

August 2015 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Multi-threading at Business-logic Level is
Considered Harmful
Sergey Ignatchenko muses on best-practice for
mutli-threaded programming.

8 Two Daemons
Dietmar Kühl explains C++11’s forwarding
references.

12 Don’t Design for Performance Until It’s Too
Late
Andy Balaam argues good performance should be
at the core of code design.

14 Template Programming Compile Time
String Functions
Nick Weatherhead demonstrates some well-known
code katas using C++ compile time tricks.

19 Numbers in JavaScript
Anthony Williams draws our attention to some
surprising behaviour of JavaScript floating point
numbers.

OVERLOAD 128

August 2015

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 129 should be submitted by
1st September 2015 and those for
Overload 130 by 1st November 2015.

EDITORIAL FRANCES BUONTEMPO
Semi-automatic Weapons
Automating work can save time and avoid
mistakes. But Frances Buontempo doesn’t
think you should script everything.
Having been distracted by an esteemed member’s
[@ChrisOldwood] tirade of gags and puns on twitter,
I thought I might attempt to tell a joke myself.

“Doctor, doctor, it hurts when I jab myself in the eye
with a pencil.”

“Have you tried automating this?”

As you can see I am not very good at jokes. I did spend some time trying
to think up others, and as ever this has put paid to any hope of writing an
editorial for this issue. In all seriousness, I have been musing on various
kinds of automation recently. My dream of automatically generating an
editorial remains, but is still just a dream. Instead I have been observing
other people trying to automate various activities with various degrees of
success. Having also just finished reading The Thrilling Adventures of
Lovelace and Babbage: The (mostly) true story of the first computer
[Padua], I was struck this time by the motivation of the first computer –
to replace human computers of logarithmic and other mathematical tables
by an automatic calculating machine. Padua suggested that Babbage
owned a mechanical ballerina – an automaton – of which he was extremely
proud. Perhaps he was inspired by roller-skating Merlin’s famous silver
swan [Swan]. The steam-punk style mechanical swan gracefully appears
to move in a stream and catch a fish. A young Charles Babbage is reported
to have seen this and been mesmerised. Merlin showed him a mechanical
dancer, which Babbage managed to purchase at auction many years later
[Dancer] that he proudly restored and displayed on a glass pedestal in his
office. It seems like his youthful enchantment with automata fed his later
attempts to build the first computer. These tales also make a delightful
steam-punk comic [Padua].

Though certain automata were purely for entertainment, many of
Babbage’s difference and analytical engines were designed to speed up
laborious manual calculations, even though they may not have progressed
much beyond the design stage. Other machines appear to be somewhere
in between. In a century where people wondered if man could create life
or if a woman’s vision of Frankenstein creating a monster were a real
possibility, one may discover the beginnings of attempts at artificial
intelligence. Many years before the Deep Blue [DeepBlue] chess
computer, one finds the mechanical Turk [Turk] – an apparent automaton
which was really rather good at playing chess. It seems that despite the
appearance of being a machine that could automatically play chess, it was
in fact being driven manually by, well, a man, not the apparent automatic
marvel first promised. Obviously, it actually needed to be driven by a very
good chess player, since a machine playing chess poorly would have been

somewhat less remarkable. We will return to
this theme of something ‘automatic’ actually

being semi-automatic or manual shortly.

While many of the mechanical marvels entertained the bourgeoisie or
aristocracy, automation gradually crept into almost all realms of life. In
England, we are taught about the rise of the machines and the clog-
throwing saboteurs and Luddites. To be fair the saboteurs are possibly
French [Saboteur]. The Luddites, sometimes described as machine-
breakers, were attempting to bring about a change putting the workers in
a better negotiating position with their employers. The word is frequently
misused nowadays to mean someone who is afraid of technology.
Technophobe would be a better term for such a person, though that could
be argued to literally mean one who is afraid of skill – those of us who
work with ‘jobbing programmers’ had better beware! One of the saboteur
methods was the withdrawal of efficient working, specifically where
workers ‘avoid any actions that would hurt their own job prospects’
[Method]. You may suspect that failing to do your job efficiently would
harm your job prospects, but until we are able to measure efficiency this
may be a moot point. Some measures, such as lines of code written have
been used previously but tend to encourage people to work to the metrics
rather than producing the software which our customers desire and
furthermore discourage deleting code.

