the thread
synchronization functions. The relative order of reads and writes on
different threads can be analysed and if they are not within appropriate

synchronization barriers, an error is detected. Locking is not inferred from
the machine code, which is why interception is required.

I’ll start with a noddy example of pthreads abuse (see Listing 1).

You can’t get much easier than that, example wise. The command line is
equally easy:

 valgrind --tool=helgrind -v --log-file=hg.log
 ./noddy

The resulting log file starts with about 70 lines of information about
Valgrind, shared libraries and symbols. I won’t include it here. The
important part is shown in Figure 1.

So we know which thread we’re on, and we’re informed of the misuse of
pthread_mutex_unlock.

Let’s run the same example with DRD (see Figure B):

 valgrind --tool=drd -v --log-file=drd.log ./noddy

The output is a little bit terser (see Figure 2), but the same information is
there.

Next up an example with a race condition. Basically this uses a usleep to
pretend to do some work [with the nice property that Valgrind sleeps at
the same speed as the application running at full speed]. However, there’s
a static variable in the third file that I accidentally ‘forgot’. When I run the

T

Listing 1

// noddy.cpp
#include <pthread.h>
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int main()
{
 pthread_mutex_unlock(&mutex);
}

Figure 1

==2573== ---Thread-Announcement--
==2573==
==2573== Thread #1 is the program's root thread
==2573==
==2573== --
==2573==
==2573== Thread #1 unlocked an invalid lock at 0x601040
==2573== at 0x4C2EDBE: pthread_mutex_unlock (hg_intercepts.c:609)
==2573== by 0x400659: main (noddy.cpp:6)

Figure 2

==2570== The object at address 0x601040 is not a mutex.
==2570== at 0x4C3180E: pthread_mutex_unlock (drd_pthread_intercepts.c:703)
==2570== by 0x400659: main (noddy.cpp:6)

Paul Floyd has been writing software, mostly in C++ and C, for over
20 years. He lives near Grenoble, on the edge of the French Alps, and
works for Atrenta, Inc. developing tools to aid early design closure in
electronic circuit conception. He can be contacted at
pjfloyd@wanadoo.fr.
6 | Overload | April 2013

FEATUREPAUL FLOYD
application, I usually get the correct result, but about a quarter of the time
the result is 1 or 2 too low (see main.cpp in Listing 2, worker.cpp in
Listing 3 and other.cpp in Listing 4).

This is a simple example of omission to protect some shared resource from
threaded write access. In real world problems, the problem could also be
inappropriate protection, such as a write within a section that is only
protected by a read lock.

Now let’s run Helgrind.

 valgrind --tool=helgrind -v
 --log-file=helgrind.log ./test

Then it tells us about the number of threads created. Two, as expected (see
Figure 3).

So far so good. Then it detects a possible data race (see Figure 4).

Now, when it says ‘possible’, don’t fool yourself into thinking ‘oh, that
will never happen’. If the threads run for long enough simultaneously, the
chances are that it will. However, there is some chance that you might be
lucky. Since Valgrind uses an abstract model for the emulation, it isn’t
always identical to the underlying CPU. In particular, Intel/AMD perform
less reordering than platforms like POWER which can perform stores out
of order. So whilst there may be no error on Intel, the same code could
could fail on POWER.

In this case, it is a read/write hazard.
There is also a write/write hazard
(I’ll just show the top of the stack
for brevity in Figure 5).

The log ends with a summary of the
test.

Now the same test, but using DRD.

valgrind --tool=drd -v
--log-file=drd.log
./test

This generates similar header
information and again detects the
two read/write and write/write race
conditions (only the read/write one
shown in Figure 6).

There are two differences with
Helgrind. Firstly, it tells us where
the conf l ic t ing memory was
allocated (in this case, BSS, a file
static variable). The first location is
given precisely, but the second one

Listing 2

// main.cpp
#include <pthread.h>
#include <iostream>

void* worker_thread(void* in);
int backdoor();

int main()
{
 pthread_t t1, t2;
 pthread_create(&t1, 0, worker_thread,
 reinterpret_cast<void*>(7));
 pthread_create(&t2, 0, worker_thread,
 reinterpret_cast<void*>(13));

 pthread_join(t1, 0);
 pthread_join(t2, 0);

 std::cout << "Forgotten static is "
 << backdoor() << " ought to be "
 << 1000000/7 + 1000000/13 + 2 << "\n";
}

Listing 3

// worker.cpp
void other_work(int n, int i);

void* worker_thread(void* in)
{
 int number = reinterpret_cast<long>(in);
 for (int i = 0; i < 1000000; ++i)
 {
 other_work(number, i);
 }
 return 0;
}

Figure 3

==2678== ---Thread-Announcement--
==2678==
==2678== Thread #3 was created
==2678== at 0x594928E: clone (in /lib64/libc-2.15.so)
==2678== by 0x4E3BFF4: do_clone.constprop.4 (in /lib64/libpthread-2.15.so)
==2678== by 0x4E3D468: pthread_create@@GLIBC_2.2.5 (in /lib64/libpthread-
2.15.so)
==2678== by 0x4C2E27F: pthread_create_WRK (hg_intercepts.c:255)
==2678== by 0x4C2E423: pthread_create@* (hg_intercepts.c:286)
==2678== by 0x400A6A: main (main.cpp:11)
==2678==
==2678== ---Thread-Announcement--
==2678==
==2678== Thread #2 was created
==2678== at 0x594928E: clone (in /lib64/libc-2.15.so)
==2678== by 0x4E3BFF4: do_clone.constprop.4 (in /lib64/libpthread-2.15.so)
==2678== by 0x4E3D468: pthread_create@@GLIBC_2.2.5 (in /lib64/libpthread-
2.15.so)
==2678== by 0x4C2E27F: pthread_create_WRK (hg_intercepts.c:255)
==2678== by 0x4C2E423: pthread_create@* (hg_intercepts.c:286)
==2678== by 0x400A4F: main (main.cpp:10)
==2678==

Listing 4

// other.cpp
#include <unistd.h>

static int forget_me_not;

void other_work(int n, int i)
{
 if (i % n == 0)
 {
 ++forget_me_not;
 }
 else
 {
 ::usleep(1);
 }
}

int backdoor()
{
 return forget_me_not;
}

April 2013 | Overload | 7

FEATURE PAUL FLOYD
only gives a starting and ending range. In this case, between the start of
the thread and line 13 of other.cpp.

For my final example which illustrates deadlock, I’ll use Qt 4 this time.
Deadlock occurs when you have cycles in the graph that represents your
lock/unlock states, or conversely, if your lock/unlock states form a tree,
you won’t have any deadlocks. This is described in [correct parallel
algorithms]. If you have two or more locks, then always lock/unlock them
in the same order. You won’t have any deadlocks, though you may get
thread starvation, a lot of contention and poor performance.

There are several ways of creating threads with Qt and I’ll use inheritance
for simplicity. I’m using explicit locks and unlocks in order to make the
deadlocking more obvious. In practice, I’d recommend using
QmutexLocker as it will make your code shorter and safer (see Listing 5).

Let’s run that with Helgrind. I built
it using Qt Creator, which made a
funky directory for me

 valgrind
--tool=helgrind -v
--log-file=qthg.log
 ./QtExample-build-
desktop-
Qt_4_8_1_in_PATH__
System__Debug/QtExample

Figure 7 shows the output from
Helgrind.

There is a first error that is a false
positive. See https://bugs.kde.org/
show_bug.cgi?id=307082 which
says that pthread_cont_init is not
handled, while the second error is
the deadlock.

DRD does not detect any error with
this example. Unfortunately I’ve
run ou t o f t ime t o ge t an
explanation for this article.

So, in summary, multithreaded
programming is difficult to debug,
but Valgrind can make it easier.

In this series I’ve covered the main
tools that make up Valgrind.
However, there’s st i l l more.
Va l g r ind con t a in s a f ew

experimental tools like checking stack and global variables and a data
access profiler. Even after that there is still more. Since Valgrind is open
source, there are several third party extensions available, most notably
including support for Wine and another variation on thread checking,
ThreadSanitizer [thread sanitizer]. I have no experience with them – yet.

References
[callgrind] Overload 111, ‘Valgrind Part 4: Cachegrind and Callgrind’,

Paul Floyd

[correct parallel algorithms] Overload 111, ‘A DSEL for Addressing the
Problems Posed by Parallel Architectures’, Jason McGuiness and
Colin Egan

[No Bugs] They didn’t listen to ‘No Bugs’ bunny. Overload 97, ‘Single-
Threading: Back to the
Future?’ and Overload 98,
‘Single-Threading: Back to
the Future? Part 2’, Sergey
Ignatchenko

[thread sanitizer]
http://code.google.com/p/
data-race-test/wiki/
ThreadSanitizer

[threads references]

1. Multithreaded Programming
With Pthreads, (ISBN 10:
0136807291 / ISBN 13:
9780136807292), Lewis, Bil,
Berg, Daniel J., Sun
Microsystems Press

2. Programming with POSIX
Threads, (ISBN-10:
0201633922 / ISBN-13: 978-
0201633924), David R.
Butenhof , Addison-Wesley
Professional

Figure 4

==2678== --
==2678==
==2678== Possible data race during read of size 4 at 0x602198 by thread #3
==2678== Locks held: none
==2678== at 0x400B5B: other_work(int, int) (other.cpp:9)
==2678== by 0x400BAE: worker_thread(void*) (worker.cpp:8)
==2678== by 0x4C2E40C: mythread_wrapper (hg_intercepts.c:219)
==2678== by 0x4E3CE0D: start_thread (in /lib64/libpthread-2.15.so)
==2678== by 0x59492CC: clone (in /lib64/libc-2.15.so)
==2678==
==2678== This conflicts with a previous write of size 4 by thread #2
==2678== Locks held: none
==2678== at 0x400B64: other_work(int, int) (other.cpp:9)
==2678== by 0x400BAE: worker_thread(void*) (worker.cpp:8)
==2678== by 0x4C2E40C: mythread_wrapper (hg_intercepts.c:219)
==2678== by 0x4E3CE0D: start_thread (in /lib64/libpthread-2.15.so)
==2678== by 0x59492CC: clone (in /lib64/libc-2.15.so)

Figure 5

==2678== Possible data race during write of size 4 at 0x602198 by thread #3
==2678== Locks held: none
==2678== at 0x400B64: other_work(int, int) (other.cpp:9)
==2678==
==2678== This conflicts with a previous write of size 4 by thread #2
==2678== Locks held: none
==2678== at 0x400B64: other_work(int, int) (other.cpp:9)

Figure 6

==2669== Thread 3:
==2669== Conflicting load by thread 3 at 0x00602198 size 4
==2669== at 0x400B5B: other_work(int, int) (other.cpp:9)
==2669== by 0x400BAE: worker_thread(void*) (worker.cpp:8)
==2669== by 0x4C2E2A4: vgDrd_thread_wrapper (drd_pthread_intercepts.c:355)
==2669== by 0x4E47E0D: start_thread (in /lib64/libpthread-2.15.so)
==2669== by 0x59542CC: clone (in /lib64/libc-2.15.so)
==2669== Allocation context: BSS section of /home/paulf/vg_thread/test
==2669== Other segment start (thread 2)
==2669== at 0x4C3180E: pthread_mutex_unlock (drd_pthread_intercepts.c:703)
==2669== by 0x4C2E29E: vgDrd_thread_wrapper (drd_pthread_intercepts.c:236)
==2669== by 0x4E47E0D: start_thread (in /lib64/libpthread-2.15.so)
==2669== by 0x59542CC: clone (in /lib64/libc-2.15.so)
==2669== Other segment end (thread 2)
==2669== at 0x5925CAD: ??? (in /lib64/libc-2.15.so)
==2669== by 0x594E6B3: usleep (in /lib64/libc-2.15.so)
==2669== by 0x400B75: other_work(int, int) (other.cpp:13)
==2669== by 0x400BAE: worker_thread(void*) (worker.cpp:8)
==2669== by 0x4C2E2A4: vgDrd_thread_wrapper (drd_pthread_intercepts.c:355)
==2669== by 0x4E47E0D: start_thread (in /lib64/libpthread-2.15.so)
==2669== by 0x59542CC: clone (in /lib64/libc-2.15.so)
8 | Overload | April 2013

http://code.google.com/p/data-race-test/wiki/ThreadSanitizer

FEATUREPAUL FLOYD
Listing 5 (cont’d)

class MyThread2 : public QThread
{
public:
 void run();
};

void MyThread2::run()
{
 for (int i = 1; i < LOOPS; ++i)
 {
 m2.lock();
 usleep(10);
 m1.lock();
 if (resource2 % 2 == 0)
 ++resource1;
 usleep(10);
 m1.unlock();
 m2.unlock();
 }
}

int main()
{
 MyThread1 t1;
 MyThread2 t2;

 t1.run();
 t2.run();

 t1.wait();
 t2.wait();

