

June 2014 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Branching Strategies
Chris Oldwood considers three main branching
strategies.

8 Beauty in Code
Adam Tornhill gives a Clojure example
demonstrating an attractive generalisation.

10 The Code is Not the Most Important Thing
Seb Rose says some approaches to teaching kids
to code work better than others.

12 Stop the Constant Shouting
Jonathan Wakely shows how to avoid SHOUTING
in C++.

14 Minimal Overhead for Multiple Interfaces
Daniel Gutson and Pablo Oliva present an
alternative to multiple interfaces.

OVERLOAD 121

June 2014

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 122 should be submitted
by 1st July 2014 and those for
Overload 123 by 1st September
2014.

EDITORIAL OVERLOAD
Very small or very far away:
A sense of perspective
A tension exists between being immersed in
something and stepping back. Frances Buontempo
considers the importance of taking a break.
I’d like to thank Ric Parkin for stepping in for the last
issue of Overload. I needed to take a break and now
I’m back. Taking a break can take various forms.
Sometimes they are by choice, for example just to go
outside and enjoy some sunshine for a brief moment,
and on other occasions a hiatus is enforced either by

others or by personal circumstances, often for longer. Though such an
interruption can be irritating, it can also be useful. Just leaving the
computer for a moment to get a glass of water will let you rehydrate,
allowing better concentration. Simply standing up and looking out of the
window is reputed to be good for our eyes. I personally find I frequently
spot the cause of a bug or a problem by glancing away from the monitors
then looking back. It seems the change of physical perspective can also
shift my mental viewpoint. Stepping away from the keyboard is important
for both the quality of your work, and for you. Many programmers have
notoriously bad posture. Taking a moment to stretch and re-adjust the
body can both help to avoid chronic problems such as lower back pain,
upper limb disorder or repetitive strain injury (RSI) for which insufficient
rest breaks are purported to be a risk factor [RSI]. I’m not suggesting
stretching prevents RSI, just that self-awareness combined with some
movement can avoid long term issues.

Other forms of rest are neither self-imposed nor preventative. After, in fact
during, this year’s ACCU conference I had so much fun talking to so many
people, I lost my voice. I was left, literally speechless. This is very
frustrating, but means you have to listen and may therefore spot things you
would not otherwise have done had you been seeking a moment to share
your words of wisdom or a timely wisecrack. I have lost my voice on a
few occasions. It never ceases to amaze me the number of times people
will try to phone me up, and even if warned still expect me to speak.
Unsurprisingly, the sound of a ringing phone is not a miraculous cure for
laryngitis. At the conference I was reduced to having a list of useful
phrases to hand, which I recently rediscovered. The first on the list is, of
course, “I’ve lost my voice,” closely followed by “Geeks”, “Drink!” and
“Slackers”. If you couldn’t speak for a few days what phrases would you
choose? It’s interesting to look back and see what I ‘said’ to various
people, and am aware that it probably reveals more about me than I want
to know. Why did I not have at least one positive, life affirming stock
phrase prepared? How many times did I really need to write down
”WTF?!”?!

It is good to take time out to think about your regular routine. Do you take
a lunch break? Many people grab an overpriced

sandwich and then return to their keyboard to
lunch ‘al desko’, or indeed get food

delivered straight to their desk. The
rationale seems to be that there is a linear

relationship between time spent in front of a computer and the amount of
productive work completed. Once we had decided how to quantify
‘productive’, I suspect the graph would be neither linear nor, importantly,
increasing after a critical point. Even if there’s nowhere nice to sit and eat
your lunch, it is often worth just going for a walk round the block just to
give yourself space to step away from the problem at hand and look at it
differently. Do you go home at night? I have met several people who will
stay until really late, almost every day. It can be difficult to tear yourself
away from a very interesting problem, and yet it is often when we
withdraw from the forefront of a situation we get a clearer perspective.
Sometimes programmers will stay late trying to make last minute bug
fixes in order to release on time. Many of us will have been at our desks
in the small hours, hacking away, possibly making new bugs as we go. It
might avoid reputational damage to delay the release rather than release
last minute untested hacks and patches. Sleep is, after all, important, even
though there seems to be a current trend among students for taking so
called ‘smart drugs’ of late. These allow you to ‘pull an all-nighter’
presumably allowing you to make a deadline for course work or to cram
all night before an exam. It would be interesting to find a way to measure
the quality of the work produced under such circumstances. Many of us
do turn to stimulants to stave off sleep. Famously, a “Mathematician is a
machine for turning coffee into theorems.” [Renyi] and programmers also
turn coffee into source code, so perhaps staying awake at the appropriate
time matters too.

The father of Russian vodka [vodka], Dmitri Mendeleev is also renowned
for inventing (or discovering) the periodic table. Though others before
him had tried to arrange the elements in some organised structure, his
approach formed the basis of what we’d recognise today as the periodic
table. He suspected some atomic weights were wrong and correctly
predicted that some elements had not yet been discovered. The popular
story tells us he discovered the ordering after writing the elements on
playing cards and arranging them in different ways for days [Mendeleev].
In fact, it seems he spent many sleepless nights thinking about the problem
and dozed off one day to realise a new arrangement in a dream:

On the night of February 17, 1869, the Russian scientist Dmitri
Mendeleyev went to bed frustrated by a puzzle he had been playing
with for years: how the atomic weights of the chemical elements
could be grouped in some meaningful way – and one that, with any
luck, would open a window onto the hidden structure of nature. He
dreamed, as he later recalled, of ‘a table where all the elements fell
into place as required.’ His intuition that when the elements were
listed in order of weight, their properties repeated in regular
intervals, gave rise to the Periodic Table of the Elements – which,
though much revised since, underlies modern chemistry. [dream]

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | June 2014

EDITORIALOVERLOAD
Kekulé is said to have discovered the shape of benzene in a day-dream,
seeing the Ouroboros snake chasing its own tail [Kekulé]. Whether these
visions showed a deep truth to the chemists or whether the moment of sleep
and dreams allowed different, less conscious associations and
reformulations to occur could be a matter for dispute. Furthermore there
is every chance these claims about visions in dreams are simply fables
[Baylor]. The tales of inspired dreams are often interwoven with long
patches of sleep deprivation, while trying to grapple with a problem. When
you are absorbed deeply in a problem it is hard to step back and you do
need to give it enough time to be able to hold several of the pieces in your
head. Nevertheless, I am certain that stepping away from either the lab
bench, or the keyboard, can allow different perspectives to form. Perhaps
all workplaces should have camp-beds or comfy chairs installed for a
quick nap if you get stuck. Or perhaps you should just go home sometimes,
take a holiday or even take a sabbatical if you can.

The term Sabbatical has its roots in the Old Testament, where we are told
God takes a rest from Creation on the seventh day, or rather stops, having
completed the task. This theme of rest emerges in other places, such as
letting fields rest, which is still practised in agriculture, letting the land lie
fallow from time to time, partly to stop pests and bugs from building up.
It seems academic sabbaticals are frequently taken to finish a piece of work
without distractions, rather than as a complete rest. Not all employers
allow sabbaticals, though some will allow time for training, such as
attending a conference. Perhaps you write code as a hobby rather than
professionally, though you should still take time to sit back and relax or
reflect. Sometimes a physical change of circumstances can help. Sitting
at the same desk can make it hard to let go and find a new viewpoint. Some
people manage to find a ‘sacred space’ or ‘(wo)man cave’ to withdraw to.
If you can’t find a physical space, then you can step back in other ways,
perhaps getting lost in music. For example, Adam Tornhill recently
considered the relationship between music and concentration in CVu
[Tornhill14].

Sabbaticals are for a specific period of time, be that one day, or a whole
year. It can be surprisingly difficult to write a program or solve a difficult
problem in a pre-specified time period, or indeed guess in advance how
long might be needed. Perhaps one reason people stay too long at work is
because either they are ‘in the zone’ or being distracted by various other
things that might need dealing with first, or even are stuck and have a
looming deadline, so feel staying late and hitting the problem with various
hammers might just work. It can be helpful to time box activity, maybe
just allowing yourself an hour, to the end of the working day, or the end
of a week to do something. It can then be useful to get some feedback.

Someone else’s viewpoint will differ to yours. A code review can reveal
better ways of doing things and potential problems. Watching someone
use your shiny new code can be informative. It might be worth getting
continuous feedback as you go, via tests and a continuous integration
setup, from colleagues, maybe as you pair program. You could even wire
yourself up, to measure what you are really up to. Ed Sykes recently
mentioned Quantify Dev [QD] which logs stats on you as a developer,
such as build time or if it succeeds or not. The theory is by exploring this
data you can find ways to improve. I’m not completely sure I want stats
kept on how many browser tabs I have open, or how much time I have
spent playing 2048 [2048] recently, though a different perspective on how
you are developing is always useful.