Getting back on track, it is important to notice that the machines which
saboteurs were punished for breaking were not fully automated. They still
required some workers to load up the threads for the looms and so on. So
many times our automatic tools are simply semi-automatic. An automatic
car does not drive itself, yet. Furthermore, many attempts at machine
learning or artificial intelligence require a lot of human input. Cordelia
Schmid remarked at the BCS’ annual Karen Sparck Jones lecture this year
that models using hand-tuned parameters are not examples of machines
learning [Eigenfaces]. Babbage’s difference engine required human-
produced punched cards for the instructions. A continuous integration
server will do nothing until a human commits some code, apart from time-
based runs which still require code in the first place and a human to setup
the job. Each automatic set-up requires a human in the loop [HITL].

Having observed that many automated processes are not fully automated,
it might be worth stopping to think why we have tried to automate the
process in the first place. If you have written a library to automatically
generate boiler-plate code to save you hand crafting it, it might be worth
pausing and considering why you need so much boiler-plate code. And
besides, who hand-writes code these days anyway? Perhaps you are
solving the wrong problem. Having to do something over and over again
might indicate a deeper underlying problem that should be removed. If
your code needs a special linker tool to find all the dependencies it might
be better to re-architect your solutions so it doesn’t need turtles, I mean
dependencies, all the way down. If you use a dependency injection
framework to automate composition of code, and end up having to
constantly hand-tune miles and miles of xml, you should probably start

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She works at
Bloomberg, has been a programmer since the 90s, and learnt to program by reading the manual for her
Dad's BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | August 2015

EDITORIALFRANCES BUONTEMPO
wondering if you are going down the wrong path rather than writing a GUI
to allow automatic generation of the required configuration once someone
has clicked all the right buttons. Semi-automatic weapons might not be the
best solution to a computer problem, though we all feel the computer
deserves destruction from time to time. Use the right tool for the job, or
consider if the job’s worth doing.

This brings me neatly on to the ‘F’ word… I say the ‘F’ word, but there is
more than one:

 Framework

 Factory, notice the Luddites at the ready again

 Farm, another aspect involved in the industrial revolution

 Fudge, or perhaps kludge, certainly not very tasty

 FAQs – often written before anyone tries to ‘Read the Flipping
Manual’ so they are often not frequently or indeed ever asked

 Future-proofed – almost never involving any kind of proof

 Functional, just barely, and only on one machine

 Failover, again and again and again

 And others

 Fortran, function, Fail...

 Fuzz, futz, fiddle,

 File, FAT, file-system, factor, foobar, frame, FIFO…

The list is rather long, so let us just focus on the first few. Though the word
factory clearly has its origins in the Latin facere – to make or do, it also
combines the sense of an office for agents or workers in a possibly foreign
place or perhaps derives from the idea of an oil press or mill [Etymonline].
Perhaps you should start using IMill for your abstract factory builder
patterns from now on. A factory is now used to mean a place where items
are manufactured, and the irony of automatically manufacturing
something is not lost on me. Notice that word, manufactured, means
making something by hand. Is anything truly automated?