}

Listing 5

// main.cpp
#include <QThread>
#include <QMutex>
#include <iostream>

QMutex m1;
static int resource1;

QMutex m2;
static int resource2;

class MyThread1 : public QThread
{
public:
 void run();
};

static int LOOPS = 10000;

void MyThread1::run()
{
 for (int i = 1; i < LOOPS; ++i)
 {
 m1.lock();
 usleep(10);
 m2.lock();
 if (resource1 % 3)
 ++resource2;
 usleep(10);
 m2.unlock();
 m1.unlock();
 }
}

April 2013 | Overload | 9

Figure 7

==13045== Thread #1: lock order "0x602160 before 0x602168" violated
==13045==
==13045== Observed (incorrect) order is: acquisition of lock at 0x602168
==13045== at 0x4C2CA24: QMutex_lock_WRK (hg_intercepts.c:2058)
==13045== by 0x4C30715: QMutex::lock() (hg_intercepts.c:2067)
==13045== by 0x401228: MyThread2::run() (main.cpp:44)
==13045== by 0x4012C5: main (main.cpp:61)
==13045==
==13045== followed by a later acquisition of lock at 0x602160
==13045== at 0x4C2CA24: QMutex_lock_WRK (hg_intercepts.c:2058)
==13045== by 0x4C30715: QMutex::lock() (hg_intercepts.c:2067)
==13045== by 0x40123C: MyThread2::run() (main.cpp:46)
==13045== by 0x4012C5: main (main.cpp:61)
==13045==
==13045== Required order was established by acquisition of lock at 0x602160
==13045== at 0x4C2CA24: QMutex_lock_WRK (hg_intercepts.c:2058)
==13045== by 0x4C30715: QMutex::lock() (hg_intercepts.c:2067)
==13045== by 0x40118A: MyThread1::run() (main.cpp:23)
==13045== by 0x4012B9: main (main.cpp:60)
==13045==
==13045== followed by a later acquisition of lock at 0x602168
==13045== at 0x4C2CA24: QMutex_lock_WRK (hg_intercepts.c:2058)
==13045== by 0x4C30715: QMutex::lock() (hg_intercepts.c:2067)
==13045== by 0x40119E: MyThread1::run() (main.cpp:25)
==13045== by 0x4012B9: main (main.cpp:60)

FEATURE MATTHEW WILSON
Quality Matters #7
Exceptions: the story so far
Exception handling is difficult to get right.
Matthew Wilson recaps the story so far.
his instalment is the long-awaited next instalment of the Quality
Matters column in general and the exceptions series in particular. In
it, I recap the previous thinking in regards to exceptions, update some

information presented in the previous episode, and present some material
that leads into the rest of the series.

Introduction
As the last three years have been extremely involved for me – I’ve been
acting as an expert witness in a big software copyright case here in
Australia – I’ve been pretty unreliable at meeting publishing deadlines: the
Quality Matters column has suffered just as a much as my other article and
book writing endeavours, not to mention my various open-source projects.
(We’ve even had a new language standard in the interim!) Since finishing
the latest big batch of work I’ve been ‘reclaiming my life’, including
spending heaps of time riding my bike, during which the subject of
software quality, particularly failure and exceptions, has kept my brain
occupied while the roads and trails worked on the rest of me. I have,
unsurprisingly, come up with even more questions about exceptions and
therefore more material to cover, which will likely require an extension of
the previously planned four instalments.

Given the extended break in this column – it’s been 15 issues! – I thought
it appropriate to start back with a recap of the thinking so far, rather than
jump straight into what I’d previously intended to be an instalment on
‘Exceptions for Recoverable Conditions’, particularly to ensure that the
vocabulary that’s been introduced is fresh in your mind as we proceed. I
also want to revisit material from the previous instalment – ‘Exceptions
for Practically-Unrecoverable Conditions’ [QM-6] – insofar as it’s
affected by the release of new (open-source) libraries that simplify the
definition of program entry points and top-level exception-handling
boilerplate. And to give you some confidence that a lot of new material is
on its way in the coming months, I will also present an examination of
exception-handling in a recent Code Critique that provides an insight into
some of the deficiencies of exceptions for precisely reporting failure
conditions (whether that’s for better contingent reporting or for use in
determining recoverability), which will be covered in more detail as the
series progresses.

Nomenclature
Although writing software is a highly creative process, it still behoves its
practitioners to be precise in intent and implementation. In common with
many, no doubt, I struggle greatly with the prevalent lack of precision in
discussion about software development in general and in written form in
particular: for example, common use of the terms ‘error’ and ‘bug’ are
replete with ambiguity and overloading, making it very difficult to convey

meaning precisely. Therefore, in order to be able to talk precisely about
such involved concepts, I have found it necessary to provide precise
definitions to some existing terms, and even to introduce some new terms.

In the first – ‘Taking Exceptions, part 1: A New Vocabulary’ [QM-5] – I
suggested a new vocabulary for discussing programming conditions and
actions, as follows (and as illustrated in Figure 1):

 normative conditions and actions are those that are the main purpose
and predominant functioning of the software; and

 non-normative conditions and actions are everything else.

Non-normative conditions and actions split into two: contingent and
faulted conditions:

 Contingent conditions and actions are associated with handling
failures that are according to the design of the software. They further
split into two types:

 practically-unrecoverable conditions and actions are associated
with failures that prevent the program from executing to
completion (or executing indefinitely, if that is its purpose) in a
normative manner. Examples might include out-of-memory,
disk-full, no-network-connection; and

 recoverable conditions and actions are associated with failures
from which the program can recover and to completion (or
executing indefinitely, if that is its purpose) in a normative
manner. Examples might be user-entered-invalid-number, disk-

T One of the esteemed ACCU reviewers (and a friend of mine) Chris
Oldwood offered strong criticism of the vocabulary that I have devised
and employed in this column. Chris (quite rightly) points out (i) that the
language seems precise, possibly to the point of pedanticism, and (ii) that
no-one else is (yet) writing about these issues in these terms. He is right
on both.

The problem is hinted at in Chris’ second objection: no-one else is (yet)
writing about these issues in these terms. Indeed, as far as I have been
able to research, no-one is writing about these issues. And that’s the real
problem. (Acknowledging that I’m not omniscient in any Google-like
sense) I have not been able to find any (other) books or articles that
dissect the notion of failure in as detailed a manner as I feel I am
compelled to do in this column and, indeed, as I have felt compelled to
do in my work ever since beginning this column.

So, gentle readers, I’m afraid the high-falutin’ language stays, simply
because there’s no other way I know of to precisely impart what I have
to say. If it puts you off, well, I’m sorry (and I guess you won’t be alone),
but I’m neither able nor willing to attempt to write about such important
and nuanced material without having recourse to precisely defined terms,
even if I have to invent half of them myself.

One thing I will do in moving towards Chris’ position: I will ensure that
definitions and exemplifying material for all the terms used are gathered
and available in a single place on the Quality Matters website:
http://www.quality-matters-to.us/.

New Vocabulary : Is it worth it?

Matthew Wilson is a software development consultant and trainer for
Synesis Software who helps clients to build high-performance software
that does not break, and an author of articles and books that attempt to
do the same. He can be contacted at matthew@synesis.com.au.
10 | Overload | April 2013

http://www.quality-matters-to.us

FEATUREMATTHEW WILSON

diagnostic logging statements are often
predominantly used for recording

contingent events, but this not need be so
full (if a user/daemon is present and able to free/add additional
capacity).

 faulted conditions and actions are associated with the program
operating outside of its design: the classic ‘undefined
behaviour’.

These terms will be used (and their definitions assumed) in the remaining
instalments of this series and, in all likelihood, most/all future topics of
Quality Matters.

 Essence of exceptions
Also in [QM-5] I discussed the various uses and meanings of exceptions
– some desired; some not – and came to the conclusion that the only
definitive thing we can say about exceptions are that they are (an
alternative) flow-control mechanism. This might seem pointlessly
pedantic, but it’s a necessary guide to issues I’ll get to in the coming
instalments. Promise.

Stereotypes
Also in [QM-5] I discussed exception use stereotypes, such as exceptions-
are-evil, exceptions-for-exceptional-conditions, and so on. I do not
reference them directly in this instalment, and will assume you will man
the browser if you want to (re)visit them in detail. One aspect of this
discussion that does bear repetition here, however, is some of the obvious
problems attendant with the use of exceptions, namely:

 Exceptions break code locality: they are invisible in the (normative)
code, and create multiple (more) function exit points. Consequently,
they significantly impact on code transparency. This occurs in both
positive and negative ways, depending on conditions/actions, as we
will see in later instalments; and

 Exceptions are quenchable: it is possible (with very few
exception(!)s) to catch and not propagate those exceptions that are
being used to indicate practically-unrecoverable conditions. (The
same applies to exceptions that are used to indicated faulted
conditions, though this is predominantly an unwise application of
them.) This leaves higher levels of the program unaware of the
situation, with obvious concomitant impacts on program reliability.

Reporting
In the second – ‘Exceptions for Practically-Unrecoverable Conditions’
[QM-6] – I considered the necessity for reporting to a human (or human-
like entity) as part of contingent action, in two distinct forms: contingent
reports, and diagnostic log statements.

Definition: A contingent report is a block of information
output from a program to inform its controlling entity (human
user, or spawning process) that it was unable to perform its
normative behaviour. Contingent reports are a part of the
program logic proper, and are not optional.

Definition: A diagnostic logging statement is a block of
information output from a program to an optional observing
entity (human user/administrator, or monitor process) that
records what it is doing. Diagnostic logging statements are
optional, subject to the principle of removability [QM-1], which
states: “It must be possible to disable any log statement within
correct software without changing the (well-functioning)
behaviour.”

Typical contingent reports include writing to the standard error stream, or
opening a modal window containing a warning. They are almost always
used for issuing important information about recoverable or practically-
unrecoverable conditions.

Similarly, diagnostic logging statements are often predominantly used for
recording contingent events, but this not need be so. In principle, all
interesting events should be subject to diagnostic logging, to facilitate
detailed historical tracing of the program flow. A good diagnostic logging
library should allow for statements of different severities to be selectively
enabled with minimal intrusion on performance when disabled.

Exception-hierarchies
Also in [QM-6] I discussed the conflation, by some compiler
manufacturers, of the C++ exception-handling mechanism and operating-
system ‘exceptions’/faults, which can allow the quenching of

Figure 1

Useful behaviour
Starting

Stopped

Contingent
(Recoverable)

Normative

normative [A]

exit [A]

exit

non-
normative

(recoverable)
[B]

recover [B]

exit/terminate/crash

fault

non-
normative

(unrecoverable)
[C]

Contingent
(Unrecoverable)

fault

exit [C]

fault [D]

Faulted

undefined
April 2013 | Overload | 11

FEATURE MATTHEW WILSON
unequivocally fatal conditions via a catch(...) clause! The
consequence of this is that use of catch(...) should be eschewed in the
broad, which, in combination with the fact that programs need a top-level
exception-handler ([QM-6]; discussed in the next section), means that all
thrown things should be derived from std::exception.

Recommendation: All thrown entities must (ultimately) be
derived from std::exception.

Boilerplate handling
Also in [QM-6] I examined the inadequacy of the hello world introductory
program totem: in all compiled languages examined (C, C++, C#/.NET,
Java) the classic form is inadequate, and will indicate success even in some
failure conditions! The starkly obvious conclusion is that programs written
in all these languages require some explicit highest-level exception-
handling. I then proffered as example a ‘production-quality main()’ used
in several of the software analysis tools contemporaneously-(re)developed
for the case I’ve been working on, within which a caller-supplied ‘main’
was executed within the scope of initialisation of some third-part libraries
and subject to a rich set of catch clauses.