Perhaps this had been a long-winded way for thanking
Ric and owning up that I still have no idea what to write
an editorial on. Hopefully I will be in a better position
to write one next time.

References
[2048] http://gabrielecirulli.github.io/2048/

[Baylor] ‘What do we really know about Mendeleev’s Dream of the
Periodic Table? A Note on Dreams of Scientific Problem Solving’
George W Baylor Dreaming, Vol 11, No 2 2001

[dream] Mendeleyev’s Dream: The Quest for the Elements Paul
Strathern, St Martin’s Press

[Kekulé] http://en.wikipedia.org/wiki/
Friedrich_August_Kekul%C3%A9_von_Stradonitz#The_ouroboro
s_dream

[Mendeleev] http://www.rsc.org/education/teachers/resources/
periodictable/pre16/develop/mendeleev.htm

[QD] http://www.quantifieddev.org/

[Renyi] http://en.wikiquote.org/wiki/Paul_Erd%C5%91s

[RSI] http://www.rsi.org.uk/

[Tornhill14] Adam Tornhill. The soundtrack to code. CVu, 25(6):7–9,
January 2014

[vodka] http://en.wikipedia.org/wiki/Dmitri_Mendeleev
June 2014 | Overload | 3

http://gabrielecirulli.github.io/2048/
http://www.rsc.org/education/teachers/resources/periodictable/pre16/develop/mendeleev.htm
http://www.rsc.org/education/teachers/resources/periodictable/pre16/develop/mendeleev.htm
http://en.wikipedia.org/wiki/Dmitri_Mendeleev
http://en.wikiquote.org/wiki/Paul_Erd%C5%91s
http://www.quantifieddev.org/
http://en.wikipedia.org/wiki/Friedrich_August_Kekul%C3%A9_von_Stradonitz#The_ouroboros_dream
http://en.wikipedia.org/wiki/Friedrich_August_Kekul%C3%A9_von_Stradonitz#The_ouroboros_dream
http://www.rsi.org.uk/

FEATURE CHRIS OLDWOOD
Branching Strategies
Branching can either be embraced or avoided.
Chris Oldwood documents the pros and cons of
three main branching strategies.
ne area in software development that appears to have suffered from
the malaise of the Cargo Cult [Wikipedia-1] is the use of branching
within the version control system. The decision to use, or avoid,

branches during the development of a software product sometimes seems
to be made based on what the ‘cool companies’ are doing rather than what
is suitable for the project and team itself.

What is often misunderstood about the whole affair is that it is not
necessarily the branching strategy that allows these cool companies to
deliver reliable software more frequently, but the other practices they use
to support their entire process, such as automated testing, pair
programming, code reviews, etc. These, along with a supportive
organizational structure mean that less reliance needs to be made on the
use of code branches to mitigate the risks that would otherwise exist.

This article describes the three main types of branching strategy and the
forces that commonly dictate their use. From there it should be possible
to understand how the problems inherent with branches themselves might
be avoided and what it takes to live without them in some circumstances.

Codeline policies
Branches are lines, in the genealogy sense, of product development that
reflect an evolution of the codebase in a way that is consistent for a given
set of constraints. In essence each branch has a policy [Berczuk02]
associated with it that dictates what types of change (commit) are
acceptable into that codeline. When there is an ‘impedance mismatch’
[c2-1] between the code change and the policy, a branch may then be
created to form a new codeline with a compatible policy.

All this talk of ‘forces’ and ‘policies’ is just posh speak for the various risks
and mitigating techniques that we use when developing software. For
example a common risk is making a change that breaks the product in a
serious way thereby causing disruption to the entire team. One way of
reducing the likelihood of that occurring is to ensure the code change is
formally reviewed before being integrated. That in turn implies that the
change must either be left hanging around in the developer’s working copy
until that process occurs or committed to a separate branch for review later.
In the former case the developer is then blocked, whilst in the latter you
start accruing features that aren’t properly integrated. Neither of these
options should sound very appealing and so perhaps it’s the development
process that needs reviewing instead.

Merging can be expensive
Branching is generally cheap, both in terms of version control system
(VCS) resources and time spent by the developer in its creation. This is
due to the use of immutability within the VCS storage engine which allows
it to model a branch as a set of deltas on top of a fixed baseline.

Whilst the branch creation is easy, keeping it up-to-date (forward
integration) and/or integrating our changes later (reverse integration) can
be far more expensive. It’s somewhat ironic that we talk about ‘branching’
strategies and not ‘merging’ strategies because it’s the latter aspect we’re
usually most interested in optimising. Merge Debt is a term that has sprung
up in recent times to describe the ever increasing cost that can result from
working in isolation on a branch without synchronising yourself with your
surroundings.

Improvements in tooling have certainly made merging two text-based files
slightly easier and there are new tools that try and understand the
‘meaning’ of a code change at a language level to further reduce the need
for manual intervention. Of course even these cannot help when there are
semantic conflicts (syntactically correct changes that just do the wrong
thing) [Fowler]. And sadly binary files are still a handful. Refactoring can
also be a major source of merge headaches when the physical structure of
the codebase changes underneath you; this is compounded by the common
practice of giving the folders and files the same names as the namespaces
and classes.

As we shall see in the following sections, branches are essentially graded
by their level of stability, or degree of risk. Consequently the preferable
direction for any merging is from the more stable into the more volatile
on the assumption that tried-and-tested is less risky. The reason ‘cherry
pick’ merges [c2-2] get such a bad name is because they usually go against
this advice – they are often used to pull a single feature ‘up’ from a more
volatile branch. This carries with it the risk of having to drag in dependent
changes or to try and divorce the desired change from its dependants
without breaking anything else.

Integration branches
Before embarking on a full discussion of the main branching strategies we
need to clear up some terminology differences that often come up as a
result of the different naming conventions used by various VCS products.

Although there are three basic strategies, there are only two real types of
branch – integration and private. Either you share the branch with others
and collaborate or you own the branch and are solely responsible for its
upkeep. It’s when you share the branch with others that the sparks really
start to fly and so these tend to be minimised.

For small teams there is usually only a single major integration branch and
this often goes by the name of main, trunk or master. Sometimes this is
known as the development branch to distinguish it from one of the other
more specialised kinds. Either way it’s expected that this will be the default
branch where the majority of the integration will finally occur.

In larger organisations with much bigger teams there might be many
integration branches for the same product, with perhaps one integration
branch per project. At this scale the integration branch provides a point of
isolation for the entire project and may spin off its own child branches.
Multiple integration branches come with additional overhead, but that may
well be less than the contention generated by a large team trying to share
a single integration branch. If the project itself carries a large degree of

O

Chris Oldwood is a freelance developer who started out as a
bedroom coder in the 80's writing assembler on 8-bit micros; these
days it's C++ and C#. He also commentates on the Godmanchester
duck race and can be contacted via gort@cix.co.uk or @chrisoldwood.
4 | Overload | June 2014

FEATURECHRIS OLDWOOD

The notion of ‘always be ready to ship’
engenders an attitude of very small

incremental change
uncertainty or cannot be delivered piecemeal then this project-level
isolation can be more beneficial in the long run.

Release branch
Back in the days before VCS products supported the ability to branch you
essentially had only one branch where all change took place. As the
development process reached a point where the product was readying itself
for a formal release, a code freeze was often put in place to reduce the
changes to only those directly required to get the product out of the door.
For those developers not directly working on ‘finishing’ the product they
had to find other work to do, or find other ways to manage any code
changes destined for later releases.

Once branching became available a common answer to this problem was
to branch the codebase at a suitable moment so that work could continue
on the next version of the product in parallel with the efforts to the stabilise
the impending release. The codeline policy for a release branch is therefore
based around making very few, well-reviewed, well-tested changes that
should resolve outstanding issues without creating any further mess. As
the release date approaches finding the time to continually test and re-test
the entire product after every change can become much harder and
therefore more time is often spent up front attempting to decide whether
further change is even really desirable.

The branch is often not ‘cut’ from the development line at an arbitrary point
in time – there will probably have been a reduction in high-risk changes
leading up to the branch point so as to minimise the need to try and revert
a complex feature at the last minute. By the time the release branch is ready
to be created it should be anticipated that future additional changes will
be kept to a bare minimum. This implies that during project planning the
high-risk items are front-loaded to ensure they are given the longest time
to ‘bed in’, i.e. you don’t upgrade compilers the day before a release.