You may recall that the rough algorithm was as follows:

1. Catch std::bad_alloc (and any equivalent, e.g.
CMemoryException*) first, and exit;

2. Catch CLASP – a command-line parsing library [ANATOMY-1] –
exceptions. Though CLASP is a general-purpose (open-source)
library, its use in the analysis tool suite is specific, so CLASP
exceptions were caught within the context of expected program
behaviour, albeit that the condition of an invalid command-line was
in this case – and usually will be in the general case – deemed to be
practically-unrecoverable;

3. Next were exceptions from the recls library. Again, recls is a
general-purpose (open-source) library but its use within the analysis
tool suite was specific and could be treated in the same manner as
CLASP;

4. A ‘standard catch-all’ clause, catching std::exception; and
5. Optionally (i.e. under opt-in preprocessor control), a genuine catch

all (catch(...)) clause.

In all cases, appropriate diagnostic log statements and contingent reports
were made (or, at least, attempted), balancing the extremity of the situation
(e.g. out-of-memory) with the requirement to provide sufficient diagnostic
and user-elucidatory information.

I also discussed a header file supplied with the Pantheios diagnostic
logging API library [PAN] that abstracted the boilerplate exception-
handling for COM components.

Since that time, I’ve continued to work on the subject, and have now
released two new libraries relevant to the subject:

 Pantheios::Extras::xHelpers (C++-only) – provides general
exception-catching and translation-to-failure-code services for any
components/libraries that need to exhibit a C-API, along with a
COM-specific set implemented in terms of the general, and logs the
conditions using Pantheios; and

 Pantheios::Extras::Main (C, C++) – provides both automatic (un-
initialisation of the Pantheios library (otherwise required explicitly
in C code) and, for C++, handling of exceptions as follows:

 Out-of-memory exceptions – issues minimal appropriate
contingent reports and diagnostic log statements;

 ‘Root’ exceptions (std::exception; for MFC-only
CException*) – issues contingent reports and diagnostic log
statements including exception message; and

 Catch-all clause – issues minimal appropriate contingent
reports and diagnostic log statements; not enabled by default
(for the reasons explained in [QM-6]), but can be enabled under
direction of pre-processor symbol definitions.

 (All other application/library-specific exceptions (such as those
shown in Listing 1 of [QM-6]) are to be handled in a deeper,
application-supplied handler, thereby achieving a clean(er)
separation of the specific and the generic.)

I’ll provide more details for these libraries (all downloadable from the
Pantheios [PAN] project), at a future time, when their specific features and
utility are worth mentioning explicitly. Pantheios::Extras::Main will
certainly appear in the upcoming issues of CVu when I continue –
hopefully next month – my series looking at program anatomies
[ANATOMY-1], and again in this series, when I consider the benefits of
a dumped core (pointed out to me by readers of [QM-5]).

Use of these libraries now changes significantly the previous production
main(), discussed and listed in [QM-6], to that shown in Listings 1 and 2.

There were three significant problems with the previous ‘production
quality main()’:

1. It was large and unwieldy;
2. It mixed library initialisation in with contingent action; and
3. Most seriously from a design perspective, it failed to distinguish,

ascribe, or respect any abstraction levels of the sub-systems for
which the contingencies were provided.

As I look back on the proffered main() from some distance in time, it is
the third issue that strikes me as most grievous. Since that time I have done
much work on program structure – discussed in one prior [ANATOMY-1]
and several forthcoming articles about ‘program anatomy’ in CVu –
supported by several new libraries, including those mentioned above.

Instead of a single initialisation utility function approach, I now layer the
initialisation+failure-handling as follows.

First (i.e. outermost), comes the initialisation of the diagnostic logging
facilities, and handling of otherwise-uncaught generic exceptions. This is
achieved by the use of Pantheios::Extras::Main’s invoke(), in
Listing 1’s main(), which:

1. (un)initialises Pantheios, ensuring that the caller-supplied inner
main is always executed within an environment where diagnostic
logging facilities are available; and

2. catches those exceptions that are appropriately top-level:
a. std::bad_alloc for out-of-memory conditions. This

exception can and should be readily ignored by all inner-levels
of the program, and represents a bona fide practically-
unrecoverable condition; the exception to that will be discussed
in – you guessed it! – a later instalment;

b. std::exception for the necessary outer-catch behaviour
required of us due to the latitude in the standard discussed in
[QM-6]. It may be that such general catching at this outer level
represents valid behaviour; I tend to think it will rather indicate
a failure on the part of the programmer to account for all facets
of behaviour in the design: i.e. the more specific (though still
std::exception-derived) exceptions should have been
caught in the inner, application-specific, logic levels of the
program. (Once again, this being a rather huge and contentious
issue, it’ll have to wait for a further instalment for further
exploration.); and

c. catch(...), but only if the preprocessor symbol
PANTHEIOS_EXTRAS_MAIN_USE_CATCHALL is defined,
because this should almost always be eschewed.

Next, I chose to employ another of Pantheios’ child libraries:
Pantheios::Extras::DiagUtil, to provide memory leak detection, in
Listing 1’s main1(). (The naming has to be worked on, I know!)
Importantly, this happens after diagnostic logging is initialised and before
it is uninitialised, so that (i) these facilities are available for logging the
leaks, and (ii) there are no false-positives in the leak detection due to long-
lived lazily-evaluated allocations in the diagnostic logging layer. If you
don’t want to do memory-leak tracing you can just leave this out (and wire
up main() to main2()).

Last, comes the command-line handling, in the form of CLASP’s child
library CLASP::Main, in Listing 1’s main2().
12 | Overload | April 2013

FEATUREMATTHEW WILSON
Note that so far we’ve not seen any explicit mention of exceptions, even
though all three libraries perform exception-handling within:

 pantheios::extras::main::invoke() catches
std::bad_alloc (and CMemoryException* in the presence of
MFC);

 pantheios::extras::diagutil::main_leak_trace::inv
oke() catches any exceptions emitted by its ‘main’ and issues a
memory leak trace before re-throwing to its caller; and

 clasp::main::invoke() catches CLASP-specific exceptions,
providing the pseudo-standard contingent reports along the lines of
‘myprogram: invalid command-line: unrecognised argument: --
oops=10’ (and, of course, diagnostic library statements in the case
where the CLASP code detects it is being compiled in the presence
of Pantheios); all other exceptions are ignored, to be dealt with by
the outer-layers.

Each of these is designed to be entirely independent of the others, and it’s
entirely up the programmer whether or not to incorporate them, and any
similar layering facilities, in whatever combination is deemed appropriate.
All that’s required is to provide whatever declarative information is
required – the example shown just provides 0s and NULLs for default
behaviour – and rely on a sensible, predictable, and dependable
behavioural foundation to the program.

With the (boring) boilerplate out of the way in this fashion, the programmer
may then focus on what are the more interesting aspects of failure (as
reported by exceptions) his/her program may encounter. In a simple
standalone program, the next and final stage might be the ‘main proper’.
However, more sophisticated programs that depend on other libraries that
may themselves throw exceptions to report practically-unrecoverable and
recoverable conditions may elect to have shared, program-suite-specific
‘outer main proper’, as I have done so with the analysis tool suite, which
looks something like that shown in Listing 2. (This illustrates use of a
program_termination_exception class, which is yet another thing

I’ll discuss later. Prizes for the first reader to write in with why such an
exception might be used in preference to a simple call to exit().)

Code Critique #73
One of the things I did to keep my programming mojo idling over during
my long engagement was to solve the 73rd Code Critique [CC-73].

The first thing to note is that I misread the program description, and so got
slightly wrong requirements for my own implementation! The actual
requirement was to read from standard input, whereas I misunderstood it
to mean that it should read from a named file. Fortunately, the change is
useful in illustrating the points I wish to make. Other than that, I think I
have it right, as follows:

 obtain name of input text file from command-line (this is the
requirement I misread);

 open source text file, and read lines, then for each line:

 upon finding a line – control line – with the format (in regex
parlance) /^---- (.+) ----$/, close the previous output
file, if any, and open a new output file with the name specified
in (regex parlance again) group $1;

 upon reading any other kind of line – data line – write it out to
the currently-open output file;

 when all lines are done, exit.

The reason this example sparked my interest in cross-pollination with QM
is that it exercises one of my interests with respect to software quality:

1. The impact of process-external interactions – in this case the file-
system – on the software quality of a program;

along with two of my frequent preoccupations with C++:

2. When is it more appropriate to use another language to solve a
problem; and

3. The IOStreams library, and the myriad reasons why I hate it.

Listing 1

// in common header

extern
int main_proper_outer(
 clasp::arguments_t const* args
);
extern clasp_alias_t const aliases[];

. . .

// in file main.cpp
//
// common entry point for all tools

static
int main2(int argc, char** argv)
{
 return clasp::main::invoke(argc, argv,
 main_proper_outer, NULL, aliases, 0, NULL);
}

static
int main1(int argc, char** argv)
{
 return ::pantheios::extras
 ::diagutil::main_leak_trace
 ::invoke(argc, argv, main2);
}

int main(int argc, char** argv)
{
 return ::pantheios::extras
 ::main::invoke(argc, argv, main1);
}

Listing 2

int
main_proper_outer(
 clasp::arguments_t const* args
)
{
 try
 {
 return main_proper_inner(args);
 }
 // 0
 catch(program_termination_exception& x)
 {
 pan::log_INFORMATIONAL(
 "terminating process under program direction;
 exit-code=", pan::i(x.ExitCode));
 return x.ExitCode;
 }
 // 1. out-of-memory failures now caught by
 // Pantheios::Extras::Main
 // 2. CLASP failures now caught by CLASP::Main
 // 3. recls
 catch(recls::recls_exception& x)
 {
 pan::log_CRITICAL("exception: ", x);

 ff::fmtln(cerr, "{0}: {1}; path={2};
 patterns={3}", ST_TOOL_NAME, x,
 x.get_path(), x.get_patterns());
 }
 // 4. standard exception failures now caught by
 // Pantheios::Extras::Main
 return EXIT_FAILURE;
}

April 2013 | Overload | 13

FEATURE MATTHEW WILSON
When working with the file-system, we must care deeply about failure,
since failure awaits us at every turn: capacity; hardware failures; input;
output; search; user directions; and so on. I’ll cover some of the relevant
issues (as they pertain to failure detection and handling, and exceptions)
in the remainder of this instalment. (Note that the steps are written for
maximum revisibility [ANATOMY-1], and don’t necessarily reflect how
I would proceed normally.)

Let’s start with a fully working version – in the sense that it addresses the
normative requirements outlined above – and then see how it behaves
when presented with an imperfect execution environment. This is given
in Listing 3. When operated with the input file shown in Listing 4 – where
¶ denotes an end-of-line sequence, missing on the last line – it experiences
normative-only conditions and produces the intended two output files
(outputfile-a.txt and outputfile b.txt).

However, we don’t have to try very hard to break it. Simply omitting the
input-file command-line argument will cause a dereference of NULL
(argv[1]), and undefined behaviour (in the form of a segmentation fault
/ access violation => crash). This is easily fixed by the addition of a test
in Step 1 (Listing 5), causing issue of a contingent report and return of
EXIT_FAILURE; I’m omitting diagnostic logging from these examples
for brevity.

It’s not just omitting the input-file command-line argument. Equally
wrong is to supply two arguments. This is easily addressed (Step 2; listing
not shown) by changing the test expression from:

 if(NULL == argv[1])

to:

 if(2 != argc)

Furthermore, we learned last time that any production-quality program
requires an outer try-catch, since otherwise any exception thrown by the
program (including std::bad_alloc, which is the only one that may
be thrown by the versions so far) will cause an unexplained – by dint of a
lack of a guaranteed (i.e. standard-prescribed) contingent report –
abort() (via std::terminate()). Fulfilling this gives Step 3, shown
in Listing 6; all subsequent steps will assume main_inner().

With just a modicum of consideration, I’m able to come up with eight
potential problems that would result in failure of the program, including
the first two:

Listing 3

int main(int argc, char** argv)
{
 std::ifstream ifs(argv[1]);
 std::ofstream ofs;
 std::string line;

 for(; std::getline(ifs, line);)
 {
 if(line.find("--- ") == 0 &&
 line.find(" ---") == line.size() - 4)
 {
 std::string const path =
 line.substr (4, line.size() - 8);
 if(ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(path.c_str());
 }
 else
 {
 ofs << line << "\n";
 }
 }
 return EXIT_SUCCESS;
}

Listing 4

--- outputfile-a.txt ---¶
abc ¶
--- abc¶
def ¶
¶
--- outputfile b.txt ---¶
ghi¶
jklm¶
¶
nop

Listing 5

int main(int argc, char** argv)
{
 if(NULL == argv[1])
 {
 std::cerr << "step1 : <inputfile>" << std::endl;
 return EXIT_FAILURE;
 }

 std::ifstream ifs(argv[1]);

 . . . // as before

 return EXIT_SUCCESS;
}

Listing 6

static
int main_inner(int, char**);

int main(int argc, char** argv)
{
 try
 {
 return main_inner(argc, argv);
 }
 catch(std::bad_alloc&)
 {
 fputs("step3 : out of memory\n", stderr);
 }
 catch(std::exception& x)
 {
 fprintf(
 stderr
 , "step3 : %s\n"
 , x.what()
);
 }
 return EXIT_FAILURE;
}

int main_inner(int argc, char** argv)
{
 if(2 != argc)
 {
 std::cerr << "step3 : <inputfile>" << std::endl;
 return EXIT_FAILURE;
 }

 . . . // as before

 return EXIT_SUCCESS;
}

14 | Overload | April 2013

FEATUREMATTHEW WILSON
1. Input file path argument not specified by user;
2. 2+ arguments specified by user;
3. Input file contains data line before the first control line;
4. Input file does not exist;
5. Input file cannot be accessed;
6. Control line specifies output path that cannot exist (because

directory component does not exist);
7. Control line specifies output path that cannot exist (because path

contains invalid characters); and
8. Control line specifies output path of file that exists and is read-only.

I’ll measure the normative version, and the other versions I’ll introduce in
response, against these eight problems. Note that all eight are eminently
reasonable runtime conditions: none is caused by conditions, or should
invoke responses, that are (or should be) outside the design. In our
parlance: none of these should result in a faulted condition.

The first two problems we’ve already encountered; the last five pertain to
the file-system, and will be the main points of interest in this section.
Before that, however, I must address a key piece of functionality, which
is to handle the case where the input file specifies data lines before control
lines (problem #3). Let’s assume an input file, inputfile-3.txt, that
is the same as inputfile-0.txt with a single data line "xyz" before
the first control line. The current version, Step 3 (Listing 6), silently
ignores it, ‘successfully’ creating the two (other) output files. This has to
be caught, as shown in Step 4 (Listing 7): the ‘un-const-ising’ (forgive
me!) of path, somewhat regrettable in its own terms, and moving it
outside allows of the loop allows it to be used as an indicator as to whether
an output file is open, with the corresponding contingent report and

EXIT_FAILURE if not. Note the precise and sufficiently-rich explanation
provided in the contingent report, which will allow a user (who knows how
the program is supposed to work) to correct the problem with the input file.

Let’s now turn our attention to problems 4 and 5. As discussed in [QM-6],
the IOStreams do not, by default, throw exceptions on failure conditions.
In this mode, to detect whether an input file does not exist or cannot be
accessed, the programmer must explicitly test state member functions.
Absent such checks, as in Step 4 (Listing 7), the program will silently fail
(and indicate success via EXIT_SUCCESS!).

We have two choices: either test the state of the streams at the appropriate
point or cause the input stream to throw exceptions (and catch them). Step
5 (Listing 8) takes the former approach. While this detects the failure event
– the fact that the input file cannot be open – it does not provide any reason
as to what caused the failure: for our purposes there is no discrimination
between problems 4 and 5. At a minium, we would want to include some
information in our contingent report that indicates to the user which one
it is.

We might consider the following logic: All C++ standard library
implementations (that I know of) are built atop the C standard library’s
Streams library (FILE*, fprintf(), etc.), which uses errno, so I can
use errno and strerror() to include contingent reporting. This might
take us to Step 6 (Listing 9). This appears to work for me with VC++ for
both Problem 4:

 step6: could not open 'not-exist.txt': No such
 file or directory

Listing 8

int main_inner(int argc, char** argv)
{
 . . .
 char const* const inputPath = argv[1];
 std::ifstream ifs(inputPath);
 std::ofstream ofs;
 std::string line;
 std::string path;
 if(ifs.fail())
 {
 std::cerr << "step5: could not open '"
 << inputPath << "'" << std::endl;
 return EXIT_FAILURE;
 }
 for(; std::getline(ifs, line);)
 {
 . . .
}

Listing 9

#include <fstream>
#include <iostream>
#include <string>
#include <cerrno>
#include <cstdlib>
#include <cstring>

 . . .

 if(ifs.fail())
 {
 int const e = errno;
 std::cerr << "step5: could not open '"
 << inputPath << "': "
 << strerror(e) << std::endl;
 return EXIT_FAILURE;
 }

 . . .

Listing 7

int main_inner(int argc, char** argv)
{
 if(2 != argc)
 {
 std::cerr << "step4: <inputfile>" << std::endl;
 return EXIT_FAILURE;
 }
 char const* const inputPath = argv[1];
 std::ifstream ifs(inputPath);
 std::ofstream ofs;
 std::string line;
 std::string path;
 for(; std::getline(ifs, line);)
 {
 if(line.find("--- ") == 0 &&
 line.find(" ---") == line.size() - 4)
 {
 path = line.substr(4, line.size() - 8);
 if(ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(path.c_str());
 }
 else
 {
 if(path.empty())
 {
 std::cerr << "step4: invalid input file '"
 << inputPath
 << "': data line(s) before control line"
 << std::endl;
 return EXIT_FAILURE;
 }
 ofs << line << "\n";
 }
 }
 return EXIT_SUCCESS;
}

April 2013 | Overload | 15

FEATURE MATTHEW WILSON
and Problem 5:

 step6: could not open 'inputfile-0-NO-READ.txt':
 Permission denied

The same is to be had from the CodeWarrior 8 compiler (on Windows):

 step6: could not open 'not-exist.txt': No such
 file or directory

and:

 step6: could not open 'inputfile-0-NO-READ.txt':
 Operation not permitted

The problem is that nowhere in the C++ (03) standard, or nowhere that I
could find anyway, does it mandate that the IOStreams will be
implemented in terms of C’s Streams, nor that it will faithfully maintain
and propagate errno. (All that is mandated is that the standard input,
output, and error streams will be synchronisable with C++’s IOStreams’
cin, cout, and cerr.) Compiling Step 6 with Digital Mars compiler
results in:

 step6: could not open 'not-exist.txt': No error

and:

 step6: could not open 'inputfile-0-NO-READ.txt':
 No error

indicating that errno is 0 in those cases.

Clearly this is not a portable strategy for propagation of failure reason to
the user via the contingent report (or via diagnostic logging). Nor is it a
reliable mechanism for making programmatic decisions regarding what
contingent actions to take. In one of the next instalments I’m going to show
just how much rubbishy hassle is attendant with this problem, particularly
(though perhaps not exclusively) in .NET.

Let’s now consider the alternative approach of using exceptions, as in Step
7 (Listing 10). At face value, it appears that this is an improvement: we’ve
certainly improved the transparency (with respect to the normative
behaviour of the program).

However, when we run this (with VC++) we get the following output:

 step7 : ios::failbit set

and:

 step7 : ios::failbit set

That’s pretty depressing. By setting the stream to emit exceptions we’ve
gained the automatic and unignorable indication of failure, which is good.
But we’ve failed to gain any useful qualifying information. Even to a
programmer, being told “ios::failbit set” is pretty useless; to a user it’s
arguably less than that. Furthermore, since the standard defines
std::ios::failure to have only constructor, destructor, and
what() overload – there’s no underlying_failure_code()
accessor method or any equivalent – the exception cannot provide any
information that could be used programmatically.

But hold on. It gets (much) worse. If we now supply a valid input file we
still get the same contingent report, but after it has produced the requisite
output file(s). What gives?

Sadly, the (C++03) standard prescribes (via a convoluted logic including
clauses 27.6.1.1.2;2 and 21.3.7.9;6) that when std::getline()
encounters the end-of-file condition it throws an exception if the stream
is marked to throw on std::ios::failbit, even when, as in our case,
it is not marked to throw on std::ios::eofbit. I’ve little doubt that
there’s a necessary backwards-compatibility reason for this, but in my
opinion this just leaves us with ludicrous behaviour. (Ignoring the almost
equally ludicrous set-exceptions-after-construction anti-idiom), what
could be more transparent than the following:

 std::ifstream ifs(path);
 ifs.exceptions(std::ios::failbit);
 for(std::string line; std::getline(ifs, line);)
 {
 . . . // do something with line
 }
 . . . // do post-read stuff

You don’t get to write that. At ‘best’, you must write something like the
following (and in Step 8, Listing 11):

 std::ifstream ifs(path);
 ifs.exceptions(std::ios::failbit);
 try
 {
 for(std::string line; std::getline(ifs, line);)
 {
 . . . // do something with line
 }
 }
 catch(std::ios::failure&)
 {
 if(!ifs.eof())
 {
 throw;
 }
 }
 . . . // do post-read stuff

Are we having fun yet?

Let’s now consider the final three problems (6–8), all of which pertain to
the ability to create the specified output file. If we do this manually, it’ll

Listing 10

int main_inner(int argc, char** argv)
{
 . . .
 char const* const inputPath = argv[1];
 std::ifstream ifs(inputPath);
 std::ofstream ofs;
 std::string line;
 std::string path;

 ifs.exceptions(std::ios::failbit);

 for(; std::getline(ifs, line);)
 {
 . . .
 }
 return EXIT_SUCCESS;
}

Listing 11

int main_inner(int argc, char** argv)
{
 . . .
 char const* const inputPath = argv[1];
 . . .
 ifs.exceptions(std::ios::failbit);

 try
 {
 for(; std::getline(ifs, line);)
 {
 . . .
 }
 }
 catch(std::ios::failure&)
 {
 if(!ifs.eof())
 {
 throw;
 }
 }

 return EXIT_SUCCESS;
}

16 | Overload | April 2013

FEATUREMATTHEW WILSON
involve testing ofs.fail() after the call to ofs.open() inside the
loop. (For completeness we’d probably also want to test after the insertion
of line into ofs, but I’m trying to be brief here …) But as we’ve seen
with the input file/stream, we’re still out of luck in discriminating which
of the actual conditions 6–8 (or others) is responsible for the failure – and
even if we could, there are only two (C++03) standard-prescribed errno
values, EDOM and ERANGE, neither of which are applicable here – and
might not even get a representative (albeit platform/compiler-specific)
‘error’ string from strerror().

Similarly, if we call exceptions() on ofs without more fine-grained
catching, we have two obvious problems:

 loss of precision as to location of exception, and, hence, the cause;
and

 no more informative (i.e. not!) messages than we’ve seen provided
with input file/stream failure.

There’s nothing we can do about the latter, but we can address the former,
by catching with greater granularity to afford identification of the failure
locations, as in Listing 12. I hope you agree with me that the
implementation as it now appears is patently inferior: we’re polluting the
pretty straight-forward functionality of this simple program with too much
failure-handling, a clear loss of transparency. Furthermore, there is no
clear delineation between application-specific failure – e.g. the presence
of data prior to output-file-name in an input file – and general (in this case
file-system) failure. This is hardly the promise of clarity in failure-
handling that exception proponents might have us believe.

This conflict is something I will be exploring further next time, including
considerations of precision and accuracy of identifying and reporting
(sufficient information about) the failure, use of state, issues of coupling
between throw and call sites, and further conflicts in software quality
characteristics arising from the use, non-use, and misuse of exceptions.