The most extreme form of a product release is probably a patch, or hotfix.
Time is usually the most critical aspect and so it demands that any change
be completed in total isolation as this allows it to be done with the highest
degree of confidence that there are no other untoward side-effects. This
kind of release branch is usually created directly from a revision label as
that should be the most direct way to identify the part of the product’s entire
history that corresponds to the product version needing remediation.
Whereas a branch is an evolving codeline, a label (or tag) is a snapshot
that annotates a single set of revisions as a specific milestone.

What should be apparent about this particular strategy is that it’s mostly
about compensating for a lack of stability in the main development process.
If you never have to worry about supporting multiple product versions,
then in theory you can change your development process to avoid the need
for formal release branches. By ensuring you have adequate automated
feature and performance testing and a streamlined development pipeline
you should be able to deliver directly from the main integration branch.

However, despite the development team’s best efforts at working hard to
minimise the delays in getting a feature into production, there can still be
other organizational problems that get in the way of delivery. Maybe there

needs to be formal sign-off of each release, e.g. for regulatory purposes,
or the QA cycle is out of your hands. In these cases the release branch acts
more like a quarantine zone while the corporate cogs slowly turn.

From a merging perspective release branches are generally a low-
maintenance affair. As already stated the most desirable merge direction
is from the stable codebase and release branches changes should be about
the most carefully crafted of them all. Due to each one usually being an
isolated change with high importance they can be merged into any ongoing
integration branches the moment it becomes practical instead of waiting
until the end.

Feature/task branch
If you think of the main development branch as the equator then a feature
branch is the polar opposite of a release branch. Where the codeline policy
for a release branch is aimed at providing maximum stability through low-
risk changes, a feature branch has a policy aimed at volatile, high-risk
changes. Instead of protecting the release from unwanted side-effects
we’re now protecting the main development pipeline from stalling for
similar reasons.

The definition of ‘feature’ could be as small as a simple bug fix made by
a single developer right up to an entire project involving many developers
(the aforementioned project-level integration branch). Other terms that are
synonymous are ‘task branch’ and ‘private branch’. One suggests a
narrower focus for the changes whilst the other promotes the notion of a
single developer working in isolation. Either way the separation allows the
contributor(s) to make changes in a more ad hoc fashion that suits their
goal. As such they need not worry about breaking the build or even
checking in code that doesn't compile, if that’s how they need to work to
be effective.

One common use for a feature branch is to investigate changes that are
considered experimental in nature, sometimes called a spike
[ExtremeProgramming]. This type of feature may well be discarded at the
end of the investigation with the knowledge gained being the point of the
exercise. Rather than pollute the integration branch with a load of code
changes that have little value, it’s easier to just throw the feature branch
away and then develop the feature again in a ‘cleaner’ manner. Many
version control systems don’t handle file and folder renames very well and
so this makes tracing the history across them hard. For example, during a
period of heavy refactoring, files (i.e. classes) may get renamed and moved
around which causes their history to become detached. Even if the changes
are reverted and the files return to their original names the history can still
remain divorced as the VCS just sees some files deleted and others added.

In some cases the changes themselves may be inherently risky, but it may
also be that the person making the changes might be the major source of
risk. New team members always need some time getting up to speed with
a new codebase no matter how experienced they are. However, junior
programmers will likely carry more risk than their more senior
counterparts, therefore it might be preferable to keep their work at arms
length until the level of confidence in their abilities (or the process itself
June 2014 | Overload | 5

FEATURE CHRIS OLDWOOD
adapts) to empower them to decide for themselves how a change should
best be made.

Once again it should be fairly apparent that what can mitigate some uses
of feature branches is having a better development process in the first
place. With a good automated test suite, pair programming, code reviews,
etc. the feedback loop that detects a change which could destabilise the
team will be unearthed much quicker and so headed it off before it can
escalate.

What makes feature branches distasteful to many, though, is the continual
need to refresh it by merging up from the main integration branch. The
longer you leave it before refreshing, the more chance you have that the
world has changed underneath you and you’ll have the merge from hell to
attend to. If the team culture is to refactor relentlessly then this will likely
have a significant bearing on how long you leave it before bringing your
own branch back in sync.

Frequently merging up from the main integration branch is not just about
resolving the textual conflicts in the source code though. It’s also about
ensuring that your modifications are tested within the context of any
surrounding changes to avoid the semantic conflicts described earlier.
Whilst it might technically be possible to integrate your changes by just
fixing any compiler warnings that occur in the final merge, you need to
run the full set of smoke tests too (at a minimum) so that when you publish
you have a high degree of confidence that your changes are sound.

Shelving
There is a special term for the degenerate case of a single-commit feature
branch – shelving. If there is a need to suddenly switch focus and there are
already changes in flight that you aren’t ready to publish yet, some VCSs
allow you to easily put them to one side until you’re ready to continue. This
is usually implemented by creating a branch based on the revision of the
working copy and then committing any outstanding changes. When it’s
time to resume, the changes can be un-shelved by merging the temporary
branch back into the working copy (assuming the ancestry allows it).

One alternative to shelving is to have multiple working folders all pointing
at different branches. If you constantly have to switch between the
development, release and production codebases, for example, it can be
easier (and perhaps faster) to just switch working folders than to switch
branches, especially now that disk space is so cheap.

Forking
The introduction of the Distributed Version Control System (D-VCS) adds
another dimension to the branching strategy because a developer’s
machine no longer just holds a working set of changes, but an entire
repository. Because it’s possible to make changes and commit them to a
local repo, the developer’s machine becomes a feature branch in its own
right. It is still subject to the same issues in that upstream changes must be
integrated frequently, but it can provide far more flexibility in the way
those changes are then published because of the flexibility modern D-
VCSs provide.

No branch/feature toggle
Back in the days before version control systems were clever enough to
support multiple threads of change through branches, there was just a
single shared branch. This constraint in the tooling had an interesting side-
effect that meant making changes had to be more carefully thought out.

Publishing a change that broke the build had different effects on different
people. For some it meant that they kept everything locally for as long as
possible and only committed once their feature was complete. Naturally
this starts to get scary once you consider how unreliable hardware can be
or what can go wrong every time you’re forced to update your working
folder, which would entail a merge. Corruption of uncommitted changes
is entirely possible if you mess the merge up and have no backup to return
to.

The other effect was that some developers learnt to break their work down
into much more fine-grained tasks. In contrast they tried to find a way to

commit more frequently but without making changes that had a high
chance of screwing over the team. For example new features often involve
some refactoring work to bring things into shape, the addition of some new
code and the updating or removing of other sections. Through careful
planning, some of this work can often be done alongside other people’s
changes without disturbing them, perhaps with some additional cost
required to keep the world in check at all times. For instance, by definition,
refactoring should not change the observable behaviour and so it must be
possible to make those changes immediately (unanticipated performance
problems notwithstanding).

This then is the premise behind using a single branch for development
along with feature toggles to hide the functionality until it is ready for
prime time. The notion of ‘always be ready to ship’ [c2-3] engenders an
attitude of very small incremental change that continually edges the
product forward. The upshot of this is that ‘value’ can be delivered
continually too because even the refactoring work has some value and that
can go into production before the entire feature might be implemented.
Feature toggles are a mechanism for managing delivery whereas branches
are a mechanism for managing collaboration. The desire to increase
collaboration and deliver more frequently will usually lead to the use
feature toggles as a way of resolving the tension created by partially
implemented stories.

This method of development does not come easily though, it demands
some serious discipline. Given that every change is published to the team
and the build server straight away means that there must be plenty of good
practices in place to minimise the likelihood of a bug or performance
problem creeping in unnoticed. The practices will probably include a large,
mostly automated test suite along with some form of reviewing/pairing to
ensure there are many ‘eyes’ watching.

The way that the feature is ‘toggled’ can vary depending on whether its
activation will be static (compile time) or dynamic (run time). From a
continuous-testing point of view it makes far more sense to ensure any new
feature is enabled dynamically otherwise there are more hoops to jump
through to introduce it into the test suite. Doing it at runtime also helps
facilitate A/B testing [Wikipedia-2] which allows old and new features to
run side-by-side for comparison.