References
[ANATOMY-1] ‘Anatomy of a CLI Program Written in C’, Matthew

Wilson, CVu volume 24, issue 4

[CC-73] CVu vol 23, issue 6

[PAN] http://www.pantheios.org/

[QM-1] ‘Quality Matters 1: Introductions and Nomenclature,’ Matthew
Wilson, Overload 92, August 2009

[QM-5] ‘Quality Matters 5: Exceptions: The Worst Form of ‘Error’
Handling, Apart from all the Others’, Matthew Wilson, Overload 98,
August 2010

[QM-6] ‘Quality Matters 6: Exceptions for Practically-Unrecoverable
Conditions’, Matthew Wilson, Overload 99, October 2010

Listing 12

int main_inner(int argc, char** argv)
{
 if(2 != argc)
 {
 std::cerr << "step9: <inputfile>" << std::endl;

 return EXIT_FAILURE;
 }

 char const* const inputPath = argv[1];
 std::ifstream ifs(inputPath);
 std::ofstream ofs;
 std::string line;
 std::string path;

 ifs.exceptions(std::ios::failbit);
 ofs.exceptions(std::ios::failbit);

 try
 {
 for(; std::getline(ifs, line);)
 {
 if(line.find("--- ") == 0 &&
 line.find(" ---") == line.size() - 4)
 {
 path = line.substr(4, line.size() - 8);
 if(ofs.is_open())
 {
 ofs.close();
 }
 try
 {
 ofs.open(path.c_str());
 }

Listing 12 (cont’d)

 catch(std::ios::failure&)
 {
 std::cerr
 << "step9: could not open output file '"
 << path << "'" << std::endl;

 return EXIT_FAILURE;
 }
 }
 else
 {
 if(path.empty())
 {
 std::cerr << "step9: invalid input file '"
 << inputPath
 << "': data line(s) before control line"
 << std::endl;

 return EXIT_FAILURE;
 }

 try
 {
 ofs << line << "\n";
 }
 catch(std::ios::failure&)
 {
 std::cerr
 << "step9: could not write to output file '"
 << path << "'" << std::endl;

 return EXIT_FAILURE;
 }
 }
 }
 }
 catch(std::ios::failure&)
 {
 if(!ifs.eof())
 {
 throw;
 }
 }

 return EXIT_SUCCESS;
}

April 2013 | Overload | 17

http://www.pantheios.org/

FEATURE CHRIS OLDWOOD
Causality – Relating Distributed
Diagnostic Contexts
Supporting a system with many moving parts can
be hard. Chris Oldwood demonstrates one way to
add tags to log information to aid diagnosis.
Causality: The relationship between cause and effect [OED].

upporting a Distributed System can be hard. When the system has
many moving parts it is often difficult to piece together exactly what
happened, at what time, and within which component or service.

Despite advances in programming languages and runtime libraries the
humble text format log file is still a mainstream technique for recording
significant events within a system whilst it operates. However, logging
libraries generally only concern themselves with ensuring that you can
piece together the events from a single process; the moment you start to
invoke remote services and pass messages around the context is often lost,
or has to be manually reconstructed. If the recipient of a remote call is a
busy multi-threaded service then you also have to start picking the context
of interest out of all the other contexts before you can even start to analyse
the remote flow.

This article will show one mechanism for overcoming this problem by
borrowing a hidden feature of DCOM and then exposing it using an old
design pattern from Neil Harrison.

Manually stitching events together
The humble text log file is still the preferred format for capturing
diagnostic information. Although some attempts have been made to try and
use richer encodings such as XML, a simple one line per event/fixed width
fields format is still favoured by many [Nygard].

For a single-process/single-threaded application you can get away with
just a timestamp, perhaps a severity level and the message content, e.g.

 2013-01-01 17:23:46 INF Starting something rather
 important

Once the number of processes starts to rack up, along with the number of
threads you need to start including a Process ID (PID) and Thread ID (TID)
too, either in the log file name, within the log entries themselves, or maybe
even in both, e.g.

 2013-01-01 17:23:46 1234 002 INF Starting
 something rather important

Even if you are mixing single-threaded engine processes with multi-
threaded services it is still desirable to maintain a consistent log file format
to make searching and parsing easier. For the sake of this article though,
which is bound by the constraints of print based publishing, I’m going to
drop some of the fields to make the log output shorter. The date, PID and
severity are all tangential to most of what I’m going to show and so will
be dropped leaving just the time, TID and message, e.g.

 17:23:46 002 Starting something rather important

Assuming you can locate the correct log file to start with, you then need
to be able to home-in on the temporal set of events that you’re interested

in. One common technique for dealing with this has been to manually
annotate log lines with the salient attributes of the task inputs, e.g.

 17:23:45 002 Handling request from 192.168.1.1
 for oldwoodc
 17:23:46 002 Doing other stuff now
 17:23:47 002 Now doing even more stuff
 . . .
 17:23:59 002 Finished handling request from
 192.168.1.1

If your process is single-threaded you can probably get away with putting
the key context details on just the first and last lines, and then just assume
that everything in between belongs to the same context. Alternatively you
can try and ‘remember’ to include the salient attributes in every log
message you write.

 17:23:45 002 Handling request from 192.168.1.1
 17:23:46 002 Doing other stuff now (192.168.1.1)
 17:23:47 002 [192.168.1.1] Now doing even more
 stuff
 . . .
 17:23:59 002 Finished handling from 192.168.1.1

Either way there is too much manual jiggery-pokery going on and as you
can see from the last example you have to rely on all developers using a
consistent style if you want a fighting chance of filtering the context
successfully later.

Diagnostic contexts
The first problem we want to solve is how to ‘tag’ the current context (i.e.
a single thread/call stack in the first instance) so that whenever we go to
render a log message we can automatically annotate the message with the
key details (so we can then grep for them later). More importantly, we’d
like to do this in such a way that any code that is not already aware of our
higher-level business goals remains blissfully unaware of them too.

In Pattern Languages of Program Design Vol. 3, Neil Harrison presents
a number of logging related design patterns [Harrison], one of which is
called DIAGNOSTIC CONTEXT. In it he describes a technique for associating
arbitrary data with what he calls a ‘transaction’. The term transaction is
often heavily associated with databases these days, but the transactions we
are concerned with here are on a much larger scale, e.g. a single user’s
‘session’ on a web site.

A distributed system would therefore have many diagnostic contexts
which are related somehow. The connection between these could be
viewed as a parent/child relationship (or perhaps global/local). There is no
reason why a context couldn’t store different ‘categories’ of tags (such as
problem domain and technical domain), in which case the term namespace
might be more appropriate. However this article is not so much concerned
with the various scopes or namespaces that you might create to partition
your contexts but more about how you go about relating them. As you will
see later it is a specific subset of the tags that interests us most.

Although you could conceivably maintain one context per task that
acquires more and more tags as you traverse each service layer, you would

S

Chris Oldwood started out as a bedroom coder in the 80s, writing
assembler on 8-bit micros. These days it's C++ and C# on
Windows in big plush corporate offices. He is also the
commentator for the Godmanchester Gala Day Duck Race and
can be contacted via gort@cix.co.uk or @chrisoldwood
18 | Overload | April 2013

FEATURECHRIS OLDWOOD
in effect be creating a Big Ball of Mud. However, the more tags you create
the more you’ll have to marshal and ultimately the more you’ll have to
write to your log file and then read again when searching. Although the
I/O costs should be borne in mind, the readability of your logs is paramount
if you’re to use them effectively when the time comes. And so multiple
smaller contexts are preferred, with thread and service boundaries
providing natural limits.

Implementing a simple diagnostic context
The implementation for a DIAGNOSTIC CONTEXT can be as simple as a map
(in C++) or a Dictionary (in C#) which stores a set of string key/value pairs
(a tag) that relates to the current operation. The container will almost
certainly utilise thread-local storage to allow multiple contexts to exist
simultaneously for the multiple threads within the same process.

It should be noted that some 3rd party logging frameworks already have
support for diagnostic contexts built-in. However, they may not be usable
in the way this article suggests and so you may still need an implementation
like the simple one shown below.

At the entry point to our ‘transaction’ processing code we can push the
relevant tags into the container for use later. By leveraging the RAII idiom
in C++ or the DISPOSE pattern in C# we can make the attaching and
detaching of tags automatic, even in the face of exceptions. For example
in C# we could write the code in Listing 1.

Behind the scenes the constructor adds the tag to the underlying container
and removes it again in the destructor/DISPOSE method. The need for the
code to be exception safe is important as we don’t want the tags of one
context to ‘leak’ by accident and infect the parent context because it would
cause unnecessary pollution later when we are searching.

As Harrison’s original pattern suggests we can create contexts-within-
contexts by using stack-like push/pop operations instead of just a simple
add/remove. However you still want to be careful you don’t overload the
meaning of any tag (e.g. ‘ID’) that will be used across related scopes as,
once again, it will only create confusion later.

When the time finally comes to render a log message we can extract the
set of tags that relate to this thread context, format them up nicely and
append them to the caller’s message behind the scenes, as in Listing 2.

The example above would generate a log line like this:

 17:23:46 002 Doing other stuff now [ID=1234]

The statement Context.Format(); hopefully shows that I’ve chosen
here to implement the diagnostic context as a static Façade. This is the
s a m e f a ç a de t h a t t h e c o n s t r uc t o r a nd d e s t ru c t o r o f

DiagnosticContextTag would have used earlier to attach and detach
the attributes. In C# the diagnostic context could be implemented like
Listing 3.

The Attach/Detach methods here have been marked internal to
show that tags should only be manipula ted v ia the publ ic
DiagnosticContextTag helper class. (See Listing 4.)

Distributed COM/COM+
The second aspect of this mechanism comes from DCOM/COM+. Each
call-chain in DCOM is assigned a unique ID (a GUID in this case) called
the Causality ID [Ewald]. This plays the role of the Logical Thread ID as
the function calls move across threads, outside the process to other local
processes and possibly even across the wire to remote hosts (i.e. RPC). In
DCOM this unique ID is required to stop a call from deadlocking with itself
when the logical call-chain suddenly becomes re-entrant. For example
Component A might call Component B (across the wire) which locally
calls C which then calls all the way back across the wire into A again. From
A’s perspective it might seem like a new function call but via the Causality
ID it can determine that it’s actually just an extension of the original one.

This Causality ID is allocated by the COM infrastructure and passed
around transparently – the programmer is largely unaware of it.

Listing 1

public void ProcessRequest(Request request)
{
 using(new DiagnosticContextTag("ID",
 request.Id))
 using(new DiagnosticContextTag("HOST",
 request.Host))
 {
 // Do some funky stuff with the request.
 . . .
 }
}

Listing 2

public void WriteLogMessage(string message)
{
 string timestamp = FormatTimestamp();
 string threadId = FormatThreadId();
 string context = Context.Format(); // "ID=1234"

 Console.WriteLine("{0} {1} {2} [{3}]",
 timestamp, threadId, message, context);
}

Listing 3

public static class Context
{
 internal static void Attach(string key,
 string value)
 {
 s_tags.Add(key, value);
 }
 internal static void Detach(string key)
 {
 s_tags.Remove(key);
 }
 public static string Format()
 {
 var builder = new StringBuilder();
 foreach(var tag in s_tags)
 {
 builder.AppendFormat("{0}={1}",
 tag.Key, tag.Value);
 }
 return builder.ToString();
 }
 [ThreadLocal]
 private static IDictionary<string, string>
 s_tags = new Dictionary<string, string>();
}

Listing 4

public class DiagnosticContextTag : IDispose
{
 public DiagnosticContextTag(string key,
 string value)
 {
 Context.Attach(key, value);
 m_key = key;
 }
 public void Dispose()
 {
 Context.Detach(m_key);
 }
 private string m_key;
}

April 2013 | Overload | 19

FEATURE CHRIS OLDWOOD
The primary causality
The Causality mechanism is therefore nothing more than a combination
of these two ideas. It is about capturing the primary tags used to describe
a task, action, operation, etc. and allowing them to
be passed around, both within the same process and
across the wire to remote services in such a way that
it is mostly transparent to the business logic.

As discussed earlier, the reason for distilling the
entire context down into one or more simple values
is that it reduces the noise as the processing of the
task starts to acquire more and more ancillary tags
as you move from service to service. The local
diagnostic context will be useful in answering
questions within a specific component, but the
primary causality will allow you to relate the various
distributed contexts to one another and navigate
between them.

A GUID may be an obvious choice for a unique
causality ID (as DCOM does), and failing any
alternatives it might just have to do. But they are not very pleasing to the
eye when browsing log data. If the request is tracked within a database via
an Identity column then that could provide a succinct integral value, but
it’s still not easy to eyeball.

A better choice might be to use some textual data from the request itself,
perhaps in combination with an ID, such as the name of the customer/user
invoking it. The primary causality could be a single compound tag with a
separator, e.g. 1234/Oldwood/192.168.1.1 or it could be stored as separate
tags, e.g. ID=1234, LOGIN=Oldwood, IP=192.168.1. Ultimately it’s
down to grep-ability but the human visual system is good at spotting
patterns too and if it’s possible to utilise that as well it’s a bonus.

Putt ing a l l this together so far , a long with a s tat ic helper ,
Causality.Attach(), to try and reduce the client-side noise, we could
write the single-threaded, multi-step workflow (a top-level request that
invokes various sub-tasks) in Listing 5.

This could generate the output in Figure 1.

The decision on whether to extend the primary causality with the TaskId
or just let it remain part of the local context will depend on how easy it is
for you to piece together your workflow as it crosses the service
boundaries.

Marshalling the primary causality across the wire
We’ve removed much of the tedium associated with logging the context
for a single-threaded operation, but that leaves the obvious question – how
do you pass that across the wire to another service? We don’t usually have
the luxury of owning the infrastructure used to implement our choice of
transports but there is nothing to stop us differentiating between the logical
interface used to make a request and the wire-level interface used to
implement it. The wire-level interface may well already be different if we
know of a more efficient way to transport the data (e.g. compression) when
serializing. If we do separate these two concerns we can place our
plumbing right on the boundary inside the proxy where the client can
remain unaware of it, just as they are probably already unaware there is an
RPC call in the first place.

The logical interface in Listing 6 describes the client side of an example
service to request the details of a ‘bug’ in an imaginary bug tracking
system.

The client would use it like so:

 // somewhere in main()
 var service = BugTrackerProxyFactory.Create();
 . . .
 // somewhere in the client processing
 var bug = service.FetchBug(bugId);

What we need to do when passing the request over the wire is to tag our
causality data on the end of the existing parameters. To achieve this we
have a separate wire-level interface that ‘extends’ the methods of the
logical one:

 interface IRemoteBugTrackerService
 {
 Bug FetchBug(int id, List<Tag> causality);
 }

Then, inside the client proxy we can hoist the primary causality out of the
diagnostic context container and pass it across the wire to the service’s
remote stub (Listing 7).

We then need to do the reverse (inject the primary causality into the new
call stack) inside the remote stub on the service side (Listing 8).

In this example the client proxy (BugTrackerProxy) and service stub
(RemoteBugTrackerService) classes merely provide the mechanism

Listing 5

public void ProcessRequest(Request request)
{
 using(Causality.Attach("RequestId",
 request.Id))
 {
 foreach(var task in request.Tasks)
 {
 Log.WriteLogMessage("Starting request");
 ProcessTask(task);
 Log.WriteLogMessage ("Request completed");
 }
 }
}
public void ProcessTask(Task task)
{
 using(Causality.Attach("TaskId", task.Id))
 {
 Log.WriteLogMessage ("Starting task");
 . . .
 Log.WriteLogMessage ("Task completed");
 }
}

Listing 6

interface IBugTrackerService
{
 Bug FetchBug(int id);
}
class BugTrackerProxy : IBugTrackerService
{
 public Bug FetchBug(int id)
 {
 . . .
 }
}

Figure 1

17:50:01 001 Starting request [RequestId=1234]
17:50:02 001 Starting task [RequestId=1234;TaskId=1]
17:50:02 001 Doing user stuff [RequestId=1234;TaskId=1;User=Chris]
. . .
17:50:03 001 Task completed [RequestId=1234;TaskId=1]
17:50:02 001 Starting task [RequestId=1234;TaskId=2]
17:50:02 001 Doing payment stuff
[RequestId=1234;TaskId=2;Type=Card]
. . .
17:50:03 001 Task completed [RequestId=1234;TaskId=2]
. . .
17:50:01 001 Request completed [RequestId=1234]
20 | Overload | April 2013

FEATURECHRIS OLDWOOD
for dealing with the non-functional data. Neither the caller nor the service
implementation class (BugTrackerServiceImpl) are aware of what’s
going on behind their backs.

In fact, as a double check that concerns are correctly separated, we should
be able to invoke the real service implementation directly instead of the
client proxy and still get the same primary causality appearing in our log
output:

 //var service = BugTrackerClientFactory.Create();
 var service = new BugTrackerServiceImpl();
 . . .
 var bug = service.FetchBug(bugId);

Marshalling the primary causality to other threads
Marshalling the primary causality from one thread to another can be done
in a similar manner as the remote case. The main difference is that you’ll
likely already be using your language and runtime library in some way to
hide some of the grunge, e.g. by using a delegate/lambda. You may need
to give this up slightly and provide the proverbial ‘extra level of
indirection’ by wrapping the underlying infrastructure so that you can
retrieve and inject the causality around the invocation of the business logic.
Your calling code should still look fairly similar to before:

 Job.Run(() =>
 {
 backgroundTask.Execute();
 });

However instead of directly using Thread.QueueUserWorkItem we
have another static façade (Job) that will marshal the causality behind the
delegate’s back (Listing 9).

Marshalling via exceptions
In the previous two sections the marshalling was very much one-way
because you want to unwind the diagnostic context as you return from each

scope. But there is another way to marshal the causality, which is via
exceptions. Just as an exception in .Net carries around a call stack for the
point of the throw and any inner exceptions, it could also carry the causality
too. This allows you to avoid one common (anti) pattern which is the ‘log
and re-throw’ (Listing 10).

The only reason the try/catch block exists is to allow you to log some aspect
of the current operation because you know that once the call stack unwinds
the context will be gone. However, if the exception captured the causality
(or even the entire diagnostic context) in its constructor at the point of being
thrown this wouldn’t be necessary. You also won’t have a ‘spurious’ error
message either when the caller manages to completely recover from the
exception using other means. (See Listing 11.)

Naturally this only works with your own exception classes, and so you
might end up catching native exceptions anyway and re-throwing your
own custom exception types just to capture the causality. However, you’ve
avoided the potentially spurious log message though so it’s still a small
net gain.

If the exception flows all the way back to the point where the transaction
started you can then log the captured causality with the final exception
message. In some cases this might be enough to allow you to diagnose the
problem without having to find the local context where the action took
place.

Listing 7

class BugTrackerProxy : IBugTrackerService
{
 public Bug FetchBug(int id)
 {
 var causality =
 Causality.GetPrimaryCausality();
 return m_remoteService.FetchBug(id,
 causality);
 }
 private
 IRemoteBugTrackerService m_remoteService;
}

Listing 8

class BugTrackerServiceImpl : IBugTrackerService
{
. . .
}
class RemoteBugTrackerService
 : IRemoteBugTrackerService
{
 public Bug FetchBug(int id, List<Tag> causality)
 {
 using
 (Causality.SetPrimaryCausality(causality))
 {
 return m_service.FetchBug(id);
 }
 }
 private BugTrackerServiceImpl m_service;
}

Listing 9

public class Job : IRunnable
{
 public static void Run(Action action)
 {
 var causality =
 Causality.GetPrimaryCausality();
 ThreadPool.QueueUserWorkItem((o) =>
 {
 using
 (Causality.SetPrimaryCausality(causality))
 {
 action();
 }
 });
 }
}

Listing 10

try
{
 // Read a file
}
catch (Exception e)
{
 Log.Error("Failed to read file '{0}'",
 filename);
 throw;
}

Listing 11

public class CustomException : Exception
{
 public CustomException(string message)
 : base(message)
 {
 m_causality = Causality.GetPrimaryCausality();
 }
 private List<Tag> m_causality;
}

April 2013 | Overload | 21

FEATURE CHRIS OLDWOOD
Tag types
So far we’ve restricted ourselves to simple string based tags. But there is
no reason why you couldn’t store references to the actual business objects
and use runtime type identification (RTTI) to acquire an interface for
handling causality serialization and formatting. If all you're doing is
rendering to a simple log file though this might be adding an extra
responsibility to your domain types that you could do without.

This is one area where I've found Extension Methods in C# particularly
useful because they only rely on the public state of an object and you can
keep them with the infrastructure side of the codebase. The calling code
can then look like this:

 using (customer.TagCausality())
 {
 // Do something with customer
 }

The extension method can then hide the ‘magic’ tag key string:

 public static class CustomerExtensions
 {
 public Tag TagCausality(this Customer customer)
 {
 return Causality.Attach("Customer",
 customer.Id);
 }
 }

Keeping the noise down
Earlier I suggested that it's worth differentiating between the primary and
ancillary tags to keep the noise level down in your logs as you traverse the
various layers within the system. This could be achieved either by keeping
the tags in a separate container which are then merged during formatting,
or marking them with a special flag. The same suggestion applies to your
context interface/façade - separate method names or an additional flag, e.g.

 using (Causality.AttachPrimary("ID", Id))

versus…

 using (Causality.Attach("ID", Id,
 Causality.Primary))

versus…

 using (Causality.Attach("ID", Id))
 using (Causality.MarkPrimary("ID"))

Whatever you decide it will probably be the choice that helps you keep
the noise level down in your code too. Just as we wanted to keep the
marshalling logic away from our business logic, we might also choose to
keep our diagnostic code separate too. If you're using other tangential
patterns, such as the Big Outer Try Block [Longshaw], or measuring
everything you can afford to [Oldwood], you'll find weaving this aspect
into your code as well might only succeed in helping you to further bury
the functional part (see Listing 12).

Most of the boilerplate code can be parcelled up into a helper method that
takes a delegate/lambda so that the underlying functionality shines through
again, as in Listing 13.

Testing causality interactions
Due to the simplistic nature of the way the context is implemented it is an
orthogonal concern to any business logic you might be testing. As the
example implementation shows it is also entirely stateful and so there are
no mocking concerns unless you want to explicitly test that the context
itself is being correctly manipulated. Given that the modus operandi of the
diagnostic context is to allow you to extract the tags for your own use the
public API should already provide everything you need. This assumes of
course that the operation you're invoking provides you with a "seam"
[Feathers] through which you can observe the effects (for example, see
Listing 14).

Summary
This article demonstrated a fairly unobtrusive way to associate arbitrary
tags with a logical thread of execution to aid in the diagnosis and support
of system issues via log files. It then illustrated a mechanism to pass the
primary tags to other threads and remote processes so that multiple
distributed scopes could be related to one another. The latter part contained
some ideas on ways to reduce the noise in the client code and finished with
a brief comment on what effects the mechanism has on unit testing.

Listing 13

public void ProcessAdditionRequest(Request
request)
{
 HandleRequest(request, () =>
 {
 request.Answer = request.Left + request.Right;
 });
}
private void HandleRequest(Request request,
Action action)
{
 try
 {
 using (Causality.Attach("Request",
 request.Id))
 {
 action();
 }
 }
 catch (MyException e)
 {
 // Recover from known problem
 }
 catch (Exception e)
 {
 // Recover from unknown problem
 }
}

Listing 12

public void ProcessAdditionRequest(Request
request)
{
 try
 {
 using (Causality.Attach
 ("Request", request.Id))
 using (Causality.Attach
 ("User", request.Login))
 using (Causality.Attach("Host", request.Host))
 {
 using (Instrument.MeasureElapsedTime
 ("Addition"))
 {
 request.Answer =
 request.Left + request.Right;
 }
 }
 }
 catch (MyException e)
 {
 // Recover from known problem
 }
 catch (Exception e)
 {
 // Recover from unknown problem
 }
}

22 | Overload | April 2013

FEATURECHRIS OLDWOOD
Acknowledgements
A large dollop of thanks goes to Tim Barrass for providing me with the
impetus to write this up in the first place and for forgoing sleep to review
it too. Steve Love also picked up many problems both big and small.
Finally the Overload team (Frances Buontempo, Roger Orr and Matthew
Jones) helped to add some spit and polish.

References
[Ewald] Transactional COM+: Building Scalable Applications, Tim

Ewald

[Feathers] Working Effectively With Legacy Code, Michael Feathers

[Harrison] Pattern Languages of Program Design 3, edited by Robert C.
Martin, Dirk Riehle and Frank Buschmann.

[Longshaw] ‘The Generation, Management and Handling of Errors (Part
2)’, Andy Longshaw and Eoin Woods, Overload 93

[Nygard] Michael Nygard, Release IT!

[OED] Oxford English Dictionary

[Oldwood] Chris Oldwood, Instrument Everything You Can Afford To,
http://chrisoldwood.blogspot.co.uk/2012/10/instrument-everything-
you-can-afford-to.html

Listing 14

public class TestService : IService
{
 public void DoSomething()
 {
 m_causality =
 Causality.GetPrimaryCausality();
 }
 public
 List<KeyValuePair<string, string>> m_causality;
}
[Test]
public void RequestShouldSetPrimaryCausality()
{
 var service = new TestService();
 var request = new Request(service);
 request.ProcessIt();
 Assert.That(service.m_causality.Count,
 Is.EqualTo(1));
 Assert.That(service.m_causality[0].Key,
 Is.EqualTo("ID"));
 Assert.That(service.m_causality[0].Value,
 Is.EqualTo("1234"));
}

April 2013 | Overload | 23

ACCU Conference Auction for Bletchley Park
We are very pleased to announce that the ACCU 2013 Conference will
be continuing the now-traditional Charity Auction at this year’s Speakers
Dinner. While this is a bit of fun, it also raises vital funds for both The
Bletchley Park Trust and The National Museum of Computing, helping
them to continue to preserve our computing heritage. The Charity
Auction can also be a fabulous opportunity to snag a piece of computing
history for yourself!