The nature of the toggle varies depending on what mechanisms are
available, but either way the number of points in the code where the toggle
appears should be kept to an absolute minimum. For example, instead of
littering the code with #ifdef style pre-processor statements to elide the
code from compilation it is preferable to have a single conditional
statement that enables the relevant code path:

 if (isNewFeatureEnabled)
 DoNewFeature();

The toggle could take the form of a menu item in the UI, an entry in a
configuration file, an #ifdef compilation directive, a data file, an extra
parameter in an HTTP request, a property in a message, the use of REM to
comment in/out a command in a batch file, etc. Whatever the choice its
absence will generally imply the old behaviour, with the new behaviour
being the exception until it goes live for good. At that point it will disappear
once again.

One side-effect of working with feature toggles is that there might be a
clean-up exercise required at the end if it gets pulled or if it supplants
another feature – this will happen after go live and so needs to be planned
in. During development there will also be periods of time where ‘unused
code’ exists in the production codebase because the feature hasn’t been
fully implemented yet. Whilst it’s beneficial that others get early sight of
the ongoing efforts they need to be sure not to delete what might seem to
be ‘dead code’.

The motivation for not branching is effectively to avoid merging at all.
That won’t happen, simply because you need to continually refresh your
working folder and any update could require a merge. However, the
likelihood that any conflicts will crop up should be greatly diminished. In
particular ‘noisy’ refactorings can be easier to co-ordinate because the
changes can be made, pushed and pulled by others with the minimum of
fuss.
6 | Overload | June 2014

FEATURECHRIS OLDWOOD
Hybrid approaches
The three core branching strategies are not in any way mutually exclusive.
It’s perfectly acceptable to do, say, the majority of development on the
main integration branch with occasional feature branches for truly risky
tasks and release branches to avoid getting stalled due to bureaucracy (e.g.
waiting for the Change Review Board to process the paperwork).

Example: Visual Studio upgrade
Historically a tool like Visual C++ cannot be silently upgraded. Its project
and solution data files are tied to a specific version and must match the
version of the tool being used by the programmer. In the past this has
created problems for larger teams where you all cannot just migrate at the
same time without some serious groundwork. Aside from the project data
file problems, in C++ at least, there is also the problem of the source code
itself being compatible with the new toolchain. Visual C++ used to default
to the non-standard scoping rules for a for loop meaning that the loop
variable could leak outside the loop and into lower scopes. Bringing the
codebase in line with the ISO standard also meant source code changes to
be handled too.

When I tackled this with a medium sized team that were working on
separate projects on multiple integration branches I had to use a
combination of branching approaches as a big bang switchover was never
going to work. Although the build and deployment process was somewhat
arcane, the fact that multiple streams already existed meant that the
parallelisation aspect was going to be less painful.

As part of an initial spike, I used a feature branch to investigate what I
needed to upgrade the tooling and to see what the impact would be vis-à-
vis source code changes. The end result of that were just some new build
scripts to handle the tooling upgrade; everything else was ditched.

The next step was to bring as much of the existing codebase up to scratch
by fixing the for loop scoping manually (where necessary) by inducing
an extra scope (you just enclose the existing loop with another pair of
braces). On one integration branch I upgraded the toolchain locally, fixed
all the compiler errors and warnings, then reverted the toolchain upgrade,
re-compiled with the current toolchain to verify backwards compatibility
and finally committed just the source code changes. An email also went
out too educating the other developers for the kinds of issues that might
crop up in the future so that any new code would stand a better chance of
being compatible at the final upgrade time.

Those code changes and the new upgrade scripts were then merged (cherry
picked) into every integration branch so that each one could then be
inspected and any new changes made since the original branch point
occurred could made compatible too. At this point all the integration
branches were in good shape and ready to migrate once we had ironed out
the non-syntactic problems.

The next step was to verify that a build with the new toolchain worked at
runtime too and so a new feature branch was taken from one of the
integration branches which could be used to build and deploy the product
for system testing. This allowed me to iron out any bugs in the code that
only showed up with the new compiler behaviour and runtime libraries.
Once fixed these changes could also be pushed across to the other
integration branches so that all of the projects are now in a position to make
the final switch.

My goal when doing this work was to avoid messing up any one project
if at all possible. The uncertainty around the delivery schedule of each
project meant that I didn’t know at the start which one was going to be the
best to use to ‘bed in’ the upgrade, so I made sure they were all candidates.
Whilst it felt wasteful to continuously throw changes away (i.e. the
upgraded project files) during the migration process, the painless way the
final switchover was done probably meant more time was saved by my
teammates in the long run.

Gatekeeper workflows
In recent times one particular hybrid approach has sprung up that attempts
to formalise the need to pass some review stage before the change can be

accepted into the main codeline. This review process (the aforementioned
gatekeeper) can either be done entirely automatically via a continuous
integration server; or via some form of manual intervention after the build
server has given the change the green light.

This style of workflow is the opposite of the ‘no branching’ approach
because it relies on not letting anyone commit directly to the integration
branch. Instead each developer gets their own feature branch into which
they make their changes. Any time a developer’s branch has changed the
continuous integration server will attempt to merge it with the integration
branch, then build and run the test suite.

If that process succeeds and an automated gatekeeper is in play then the
merge is accepted and the main branch is advanced. If a manual gatekeeper
is involved, perhaps to review the change too, they can perform that
knowing it has already passed all the tests which helps minimise wasting
time on reviewing low quality changes. If the change fails at any stage,
such as the merge, build or test run then the developer will need to resolve
the issue before going around the loop again.

Whilst this has the benefit of ensuring the main development branch is
always in a consistent state, build-wise, it does suffer from the same
afflictions as any other feature branch – a need to continuing merge up from
the integration branch. That said, where the no branching approach relies
heavily on diligence by the programmer these workflows look to leverage
the tooling in the continuous integration server to try and minimise the
overhead. For example, just as they can automatically merge a feature
branch to the integration branch on a successful build, they can also merge
any changes from the integration branch back out to any feature branches
when updated by the rest of the team. The net effect is that programmers
can spend less time worrying about ‘breaking the build’ because they never
contribute to it unless their changes are already known to be coherent.

This style of workflow could also be combined with feature toggles to aid
in delivering functionality in a piecemeal fashion.

Summary
The goal of this article was to distil the folklore surrounding branching
strategies down into the three key patterns – no branching, branching for
a feature and branching for a release. We identified the policies that
commonly drive the choice of strategy and the forces, often organisational
in nature, that can push us in that direction. Finally we looked at how and
when it might be suitable to combine them rather than blindly try to stick
to the same strategy all the time, and how tooling is beginning to help
reduce some of the overhead.

Acknowledgements
A big thumbs-up from me goes to Mike Long, Jez Higgins and the
Overload review collective for their valuable input. And mostly to Fran,
the Overload editor, for her patience as I made some significant last minute
edits.

References
[Berczuk02] Software Configuration Management Patterns, Stephen P.

Berczuk with Brad Appleton, 2002, Chapter 12: Codeline Policy

[c2-1] http://c2.com/cgi/wiki?ImpedanceMismatch

[c2-2] http://c2.com/cgi/wiki?CherryPicking

[c2-3] http://c2.com/cgi/wiki?AlwaysBeReadyToShip

[ExtremeProgramming] http://www.extremeprogramming.org/rules/
spike.html

[Fowler] http://martinfowler.com/bliki/SemanticConflict.html

[Wikipedia-1] http://en.wikipedia.org/wiki/Cargo_cult_programming

[Wikipedia-2] http://en.wikipedia.org/wiki/A/B_testing
June 2014 | Overload | 7

http://c2.com/cgi/wiki?ImpedanceMismatch
http://c2.com/cgi/wiki?CherryPicking
http://www.extremeprogramming.org/rules/spike.html
http://www.extremeprogramming.org/rules/spike.html
http://martinfowler.com/bliki/SemanticConflict.html
http://en.wikipedia.org/wiki/A/B_testing
http://en.wikipedia.org/wiki/Cargo_cult_programming
http://c2.com/cgi/wiki?AlwaysBeReadyToShip

FEATURE ADAM TORNHILL
Beauty in Code
Attractiveness matters. Adam Tornhill uses a
Clojure example to show how generalisation
can be more beautiful than special cases.
he challenge of all software design is to control complexity. Less
complexity means that our programs are easier to understand, reason
about and evolve. This article shows how we can use beauty as a

mental tool for that purpose. Starting in the field of the psychology of
attractiveness, we’ll expand its theories on physical beauty to also cover
code. In the process we’ll learn a bit about Clojure, meta-programming and
destructuring.

The scandal
Beauty is a controversial subject. Research has shown that, everything else
equal, a beautiful waitress gets more tips than a less attractive colleague.
The politician with the better looks gets more votes than more ordinary
opponents. Not even our judicial systems are immune to the power of
beauty since offenders with the right type of facial features receive milder
judgements. Beauty is indeed scandalous. And it’s a scandal backed by
solid science [Renz06].

Attractiveness is important to us. Often more important than we’d like to
admit or even are aware of at a conscious level. So before we dive into code
we’ll make a short detour into attractiveness psychology.

Beauty is average
At the end of the 80s, scientist Judith Langlois performed an interesting
experiment [Langlois90]. Aided by computers, she developed composite
pictures by morphing photos of individual faces. As she tested the
attractiveness of different pictures on a group, the results turned out to be
both controversial and fascinating. Graded on physical attractiveness the
composite pictures won. And they won big.

The idea of beauty as averageness seems counterintuitive. In our field of
programming, I’d be surprised if the average enterprise codebase would
receive praise for its astonishing beauty. But beauty is not average in the
sense of ordinary, common or typical. Rather, beauty lies in the
mathematical sense of averageness found in the composite faces.

The reason the composite pictures won is that individual imperfections get
evened out with each additional morphed photo. As such beauty is more
of a negative concept defined by what’s absent rather than what’s there.
As the theory goes, it’s a preference shaped by evolution to guide us away
from bad genes towards good ones.

Beautiful code
Translated to our world of software the good genes theory means
consistency. Beautiful code has a consistent level of expression free from
special cases. Just as deviations from the mathematical averageness makes
a face less attractive, so does any coding construct that deviates from the

main flow. Classic examples of special cases include conditional logic,
explicit looping constructs or differing programming models for
sequential vs concurrent code.

These constructs all signal bad genes in our programs. With beauty as a
design principle we steer away from such special cases towards solutions
that are easier to understand and grow.

A case study in named arguments
To classify code as beautiful, there has to be some tension in the design.
Perhaps that tension comes from an alternative solution that, while initially
tempting, would turn out less than optimal. Frequently, beauty in code
arise from a hard problem whose solution is made to look easy and
apparent.

My favourite example comes from Clojure. Clojure has grown at a rapid
rate, but without losing track of its core tenets of simplicity and
programmer power. While Clojure included novel concurrency constructs
and strong meta-programming support from its very start, a more
fundamental feature was missing: named arguments.

Named arguments are familiar to programmers in languages like Python
and C#. The idea is that instead of relying on the positional placement of
function arguments, the programmer specifies the name of the parameters.
Based on the names, the compiler binds the objects to the right argument.

Say we have a C# method to fire at objects:

 void Fire(Location at, Weapon weapon)
 {
 // implementation hidden as a
 // safety precaution
 }

Thanks to named arguments, a client can invoke this method in any of the
following three ways:

1. Positional:
Fire(asteroid.LastObservation, ionCannon);

2. Named arguments, same order:
Fire(at: asteroid.LastObservation,
 weapon: ionCannon);

3. Named arguments, arbitrary order:
Fire(weapon: ionCannon,
 at: asteroid.LastObservation);

Named arguments serve to make the code on the call site more expressive.
They also allow us to write intention revealing code by highlighting the
core concept in the current context; if we write code for firing a weapon,
prefer alternative #3. If we instead focus on shooting down asteroids,
alternative #2 is a better fit.

The fire method is straightforward to translate into Clojure. We use defn
to define a named function:

 (defn fire
 [at-location, weapon]
 ; the implementation goes here...
)

T

Adam Tornhill With degrees in engineering and psychology,
Adam tries to unite these two worlds by making his technical
solutions fit the human element. While he gets paid to code in C++,
C#, Java and Python, he’s more likely to hack Lisp or Erlang in his
spare time.
8 | Overload | June 2014

FEATUREADAM TORNHILL
On the call site, we fire at the location of asteroids as:

 (fire asteroid-location ion-cannon)

In older versions of Clojure that was it. I couldn’t name my arguments.
But Clojure is a member of the Lisp family of programming languages and
shares their characteristic of code as data. With that concept there’s no limit
to what we can do with the resulting meta-programming facilities. Lack a
feature? Well, go ahead and implement it. In Clojure the programmer has
the power of the language designer.

This aspect of Clojure is possible since Clojure code is expressed using its
own data structures. Consider the code snippet above. The parenthesis
around the fire function delimits a list. The square brackets represent a
vector of two elements (the function arguments at-location and
weapon).

Besides bending your mind in interesting ways, meta-programming allows
the developer to hook into the compiler and write code that generates code.
From a pragmatic perspective, it means that Clojure can grow without any
changes to the core language itself. This is a radical difference to popular
languages in use today.

Armed with meta-programming support, the early Clojure community
developed an extension to the language: defnk. It was intended to
complement Clojure’s standard defn form to define functions. In
addition, it allowed clients to use named arguments similar to the C# code
above.

Having two different constructs to express the same basic thing affects our
reasoning abilities. The largest cost is not the extra learning per se. The
price we pay is during code reading. Suddenly we have one more concept
to keep in our head. There’s nothing attractive about that.

Towards beauty through destructuring
defnk never made it into Clojure. Instead Rich Hickey, Clojure’s
creator,made an interesting design choice. He decided to extend the usage
of an existing feature to cover named arguments too. That feature was
destructuring.

Destructuring is a distant relative to pattern matching as found in several
functional programming languages (see for example: Fogus & Houser
[Fogus11]). The feature makes it more concise to pull apart composite data
structures into individual parts. Let’s pretend for a while that C# supported
destructuring. Listing 1 is how it could look.

Identified by the name of the keys, destructuring pulls out the associated
values into the provided variables. At this point you’re probably relieved
to learn that I don’t have any involvement in C#’s evolution. But let’s leave
my language design skills aside and translate the code to Clojure (see
Listing 2). It’s similar to my fantasy code in Listing 1. It also has the
unmistakable advantage of being valid code.

By extending destructuring to function parameters, our fire function using
plain defn would turn to this:

(defn fire
 ; destructuring pattern on function arguments:
 [& {:keys [at-location weapon]}]
 ; the implementation goes here...

The destructuring patterns form a mini language inside Clojure. With the
extended scope of that mini language, Clojure programmers got the power
of named arguments without the need to learn a new language construct.
Better yet, we could fire weapons as:

(fire :weapon ion-cannon
 :at-location asteroid-location)

Similar to the process behind the attractive composite pictures this design
evened-out individual differences between use cases. This has several
benefits. Since we got rid of multiple ways to define functions, the
resulting solution maintains conceptual integrity. From a programmer
perspective we can re-use our mastery of how destructuring works and
apply that knowledge to function argument lists too. This is a big advantage
since there are fewer concepts to keep in our head.

Outro
Every design choice implies a trade-off. In beauty we have a mental tool
that guides us towards evolutionary fit programs. As this short Clojure
story illustrates, to generalize an existing concept is a more attractive path
than to introduce a special case. It’s a technique we can use to drive us
towards consistency independent of the programming language we work
in.

Beautiful code looks obvious in retrospect but may well require hard
mental work up front. It’s an investment that pays-off since code is read
more frequently than it’s written. The decisions we make in our programs
today exert their influence over time. Guided by beauty we pave an
attractive way for future maintainers.

Thanks
Thanks for Björn Granvik, Mattias Larsson, Tomas Malmsten and the
Diversify/Webstep team for valuable feedback! Also thanks to the
Overload editorial team for their corrections!

References
[Fogus11] Fogus, M., & Houser, C. (2011) The Joy of Clojure. Manning.

[Langlois90] Langlois, J. H., & Roggman, L. A. (1990) Attractive faces
are only average.

[Renz06] Renz, U. (2006). Schönheit. Berliner Taschenbuch Verlag.

Listing 1

var incrediblyImportantNumbers =
 new Dictionary<string, double>
 {
 {“PI”, 3.14},
 {“GoldenRatio”, 1.6180339887},
 {“RubiksCubeCombos”, 43252003274489856000.0}
 };
// Now, pretend we have got destructuring to
// pull apart the Dictionary:
var {PI, GoldenRatio, RubiksCubeCombos} =
 incrediblyImportantNumbers;
Console.WriteLine(PI + “, “ + “, “ + GoldenRatio +
 “, “ + RubiksCubeCombos);
// Would print: 3.14, 1.6180339887,
// 43252003274489856000.0

Listing 2

; Define a map of key-value pairs
; (aka dictionary):
(def incredibly-important-numbers
 {:PI 3.14
 :golden-ratio 1.6180339887
 :rubiks-cube-combos 43252003274489856000})
; Destructure the map into symbols, one for
; each key.
; First the destructuring pattern...
(let [{:keys [PI golden-ratio rubiks-cube-
combos]}
 ; ..then the dictionary to destructure:
 incredibly-important-numbers]
 (println PI ", " golden-ratio ", "
 rubiks-cube-combos))
 ; Will print: 3.14, 1.6180339887,
 ; 43252003274489856000
June 2014 | Overload | 9

FEATURE SEB ROSE
The Code Is Not the Most
Important Thing
Choose the right sort of problem, focus on
strategies for solving it, and the code will come
easily. Seb Rose teaches kids to code.
want to tell you a story. Two stories, actually.