The auction lots are not yet finalised but we do have a partial list. Take
a look, have a think, then come to the Speakers Dinner ready to bid. After
all, it is for charity!

If you can’t be there in person, contact accu@archer-yates.co.uk to place
a bid by email.

Lot 1 Bletchley Park family tour, and undercover look at Bletchley Park.

Lot 2 Hotel voucher (by Marriots).

Lot 3 Bombe Team tour, provisionally parrt of the day with a Bombe
operator from the 1940s and a working operator in 2013.

Lot 4 Colossus Team tour of the Bletchley site culminating in a visit to
the first semi-programmable electric computer and the new Computer
Museum.

Lot 5 Colossus valve as used in Colossus mk1 & mk11

Lot 6 Group tour of Bletchley Park. A full day tour, with tea and coffee
on arrival, and possible chat with the director prior to departure. Voucher
valid for 14 months.

Lot 7 Amateur Radio Society of Bletchley Park day, with separate day
in the National Radio Museum with Morse Code operators, talking to the
world. An option on Saturday/Sunday for an afternoon tour of the
listening/ wireless exhibition, and time with a lively retired MI8 agent
(shhhh, it’s secret... but she is willing).

Lot 8 Bletchley Park family pack, which includes unlimited visits for
1 year (including free car parking) and a Bletchley Secret Book.

Lot 11 Sculpture – by Steven Kettle.

Lot 13. At Bletchley Park stand from 10–12 April, this is the star lot of
an ENIGMA machine replica. In kit form this costs £450, but this

assembled item has a reserve of £1000. The box it is housed in makes an
amazing piece of furniture. It measures approximately 225mm × 300mm
× 120mm deep.

Lot 16. Final clearance of Bletcheley Park papers. Due to a rebrand, the
Bletchley Park retail manager is selling off their own published specialist
papers.There are some 22 papers, each with its own ISDN number,
covering specialist subjects from ‘shark’ to ‘Turing’ to the first computer,
‘Colossus’.

http://chrisoldwood.blogspot.co.uk/2012/10/instrument-everything-you-can-afford-to.html

FEATURE SEB ROSE
Executable Documentation
Doesn’t Have To Slow You Down
Comprehensibility of end-to-end scenarios and quick
feedback of unit tests are competing goals. Seb Rose
introduces Cucumber with tags to meet both needs.
was talking to a senior developer at a conference recently who was very
supportive of TDD. However, he couldn’t see why anyone would want
to automate examples that were written in a way that was

understandable by business folk – analysts, customers, product owners and
so on. His experience was that the business people never participated in
creating the examples and weren’t interested in looking at them once they
were automated. He also believed that the examples were frequently
duplicated in unit tests and that since the unit tests ran so much faster, there
was nothing to be gained from automating at the business level. In this
article I want to examine this position and try to describe a way out of the
impasse.

Business engagement
First, we need to address the lack of engagement of the business. The
regular complaint is that the business people are too busy to spend time
working on the examples with the development team, and the only way
round this is to point out that unless someone who understands the
business’s needs is involved in the product evolution, then it’s unlikely that
the end result is going to be satisfactory. There are lots of ways to arrange
business involvement, from having a fully empowered Product Owner co-
located with the development team, through to scheduling regular times
that a business person will be available to work with the team. The key
point is that whoever works with the team needs to be authorised to make
decisions regarding the development of the product – if all questions lead
to an “I’ll get back to you on that” then there will be problems.

A less satisfactory solution is for the development team to produce all the
examples and then have them reviewed and signed-off. Many of the
benefits of deriving the examples collaboratively are lost if you work this
way:

 Deliberate discovery [Keogh12] – by having representatives of
diverse stakeholder communities working collaboratively you can
efficiently drive out more hidden issues than having them work
separately. This harnesses the observed ‘wisdom of crowds’
phenomenon.

 Ubiquitous language [Fowler] – communication is about shared
understanding. It’s all too common for a term to have subtly
different meanings to different communities, and the most effective
way to combat this is to have those communities develop the
organisation’s vocabulary together.

 Immediate feedback – any process that involves hand offs between
disparate groups is introducing delays, which affect the ability of the
organisation to deliver value and respond to change.

Notice that I’m not talking about automation at all. No tools have been
mentioned. Nor have I introduced any of the techy acronyms (BDD

[North], ATDD [Hendrickson], SbE [Adzic11], EDD, TDD). I’m talking
about collaboration pure and simple. This style of collaboration has been
popularised by the Agile Manifesto [Agile], one of whose principles states:

The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

You don’t have to be agile to work like this (most organisations that think
they are ‘agile’ don’t work like this), but working like this will improve
communication in any organisation and remove many of the hurdles from
the real job of delivering something that the customer wants.

Automated examples
At this point you can decide to go no further, but there is great value to be
had by considering automating some (or all) of the examples that were
collaboratively authored:

 Living documentation – consider how often you have seen
documentation that is out of date. By writing examples that
demonstrate the behaviour of the system by actually executing
against it, your documentation will always be up to date (as long as
the examples all pass).

 Regression pack – since the examples describe the behaviour of the
system, if that behaviour changes unexpectedly then some examples
will fail.

 Feedback speed – because the examples run automatically against
the system, they can be run frequently. The limiting factor for
feedback speed is how quickly they run, but this will always be
quicker than running an equivalent suite of manual tests.

Once you have decided to automate, you’ll need to choose your approach.
For the purposes of this article I will use examples written in Gherkin
[Cucumber] (which interprets examples for Cucumber [Cucumber]). I am
a fan of Cucumber/Gherkin, but there are many other tools available, most
of which will automate the execution of examples.

Let’s assume we have the example below, that deals with registering at
some website:

Feature: Sign Up
Scenario: New user redirected to their own page

When I sign up for a new account
Then I should be taken to my feeds page
And I should see a greeting message

When Cucumber runs this scenario (example) it tries to match each step
(introduced by the keywords Given, When, Then, And, But) with some
glue code that exercises the system under test. The glue code can be written
in various languages, depending on which port of Cucumber you are using,
but for the purposes of this article I will limit myself to Java and so will
be using Cucumber-JVM [Hellesøy12]. Each method in the glue code is
annotated with a regular expression, against which Cucumber tries to
match the text of each step:

 if there is no match, Cucumber generates an error

 if there are multiple matches Cucumber generates an error

I

Seb Rose is an independent software developer, trainer and coach
based in the UK. He specialises in working with teams adopting and
refining their agile practices, with a particular focus on delivering
software through the use of examples. He can be contacted at
seb@claysnow.co.uk
24 | Overload | April 2013

[North]

FEATURESEB ROSE
 if there is exactly one match, Cucumber executes the method in the
glue code

 if the method returns without raising an exception the step
passes

 if an exception propagates out of the method the step fails

How you implement the step definitions is up to you, and depends on the
nature of your system. The example above might:

 fire up a browser, navigate to the relevant URL, enter specific data,
click the submit button and check the contents of the page that the
browser is redirected to

 call a method on a Registration object and check that the expected
event is fired, with the correct textual payload

 or anything else that makes sense (e.g. using smart card
authentication or retina scanning).

The point is that the text in the example describes the behaviour, while the
step definitions (the glue code) specify how to exercise the system. An
example glue method would be:

 @When("I sign up for a new account")
 public void I_sign_up_for_new_account() {

 // Do whatever it takes to sign up for a new account

 }

Examples everywhere
Newcomers to this style of working often adopt a style in which every
example is executed as an end-to-end test. End-to-end tests mimic the
behaviour of the entire system and create an example’s context by
interacting directly with the UI, and the full application stack is involved
throughout (databases, app servers etc.). This sort of test is very useful for
verifying that an application has deployed correctly, but can become quite
a bottleneck if you use it for validating every behaviour of the system. The
Testing Pyramid (see Figure 1) [Fowler12] was created to give a visual hint
about the relative number of ‘thick’ end-to-end tests and ‘thin’ unit tests.
In the middle are the component/integration tests that verify interactions
within a subset of the entire system. (The ‘Exploratory and Manual’ cloud
at the top is a reminder that not all tests can be automated, and that the
amount of effort needed here is very system dependent.)

It may be reasonable to use the example scenario above as a ‘Happy Path’
end-to-end test, demonstrating that the whole application is hanging
together. However, there are some other situations that emerged when this
feature was discussed, some of which were:

 what happens if the user already exists?

 what happens if the credentials provided are unacceptable?

 how will errors be communicated to the user?

These questions are still independent of how the system is actually going
to be implemented, but we can start fleshing out some examples:

Scenario: Duplicate user registration
Given I already have an account
When I sign up for a new account
Then I should see the “User already exists” error message

Scenario: Unacceptable credentials at signup
Given my credentials are unacceptable
When I sign up for a new account
Then I should see the “Unacceptable credentials” error message

These extra examples could be implemented using the whole application
stack, but then the runtime of the example suite begins to rise as we execute
more end-to-end tests. Instead, we could decompose these examples into:

 examples that demonstrate the correct feedback is given to the user
in various circumstances

 examples that exercise the validation components

Scenario Outline: Display correct error message
When the registration component returns an <error>
Then the correct <message> should be returned

Examples:
error	message
error-code-user-already-exists	"User already exists"
error-code-unacceptable-credentials	"Unacceptable credentials"

Scenario: Detect duplicate user
Given user already exists
When the registration component tries to create the user
Then it will return error-code-user-already-exists

Scenario: Unacceptable credentials at signup
Given the credentials are unacceptable
When the registration component tries to create the user
Then it will return error-code-unacceptable-credentials

Speed, completeness and comprehensibility
These examples should run a lot faster, but are no longer written in business
language (if you want an explanation of Scenario Outline look at the
Cucumber documentation). They have lost some of their benefit and have
become technical tests, mainly of interest to the development team. If we
choose to ‘push them down’ into the unit test suite, where they seem to
belong, then we will have lost some important documentation that is
important to the business stakeholders.

This demonstrates the conflict between keeping the examples in a form that
is consumable by non-technical team members and managing the runtime
of the executable examples. Teams that have ignored this issue and allowed
their example suite to grow have seen runtimes that are counted in hours
rather than minutes. Clearly this limits how quickly feedback can be
obtained, and has led teams to try different solution approaches, none of
which are ideal:

 partition the example suite and only run small subsets regularly

 speed up execution through improved hardware or parallel
execution

 push some tests into the technical (unit test) suite

In a recent blog post I introduced the Testing Iceberg (see Figure 2) [Rose],
which takes the traditional Testing Pyramid and introduces a readability
waterline. This graphically shows that some technical tests can be made
visible to the business, while there are some end-to-end tests that the
business are not interested in. We want to implement our business
examples in such a way that they:

 document everything relevant to the business

 do not duplicate technical tests

 minimise the execution time of the examples

Figure 1

Tests that verify components in isolation

Tests that verify
integrated components

or subsystems

End-to-end
system tests

Exploratory
and

manual
April 2013 | Overload | 25

FEATURE SEB ROSE
Using Cucumber
There are a few features of Cucumber that I need to introduce before
describing the technique I use to keep my examples consumable by the
business without sacrificing performance of the suite.

Tags
Any Cucumber scenario can have one or more free text tags applied to it:

@this_is_a_tag
@a_different_tag
@regression
Scenario: What just happened?

When I do something
Then something should happen

When invoking Cucumber you can pass in tags as arguments to identify
which scenarios should be executed. This is useful when trying to partition
the example suite, to build a regression suite or a smoke test suite, for
example.

Hooks
Cucumber also allows you to provide setup/teardown hooks in your glue
code that are run before and after each example.

 @Before
 public void beforeScenario() {

 // Do some setup work

 }

Tagged hooks
And finally, Cucumber allows you to write tagged hooks, which are only
run before scenarios that have matching tags (matching can use complex
logic – see the documentation).

 @Before("@regression")
 public void beforeScenario() {

 // Do something specific to the "regression" tag.

 }

Putting it all together
 #sign_up.feature
 @without_ui

Scenario: Duplicate user registration
Given I already have an account
When I sign up for a new account
Then I should see the "User already exists" error message

// RegistrationSteps.java

class RegistrationSteps {
 private boolean without_ui = false;
 @Before("@without_ui")
 public void beforeScenario() {
 without_ui = true;
 }
 @When("I sign up for a new account")
 public void I_sign_up_for_new_account() {
 if (without_ui){

 // Send information directly to

 // registration component

 } else {

 // Drive UI directly using Selenium [Selenium]

 // or similar.