A few years ago I found myself in one of those huge, soulless, air-
conditioned conference halls, listening to one of those keynote speeches

on a subject that had no discernible relevance to my work. But despite my
preconceptions, I found myself surprisingly moved by the presentation.
The speaker was inventor Dean Kamen, and he was talking about
something called First Lego League.

I was inspired. Returning to the UK, I chased down our local FLL and
registered. I coerced my children, aged ten and twelve, into participating.
I put notices around the local junior schools, gathering another eight local
offspring. I booked a room in a local hall one night a week for the rest of
the year, bought the lumber needed to build the competition table, and
waited for the kit to arrive.

The kit, right. I see I’m getting ahead of myself. I’d better back up and
explain a bit about the FLL.

The First Lego League
The First Lego League [FLL] is an annual, international competition for
teams of 9- to 16-year-olds that involves programming Lego MindStorms
to solve challenges, doing a piece of original research, and presenting the
results of that research. You can read more about it at the website. It’s
interesting reading, really.

Anyway, about the kit. Each year FLL chooses a theme of global
significance (in 2010 it was Biomedical Engineering) and devises a
number of robotic challenges around it. And they send you this kit to get
you started. The competition board is 8' x 4' and they provide a roll-out
map to use as the base for your constructions, as well as a box of Lego bits
and pages of instructions about how to put together the Lego challenges.
Just building all of the challenges took our group 2 whole sessions.

Once the challenges are assembled and laid out on the board, it’s time to
start designing and programming your robot. The robot construction rules
are strict – only Lego-manufactured material allowed, no more than 4
motors, no more than 1 of each sensor, no non-standard software
environments – and you only get 2½ minutes to complete as many
challenges as you can. Whenever the robot returns to base, a small area at
one corner of the board, you’re allowed to touch it, modify its attachments,
start a different program. At all other times it must be completely
autonomous (NOT remote controlled) and any interference with it leads
to penalty points.

So there I was, with ten 9- to 12-year-olds with no engineering or
programming experience. Mercifully, the role of coach in FLL, they
explain, is not to teach, but to enable. Good. So I printed out the challenges,
loaded the Lego programming environment onto some school laptops, and
asked them to pick a few challenges to have a go at. There were 17 to
choose from, and no way to accomplish all of them in the short time
available.

There was teaching involved, but once they had selected the challenges, it
was pretty straightforward. We started with the engineering, because that
was a more tractable problem, and you need to have an idea of the robot’s
physical characteristics before trying to control it with software. Then
came the challenge of introducing them to software. The Lego
programming environment is fully graphical – you drag action, sensor,
conditional, and branching ‘blocks’ around, linking them together to
achieve the required behaviour. We started with simple, dead-reckoning
approaches – ‘turn both wheels for 8 revolutions at 5 revolutions per
minute,’ ‘turn left 90 degrees,’ ‘lift arm 45 degrees’ – and just that is
enough to get a lot of the challenges done.

What the team noticed, though, was that this style of control wasn’t very
robust. It was susceptible to small variations in the robot’s initial position.
The state of the batteries affected the distance the robot travelled. Even
with identical starting conditions, the end position of the robot could differ
significantly. This is when I introduced them to the sensors.

The most useful sensor was the light sensor. They used this to detect colour
changes on the map and trigger a change in behaviour of the robot.
Different groups of children would work on different parts of the robot’s
route, and these would then be joined together by ‘blocks’ switched by the
sensors. This was particularly effective for the ‘pill dispenser’ challenge,
where the robot needed to push a panel to dispense 2 Lego ‘pills’, but leave
the third ‘pill’ in the dispenser. There were handy black markings on the
map that could be used to count how far the robot had travelled, and hence
how many ‘pills’ had been dispensed.

Another useful sensor was the push button, which was useful to ensure the
robot kept the right distance from obstacles. We never found a use for the
ultrasonic sensor-it was just too unreliable. And the microphone would
probably have been thought of as a remote control, so we never even tried
that.

What interested me about the whole experience was that we rarely talked
about programming. The team was always trying to solve a problem –
sometimes the solution was a new attachment for the robot, sometimes it
was a new behaviour. They quickly picked up control and conditionals.
Looping was harder, and I don’t think they ever really got there – they were
much happier copying and pasting sections of the program to get the
number of iterations they wanted.

Second story
The local group lost its funding the next year and FLL in Scotland lapsed
until this year, when a local company, Lamda Jam [JAM] brought it back.
This year, as part of the local British Computer Society [BCS] branch I

I

Seb Rose is an independent software developer, trainer and
consultant based in the UK. He specialises in working with teams
adopting and refining their agile practices, with a particular focus on
automated testing. He first worked as a programmer in 1980 writing
applications in compiled BASIC on an Apple II. He has worked with
many mainstream technologies since then, and is a regular
conference speaker, contributor to O’Reilly’s 97 Things Every
Programmer Should Know and co-author of the Pragmatic
Programmer’s The Cucumber-JVM Book.
10 | Overload | June 2014

FEATURESEB ROSE

What interested me about the whole
experience was that we rarely talked

about programming
was asked to judge the robot competition. There were seven schools
competing – two high schools and five junior schools.

One difference in this competition was that, although there was a lot of
inventive engineering, there was no use of sensors at all. Even the best
teams were controlling their robots using dead reckoning alone. One of the
side effects of this was that scores for the same team, using the same
programs, varied wildly. Each team played 3 heats, and the winning team’s
scores varied between 125 and 348.

So what did I learn from these two experiences in teaching kids to code?

Having seen FLL from both the participant and judging sides I’m confident
that the FLL can be an excellent vehicle for getting children to learn to
code. Because there are so many different angles to the challenge, it’s easy
for the team to do a little bit of everything without getting overwhelmed
by any one aspect. The programming part of the challenge does introduce
them to simple constructs, and with the right coach this can go a lot further.
I can easily see a team building on its experience over a number of years,
with some of the members eventually getting to be quite sophisticated
practitioners.

But the counterintuitive insight was that it’s not so much about the code.

A comment in a thread on the accu-general [ACCU] mailing list with the
subject line ‘Programming for teenagers’ captured nicely what I learned
from my experiences:

I think that finding an interesting and reasonable-sized project that
can be expanded upon is more important than the choice of tools
and environment. That is the hook to keep her interested and search
for ways to learn more, and I also think the very first visible result
must be reached quickly.

A good project, room to grow, and getting visible results quickly. Those
are key. And one more thing: a good mentor. That, of course, would be you.

I encourage anyone with even the slightest interest in introducing children
to programming to take a look at what FLL has to offer. You may end up
doing more Lego than programming, but you’ll be giving the children
exactly the right role model – us. Because we’re people who solve
problems and get results quickly.

References
[ACCU] http://accu.org/mailman/listinfo/accu-general

[BCS] http://bcs.org

[FLL] http://www.firstlegoleague.org

[JAM] http://lambdajam.org

Originally published in by PragPub Kids To Code (a free special issue
available from http://theprosegarden.com/).
June 2014 | Overload | 11

https://accu.org/mailman/listinfo/accu-general
http://bcs.org
http://www.firstlegoleague.org
http://lambdajam.org
http://theprosegarden.com/

FEATURE JONATHAN WAKELY
Stop the Constant Shouting
CONSTANTS often shout. Jonathan Wakely
considers why this happens in C and what
the alternatives are in C++.
t’s common in C and C++ to use entirely uppercase names for constants,
for example:

 const int LOWER = 0;
 const int UPPER = 300;
 const int STEP = 20;
 enum MetaSyntacticVariable { FOO, BAR, BAZ };

I think this is a terrible convention in C++ code and if you don’t already
agree I hope I can convince you. Maybe one day we can rid the world of
this affliction, except for a few carefully-controlled specimens kept far
away where they can’t hurt anyone, like smallpox.

Using uppercase names for constants dates back (at least) to the early days
of C and the need to distinguish symbolic constants, defined as macros or
enumerators, from variables:

Symbolic constant names are conventionally written in upper case
so they can be readily distinguished from lower case variable
names. [Kernighan88]

The quoted text follows these macro definitions:

 #define LOWER 0 /* lower limit of table */
 #define UPPER 300 /* upper limit */
 #define STEP 20 /* step size */

This convention makes sense in the context of C. For many years C didn’t
have the const keyword, and even today you can’t use a const variable
where C requires a constant-expression, such as declaring the bounds of a
(non-variable length) array or the size of a bitfield. Furthermore, unlike
variables, symbolic constants don’t have an address and can’t be assigned
new values. So I will grudgingly admit that macros are a necessary evil
for defining constants in C, and distinguishing them can be useful and a
consistent naming convention helps with that. Reserving a set of identifiers
(in this case, ‘all names written in uppercase’) for a particular purpose is
a form of namespace, allowing you to tell at a glance that the names STEP
and step are different and, by the traditional C convention, allowing you
to assume one is a symbolic constant and the other is a variable.

Although some form of ad hoc namespace may be useful to tell symbolic
constants and variables apart, I think it’s very unfortunate that the
traditional convention reserves names that are so VISIBLE in the code and
draw your ATTENTION to something as mundane as symbolic constants.
An alternative might have been to always use a common prefix, say C_,
for symbolic constants, but it’s too late to change nearly half a century of
C convention now.

C’s restrictions on defining constants aren’t present in C++, where a
const variable (of suitable type) initialised with a constant expression is

itself a constant expression and where constexpr functions can produce
compile-time constants involving non-trivial calculations on other
constants. C++ also supports namespaces directly in the language, so the
constants above could be defined as follows and referred to as
FahrenheitToCelsiusConstants::step instead of STEP:

 namespace FahrenheitToCelsiusConstants {
 // lower & upper limits of table, step size
 enum Type { lower=0, upper=300, step=20 };
 }

That means C++ gives you much better tools than macros for defining
properly typed and scoped constants.

Macros are very important in C but have far fewer uses in C++. The
first rule about macros is: Don’t use them unless you have to.
[Stroustrup00]

There are good reasons for avoiding macros apart from the fact that C++
provides higher-level alternatives. Many people are familiar with
problems caused by the min and max macros defined in <windows.h>,
which interfere with the names of function templates defined in the C++
standard library. The main problem is that macros don’t respect lexical
scoping, they’ll stomp over any non-macro with the same name. Functions,
variables, namespaces, you name it, the preprocessor will happily redefine
it.

Preprocessing is probably the most dangerous phase of C++
translation. The preprocessor is concerned with tokens (the “words”
of which the C++ source is composed) and is ignorant of the
subtleties of the rest of the C++ language, both syntactic and
semantic. In effect the preprocessor doesn’t know its own strength
and, like many powerful ignoramuses, is capable of much damage.
[Dewhurst02]

Stephen Dewhurst devotes a whole chapter to gotchas involving the
preprocessor, demonstrating how constants defined as macros can behave
in unexpected ways, and ‘pseudofunctions’ defined as macros may
evaluate arguments more than once, or not at all. So given that macros are
less necessary and (in an ideal codebase) less widely-used in C++, it is
important when macros are used to limit the damage they can cause and
to draw the reader’s attention to their presence. We can’t use C++
namespaces to limit their scope, but we can use an ad hoc namespace in
the form of a set of names reserved only for macros to avoid the problem
of clashing with non-macros and silently redefining them. Conventionally
we use uppercase names (and not single-character names, not only are
short names undescriptive and unhelpful for macros, single-character
names like T are typically used for template parameters).

Also to warn readers, follow the convention to name macros using
lots of capital letters. [Stroustrup]

By convention, macro names are written in uppercase. Programs
are easier to read when it is possible to tell at a glance which names
are macros. [GCC]

Using uppercase names has the added benefit of SHOUTING to draw
ATTENTION to names which don’t obey the usual syntactic and semantic
rules of C++.

I

Jonathan Wakely Jonathan's interest in C++ and free software
began at university and led to working in the tools team at Red Hat,
via the market research and financial sectors. He works on GCC's
C++ Standard Library and participates in the C++ standards
committee.
12 | Overload | June 2014

FEATUREJONATHAN WAKELY

it is important when macros are used to limit
the damage they can cause and to draw the

reader’s attention to their presence
Do #undefine macros as soon as possible, always give them
SCREAMING_UPPERCASE_AND_UGLY names, and avoid putting
them in headers. [Sutter05]

When macro names stand out clearly from the rest of the code you can be
careful to avoid reusing the name and you know to be careful using them
e.g. be aware of side-effects being evaluated twice:

 #define MIN(A,B) (A) < (B) ? (A) : (B)
 const int limit = 100;
 // ...
 return MIN(++n, limit);

But if you also use all-uppercase names for non-macros then you pollute
the namespace. You no longer have the advantage of knowing which
names are going to summon a powerful ignoramus to stomp on your code
(including the fact that your carefully-scoped enumerator named FOO
might not be used because someone else defined a macro called FOO with
a different value), and the names that stand out prominently from the rest
of the code might be something harmless and mundane, like the bound of
an array. Constants are pretty dull, the actual logic using them is usually
more interesting and deserving of the reader’s attention. Compare this to
the previous code snippet, assuming the same definitions for the macro and
constant, but with the case of the names changed:

 return min(++n, LIMIT);

Is it more important to note that you’re limiting the return value to some
constant LIMIT, rather than the fact that n is incremented? Or that you’re
calling min rather than max or some other function? I don’t think LIMIT
should be what grabs your attention here, it doesn’t even tell you what the
limit is. It certainly isn’t obvious that n will be incremented twice!

So I’d like to make a plea to the C++ programmers of the world: stop
naming (non-macro) constants in uppercase. Only use all-uppercase for
macros, to warn your readers and limit the damage that the powerful
ignoramus can do.

References
[Dewhurst02] C++ Gotchas, Stephen C. Dewhurst, Addison Wesley,

2002.

[Kernighan88] The C Programming Language, Second Edition, Brian W.
Kernighan & Dennis M. Ritchie, Prentice Hall, 1988.

[GCC] ‘The GNU Compiler Collection: The C Preprocessor’, Free
Software Foundation, 2014, http://gcc.gnu.org/onlinedocs/cpp/
Object-like-Macros.html#Object-like-Macros

[Stroustrup00] The C++ Programming Language, Special Edition,
Bjarne Stroustrup, Addison-Wesley, 2000.

[Sutter05] C++ Coding Standards, Herb Sutter & Alexei Alexandrescu,
Addison-Wesley, 2005.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
June 2014 | Overload | 13

http://gcc.gnu.org/onlinedocs/cpp/Object-like-Macros.html#Object-like-Macros
http://gcc.gnu.org/onlinedocs/cpp/Object-like-Macros.html#Object-like-Macros

FEATUREDANIEL GUTSON AND PABLO OLIVA
Minimal Overhead for
Multiple Interfaces
Using multiple interfaces can slow things
down. Daniel Gutson and Pablo Oliva
present an alternative.
hen working on embedded systems,
using C++, it is often desirable to
have a single class implementing

multiple interfaces. The naive way of doing
this (i.e., using multiple inheritance from a set
of interfaces), while perfectly reasonable for
no rma l s i t ua t i ons , do es po se so me
performance and memory problems for its use
on embedded systems.

Given these costs, an approach used in
embedded systems is to do away with
interfaces altogether, thus saving all the
implementation overheads. But this also leads
to more coupled des igns fo r objec t
interaction, since method invocations occur
on concrete objects instead of on interfaces,
and it might also lead to code duplication and
a loss of maintainability.

We propose a technique to use interfaces
within the tight constraints of an embedded environment, and discuss its
merits against alternative solutions to the problem.

Use scenario
During the development process, it is often required that one class must
implement multiple interfaces; in other words, a class must be developed
that can receive different sets of messages from different types of users. It
is worth noting that the term interface is used as defined in [GoF94], “The
set of all signatures defined by an object’s operations. The interface
describes the set of requests to which an object can respond.” This is a
narrower definition of interface than the usual one, since it does not require
the interface to have many implementations. In fact, the technique
proposed here only works for single-implementation interfaces.

In embedded systems’ development, there are often many restrictions in
both the amount of memory available and the amount of processing
resources available; these limitations make some of the most common
ways to perform this multiple implementation undesirable. We will review
some common solutions, along with their specific drawbacks for
embedded systems.