 }
 }
}

The benefits of working like this are:

 we can write our examples from a user perspective (which makes it
easy for the business to understand)

 we can execute the examples as thinner component or unit style tests
(which keeps the runtime down)

 we can avoid duplication by using the glue to delegate directly to the
unit tests where appropriate

 we can run the examples using the whole application stack and begin
to thin down the stack using tags once we have built some trust in
our initial implementation.

It is the business who should prioritise how to evolve a product, based on
their understanding of the customers needs. Face to face communication
between the business and the development team can help develop a
ubiquitous language that can be used to document the behaviour of the
system in a manner that is clear and unambiguous to all concerned. The
examples that are produced during these conversations can then be
automated, but there is an ongoing tension between the comprehensibility
of end-to-end scenarios and the quick feedback of unit tests. Using
Cucumber and tags it is possible to write the examples in an end-to-end
style, but modify how they are executed (and hence their runtime costs)
by applying or removing tags, without adversely affecting the
comprehensibility of the example itself.

References
[Adzic11] http://specificationbyexample.com/key_ideas.html

[Agile] http://agilemanifesto.org

[Cucumber] http://cukes.info

[Fowler] http://martinfowler.com/bliki/UbiquitousLanguage.html

[Fowler12] http://martinfowler.com/bliki/TestPyramid.html

[Hellesøy12] http://aslakhellesoy.com/post/20006051268/cucumber-
jvm-1-0-0

 [Hendrickson] http://testobsessed.com/2008/12/acceptance-test-driven-
development-atdd-an-overview/

[Keogh12] http://lizkeogh.com/2012/06/01/bdd-in-the-large/

[North] http://dannorth.net/introducing-bdd/

[Rose] http://claysnow.co.uk/?p=175315341

[Selenium] http://docs.seleniumhq.org

Figure 2

Technical

Business-readable

E
nd

-to
-e

nd
 s

ys
te

m
 te

st
s

Te
st

s
th

at
 v

er
ify

 in
te

gr
at

ed

co
m

po
ne

nt
s

or
 s

ub
sy

st
em

s

Te
st

s
th

at
 v

er
ify

 c
om

po
ne

nt
s

in
 is

ol
at

io
n

26 | Overload | April 2013

http://lizkeogh.com/2012/06/01/bdd-in-the-large/
http://dannorth.net/introducing-bdd/
http://martinfowler.com/bliki/TestPyramid.html
http://cukes.info
http://martinfowler.com/bliki/UbiquitousLanguage.html
http://testobsessed.com/2008/12/acceptance-test-driven-development-atdd-an-overview/
http://testobsessed.com/2008/12/acceptance-test-driven-development-atdd-an-overview/
http://claysnow.co.uk/?p=175315341
http://docs.seleniumhq.org
http://aslakhellesoy.com/post/20006051268/cucumber-jvm-1-0-0
http://aslakhellesoy.com/post/20006051268/cucumber-jvm-1-0-0
http://specificationbyexample.com/key_ideas.html
http://agilemanifesto.org

FEATURETEEDY DEIGH
Why Dysfunctional
Programming Matters
Function progamming is all the rage.
Teedy Deigh considers how it offers many
opportunities for the serious programmer.
unctional programming has, of late, taken its flight path across the
radar of the industry, awaking from its paradigmatic slumber to
threaten the livelihoods and codebases of hordes of OO half adopters

and procedural laggards. How far should it be followed to keep one’s job
and reputation secure? What opportunities does it offer for programmer
idiosyncrasy and awkwardness? This is clearly a matter that warrants
further study.

As with any serious research effort, the dictionary is our first stop. It offers
the following possibilities:

functional, adjective

 having a function

 working or operating

 useful, utilitarian

 designed to be practical rather than attractive.

For the paid programmer this sends out a mixed message. The first point
is certainly met by much code. Indeed, there is an implication that one
function is sufficient, thus cramming it all into main should be enough to
meet this requirement. The outlook is good for many programmers who
rely on such extreme encapsulation techniques as a means to differentiate
their code from so-called clean code. But the second definition is not so
welcoming for anyone whose expertise and day-to-day practices and
heroism find expression in bugs and the debugger. Similarly, the joy of
much programming is in considering it an art rather than some demeaning
utilitarian endeavour, where stakeholder value is the only dull reward. The
last definition offers mixed possibilities: that the code need not be
aesthetically pleasing can be considered a good thing; being practical
misses the point of much coding effort and advice. For example, a large
part of the investment in OO is based on the premise of reuse rather than
use, which is the perfect get-out for anything that may be criticised as not
at first appearing useful.

There is a certain air of elitism that surrounds functional programming,
which for some programmers allows them to retain a mystique and priest-
like status. This is to be applauded, especially if the code is similarly
shrouded in mystery. Yet at the same time there is something more hoi
polloi about functional programming that threatens to wrest programming
from the grasp of the few and deliver into the hands of the many:

Excel is the world’s most popular functional language.
~ Simon Peyton Jones

It is important to remember that for a programmer:

The needs of the one outweigh the needs of the many.
~ James Tiberius Kirk

Thus some kind of distance from the common world of Excel, any kind of
secret knowledge or obscure technique that can be brought into play, is
needed if functional programming is to be taken seriously by real
programmers.

Fortunately, the close association between mathematics and functional
programming looks set to provide such separation. For those less
comfortable with mathematics, but who revel and dwell in the darker
corners of procedural coding, there is also hope:

Haskell is, first and foremost, a functional
language. Nevertheless, I think that it is also the

world’s most beautiful imperative language.
~ Simon Peyton Jones

While beauty may not be a selling point – the very word functional suggests
this is not a credible consideration – the imperative opportunity is in the
imperative support:

The determined Real Programmer can write
FORTRAN programs in any language.

~ Ed Post

Given that functional programming can be coaxed into something more
familiar, it makes sense to probe a little further. And how better to
understand FP than to appreciate the problems for which it is ideally
suited? For example, OO programmers are drawn to bank accounts and
stacks, enterprise architectures meet the needs of pet stores everywhere
and TDD satisfies a collective need to understand Roman numerals and
the rules of ten pin bowling. What then is the killer app for functional
programming? There are many, but one that deserves our special attention
is the factorial function – a pressing need for which seems to exist in
teaching texts everywhere.

Where a modern C programmer might be satisfied with the following, with
its exemplary use of postfix decrement, discreet use of the ternary operator
and nod to design by contract (along with the “To NDEBUG or not to
NDEBUG?” question it leaves in its wake):

 int factorial(int n)
 {
 assert(n >= 0);
 int result = n ? n : 1;
 while(n-- > 1)
 result *= n;
 return result;
 }

The true functional programmer understands that:

To iterate is human, to recurse divine.
~ L Peter Deutsch

F

Teedy Deight dabbles in programming language design in the way
a cat dabbles with a trapped mouse. You never know the details,
but the outcome is rarely good for the mouse. The remains will turn
up and surprise you where and when you’re least expecting it,
leaving you wondering how to dispose of it.
April 2013 | Overload | 27

FEATURE TEEDY DEIGH
which gives us:

 int factorial(int n)

 {

 assert(n >= 0);

 if(n == 0)

 return 1;

 else

 return n * factorial(n - 1);

 }

To achieve full divinity, however, requires the following:

 int factorial(int n)
 {
 assert(n >= 0);
 return n == 0 ? 1 : n * factorial(n - 1);
 }

Enough to make many newbie programmers and maintainers mutter
“God” under their breath. Their awe mingled with a lack of appreciation
of the qualities the conditional operator can bring to a codebase when
employed extensively and without mercy. It is worth noting that
conditional expressions are the norm in functional programming, although
they often lack the brevity of C’s ternary operator.

That said, however, it is considered good functional style to express
programs as transformations expressed through other functions, often
those found in a standard library. While any good programmer makes some
use of libraries, there is always a balance to be struck, always a sense that
it is the programmer who should be writing the reusable code rather than
actually reusing it.

The following version of factorial is implemented in Haskell, a pure
functional language whose name is the outcome of a word association
game where the chain of connections took in one of the fundamental
programmer food types and the logician Haskell Curry:

 fact n = product [1..n]

The definition of the fact function is brief and clear, with clarity being
perhaps the major objection to adopting this approach in legacy-wannabe
code. That said, the brevity of identifiers popular in functional
programming is a welcome relief to anyone whose fingers have laboured
over the enterprisey FactorialCalculationFunction (with a
further liberal assortment of Manager, Controller, etc. suffixes
waiting in line for inclusion), but at the same time offers sufficient scope
for challenge and humour. Instead of the painfully obvious factorial,
programmers can choose from:

 the boldly assertive fact;

 the chatty fac;

 the wry faq – factorial is, after all one of the most frequently asked-
for programming examples;

 the vowel-deprived fct – a puzzle for its readers to solve or an
opportunity for vowel-injected humour;

 the enigmatic discretion of f.

It is worth learning the lessons and orthodoxy of the Haskell version, while
keeping in mind the following:

The code is more what you’d call guidelines than actual rules.
~ Captain Hector Barbossa

Thus, the optimal solution for factorial is one that combines considered
naming with artisan-crafted logic.

Turning to larger programming problems, one of the major challenges –
and therefore one of the major opportunities for programmers to inject
themselves into projects as dependencies – is the question of state change.

In general, functional programming shies away from state change. It is
easy to see that if state change is ignored, code achieves many non-
functional qualities – interactions with databases don’t function, user
interaction doesn’t function, etc. Indeed, any I/O or interaction with the
physical world become completely non-functional. Sadly, for all the purity
that this offers and peace that it brings – databases and users being a prime
source of annoyance and bugs – a complete lack of state change is likely
to attract few sponsors. To get around this, functional programming
languages generally adopt one of three approaches – pragmatism, actors
or monads:

 Pragmatism is often another way of saying, “We know this could be
better, but that looks a bit tricky and, quite frankly, we can’t be
bothered.” When used as a prefix, pragmatic is often shorthand for
not, as illustrated by, for example, pragmatic Agile, pragmatic TDD,
pragmatic OOP. Thus the question of functional I/O can addressed
with pragmatic side-effect-free code.

 The actor model of computation is based on role playing and
pretence. Instead of actually doing the I/O yourself, you employ an
actor to do it for you. Actors pretend they’re not doing anything – as
the name suggests, it’s all an act – but they’re really doing I/O, and
probably quite a lot of it. In common with their high-profile real-
world namesakes, if you ask actors if they’re doing anything
questionable they’ll deny it, which spawns a whole network of
gossip (i.e., messages passed discreetly from actor to agent to
journalist).

 It is perhaps fitting that monad rhymes with gonad, reflecting the
common response to the masterful way in which I/O with monads is
passed off as being free of side-effects by burying it so deeply in
category theory – wrapped in a mystery inside an enigma spliced in
a riddle encrypted with AES – that it becomes almost impossible to
determine whether there is any I/O. Simply trying to work out what
we mean by ‘I/O’ and what we mean by ‘what we mean by’ is
usually enough to distract practitioners and theoreticians alike from
any I/O that may (or may not) be happening, while also noting that
maybe is itself a monad.

Thus, functional languages largely manage to achieve state change through
a process of full-scale regime change.

As in other walks of programming, FP is unsettled on certain key issues,
such as whether to favour dynamic typing or static typing, so the
programmer can feel right at home and just as entrenched. Matters of
syntax also offer scope for heated and vibrant discussion, with handwaving
use of elegance often used to sweep under the carpet the frequent similarity
between functional programs and /etc/termcap files. Hybrid
languages provide a certain postmodernism relief to the clean lines of
much neoclassical or modernist functional programming.

Although the claims of clarity, brevity and purity are enough to put many
programmers off, we can see now that functional programming offers
many opportunities for the serious programmer.
28 | Overload | April 2013

	Overload114_Final.pdf
	Knitting Needles and Keyboards
	A Model for Debug Complexity
	Valgrind Part 6 – Helgrind and DRD
	Quality Matters #7 Exceptions: the story so far
	Causality – Relating Distributed Diagnostic Contexts
	ACCU Conference Auction for Bletchley Park
	Executable Documentation Doesn’t Have To Slow You Down
	Why Dysfunctional Programming Matters