Alternative solutions
The typical solution for this problem is ‘dynamic polymorphism’
[Strachey67]: to create an interface (with its methods declared as virtual)
for each user type, and to create a concrete class that inherits from all
interfaces and implements their methods. Users of the class then access the
base class object via pointers to the corresponding interface. Within
embedded environments, where memory is scarce (which means that it is
preferable to avoid having vtables) and there may be strenuous time
constraints (which makes indirections undesirable due to their time cost),
dynamic polymorphism is not an optimal solution. Figure 1 shows a typical
solution’s UML diagram.

Two techniques related to the use of dynamic polymorphism are using
either dynamic_cast or the pimpl idiom [Coplien92] (where a pointer to
the implementing class is kept in the interface), but any of these two
options would also incur in the memory and processing overhead caused
by the usage of virtual dispatching, because both alternatives require
pointer indirections to be used. Since avoiding indirection costs (both in
performance and in memory) is our goal, we will not analyze these
alternatives any further.

Other alternatives considered were: the ROLE OBJECT design pattern
[Baumer97] and relying on compiler’s devirtualization [Namolaru06].

The ROLE OBJECT pattern imposes a significant overhead on runtime
performance (because roles are resolved dynamically), which renders it
unusable for embedded environments.

Devirtualization is the process of resolving virtual method calls on compile
time, thus saving the dynamic dispatch overhead. It is not required by the
standard, and there is no guarantee that it will be available on any toolchain
chosen to build a project. Our technique, while far more limited in scope,
can be used with any standard-compliant toolchain.

W

Daniel Gutson is the Chief Engineering Officer and Director of the
Special Projects Division at Taller Technologies, Argentina, and
Informatics Director of the NGO FuDePAN. He has contributed to
the GNU toolchain and has also submitted proposals to the C++
(WG21) Committee. He can be contacted at
daniel.gutson@tallertechnologies.com

Pablo Oliva is a Software Engineer of the Special Projects Division
at Taller Technologies Argentina. Along with Daniel, he is a
collaborator at FuDePAN and contributes to the development of
programs to aid people living with AIDS. He can be contacted at
pablo.oliva@tallertechnologies.com

Figure 1

Legend
+ Public method
Protected method
- Private method
Pure virtual methods are in italic
June 2014 | Overload | 14

FEATUREDANIEL GUTSON AND PABLO OLIVA

The proposal is to reverse the
normal order of inheritance,
dividing the responsibilities
The technique we present is an alternative that has no pointer indirection
overheads (thus saving the memory and processing costs incurred by using
pointers), but that still allows interfaces to be used.

The technique
The proposal is to reverse the normal order of inheritance, dividing the
responsibilities between three kinds of classes.

1. Base implementation: this is the base class for the entire hierarchy.
It contains all the interfaces’ method implementations. Its
constructor is protected, to prevent instantiations of this class.

2. Interfaces: there is one of these classes for every type of user. One
of the interfaces inherits from base implementation, and then every
new interface inherits from the most derived interface thus far. All
inheritances are protected, and so are all constructors. Each interface
exposes its methods within its public part with using declarations.

3. Getter implementer: this is the last class in the hierarchy, and it
inherits privately from the most derived interface. It is the only class
in the entire hierarchy that can be instantiated, and it provides a
getter method for each one of the interfaces in the hierarchy.

Figure 2 is the technique’s UML diagram.

An example
Let there be two interfaces, Writer and Reader; Writer shows the
write and close methods, and Reader shows read and close
methods. OnlyImplementation implements both interfaces.

Using the typical solution (dynamic polymorphism) would yield
something similar to Listing 1.

A usage example would be as in Listing 2.

In this design, the interfaces are base classes and implementation is on a
derived class.

The previous example, adapted to the technique, is shown in Listing 3.

A usage example would be as in Listing 4.

Two C++11 features (=default for constructors [Crowl07] and final
on the most derived class [ISO/IEC 14882-2011]) are used, but they both
have equivalent expressions in C++03.

As you may see, the overhead on the user’s side is an invocation of the
getter method to get the desired interface. On the developer’s side, the code
is more contrived, but it does not incur in any type of pointer indirection
overhead.

Conclusion
This technique was created to allow the use of multiple interfaces even
under very rigorous performance and memory constraints. As it was
shown, the overheads associated with all the other alternatives that were
considered have been avoided.

The drawback of the technique is that there is no automatic upcast from
implementation to interfaces, thus forcing the use of getters for the various

interfaces. These calls to getters could be inlined to minimize their
performance impact, but they do place an additional burden on the
developer.

It should be stressed that this technique is only useful when the
implementation is unique; when multiple implementations of one of the
interfaces are necessary, this technique cannot be used. While this is a
significant limitation, it is a frequent situation in embedded systems, where

Figure 2

Legend
+ Public method
Protected method
- Private method
June 2014 | Overload | 15

FEATURE DANIEL GUTSON AND PABLO OLIVA

This technique was created to allow the
use of multiple interfaces even under
very rigorous performance and memory
constraints
single implementations of interfaces are not uncommon; thus we consider
that this technique, albeit limited in scope, helps to solve a family of
problems with a better trade-off than its alternatives.

Acknowledgements
We would like to thank Fabio Bustos, Fernando Cacciola and Angel
Bustamante for their comments and suggestions. We would also like to
thank the editing team of Overload for their helpful reviews.

References
[Baumer97] D. Bäumer, D. Riehle, W. Sibersky, M. Wulf (1997) ‘The

Role Object Pattern’ http://st-www.cs.illinois.edu/users/hanmer/
PLoP-97/Proceedings/riehle.pdf

[Coplien92] James O. Coplien (1992) Advanced C++ Programming
Styles and Idioms, Addison-Wesley

[Crowl07] Crowl, Lawrence. Defaulted and Deleted Functions.

[GoF94] E. Gamma, R. Helm, R. Johnson, J. Vlissides Design Patterns:
Elements of Reusable Object-Oriented Software, First Edition, 1994.

[ISO/IEC 14882-2011] ISO/IEC 14882-2011. Programming Languages
– C++, Third Edition, 2011.

[Namolaru06] M. Namolaru, ‘Devirtualization in GCC’,
ols.fedoraproject.org/GCC/Reprints-2006/namolaru-reprint.pdf

[N2346= 07-0206]. ‘Programming Language C++’ Evolution Working
Group.

[Strachey67] C. Strachey ‘Fundamental Concepts in Programming
Languages’ http://www.itu.dk/courses/BPRD/E2009/fundamental-
1967.pdf

Listing 1

struct WriterInterface
{
 virtual void write() = 0;
 virtual void close() = 0;
};
struct ReaderInterface
{
 virtual void read() = 0;
 virtual void close() = 0;
};
class OnlyImplementation : public
WriterInterface, public ReaderInterface
{
private:
 virtual void read() { /* ... */ }
 virtual void write() { /* ... */ }
 virtual void close() { /* ... */ }
};

Listing 2

void writerUser()
{
 OnlyImplementation oi;
 WriterInterface* const wif = &oi;
 wif->write();
 wif->close();
}

Listing 3

class OnlyImplementationBase
{
protected:
 void read() { /* ... */ }
 void write() { /* ... */ }
 void close() { /* ... */ }
 OnlyImplementationBase() = default;
};
class WriterInterface : protected
OnlyImplementationBase
{
public:
 using OnlyImplementationBase::write;
 using OnlyImplementationBase::close;
protected:
 WriterInterface() = default;
};
class ReaderInterface : protected WriterInterface
{
public:
 using OnlyImplementationBase::read;
 using OnlyImplementationBase::close;
protected:
 ReaderInterface() = default;
};
class OnlyImplementation final : private
ReaderInterface
{
public:
 ReaderInterface& getReader() { return *this; }
 WriterInterface& getWriter() { return *this; }
};

Listing 4

void writerUser()
{
 OnlyImplementation oi;
 WriterInterface& const wif = oi.getWriter();
 wif.write();
 wif.close();
}

16 | Overload | June 2014

http://st-www.cs.illinois.edu/users/hanmer/PLoP-97/Proceedings/riehle.pdf
http://st-www.cs.illinois.edu/users/hanmer/PLoP-97/Proceedings/riehle.pdf
ols.fedoraproject.org/GCC/Reprints-2006/namolaru-reprint.pdf
http://www.itu.dk/courses/BPRD/E2009/fundamental-1967.pdf
http://www.itu.dk/courses/BPRD/E2009/fundamental-1967.pdf

	Overload121.pdf
	Very small or very far away: A sense of perspective
	Branching Strategies
	Beauty in Code
	The Code Is Not the Most Important Thing
	Stop the Constant Shouting
	Minimal Overhead for Multiple Interfaces