The ubiquitous Frameworks are a specific example of semi-automatic
weapons. These APIs and libraries are designed to take some of the
monotony out of writing code. Various third-party frameworks exist,
ranging from Ajax to various middleware and so on. Many large
companies end up writing their own as well, to suit their special needs,
which will tend to add to the time required to learn how to use the
framework, whereas with a third-party solution you have a chance to hire
workers who already know how to drive the code. Clearly each approach
has pros and cons. Part of the drive behind many frameworks is to provide
software reuse, to save people time reinventing the wheel. If your
framework is slowing you down, “You’re doing it wrong”. It is possible
to take reuse too far. If you extracted every for loop and moved it to a
framework, you would end-up tying together lots of different modules that
had no reason to be bound together. It is important to step back and
consider what problem you are trying to solve before speeding ahead and
writing scripts or frameworks for every commonality you spot or imagine.
If you do conclude that it is worth making a library, or framework, of
reusable components keep Gödel’s incompleteness laws in mind.

 in any consistent formal system F within which a certain amount of
arithmetic can be carried out, there are statements of the language of
F which can neither be proved nor disproved in F [‘F’ words again]

 such a formal system cannot prove that the system itself is consistent
(assuming it is indeed consistent) [Gödel]

It would be worrying to end up with an inconsistent framework, though
perhaps as programmers we are less concerned by its incompleteness – just
keep churning out more code. If Gödel’s theorems seem a little abstract,
we could simply consider the entropy in our code. The lower the entropy,
the more likely we are to be able to compress reusable parts down to a
library, if not a framework [Veldhuizen]. Of course, it will be hard to know
in advance how much entropy our code will contain, and yet many people
will be tempted to automate something before they have tried it. This flies
in the face of advice like ‘YAGNI’ – you ain’t going to need it. It is hard
to find the balance between experimentally writing a few scripts that might

come in handy and waiting until you know what you really need.
Veldhuizen [op cit] draws out an interesting principle:

Principle 1 (Entropy maximization). Programmers develop domain-
specific libraries that minimize the amount of frequently rewritten code
for the problem domain. This tends to maximize the entropy of compiled
programs that use libraries.

In other words, as we pull out commonality what we are left with has higher
entropy or chaos. By trying to make our lives easier, we are causing chaos,
which may be no bad thing, but on the face of it this seems remarkable.
After some mathematics the author proves “the process of discovering new
and useful library components is not a process that can be fully automated”.
It is not possible to automate everything. Humble human programmers will
always be required. Our tools can only ever be semi-automatic, and are
frequently hand-crafted. One blog on this paper draws the conclusion “The
takeaway is that when trying to create reuse you can probably do it forever
so one needs to temper this desire with practicality.” [ElegantCoding]

There is nothing wrong with a framework per se, but it is very difficult to
write one up front. Martin Fowler talks about ‘Harvested Frameworks’
[Fowler], whereby you grow or rather harvest a framework from a working
application. That allows you to spot commonality after you have written
it, instead of guessing upfront. In general, I tend to try to capture repetitive
tasks at least as a script, once I had done them three times or so, allowing
me to get a feel for what’s common and what needs to be configurable.
There is nothing wrong with a semi-automatic process. Even if our
continuous integration server will run any tests after compiling the code,
this won’t stop me running the tests before I commit my changes. In our
geek-driven search to automate everything, we need space for humans in
the loop. If jabbing yourself in the eye hurts, stop it rather than automate
it. As Bill Gates is reported to have said

The first rule of any technology used in a business
is that automation applied to an efficient operation
will magnify the efficiency. The second is that
automation applied to an inefficient operation will
magnify the inefficiency. [Gates]

References
[Dancer] http://www.hrc.wmin.ac.uk/theory-babbagesdancer2.html

[DeepBlue] https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

[HITL] (a) Cranor ‘A Framework for Reasoning about the Human in the
Loop’ Usability, Psychology and Security, 2008

(b) Rothrock and Narayanan, ‘Human-in-the-Loop Simulations.
Methods and Practice’ Springer 2011.

[Eigenfaces] http://buontempoconsulting.blogspot.co.uk/2015/05/
eigenfaces-ftw-or-zebranon-zebra.html

[ElegantCoding] http://www.elegantcoding.com/2011/07/software-
frameworks-resistance-isnt.html

[Etymonline] http://www.etymonline.com/index.php?term=factory

[Fowler] http://martinfowler.com/bliki/HarvestedFramework.html

[Gates] http://www.investinganswers.com/education/famous-investors/
50-quotes-wealthiest-man-america-3088

[Gödel] http://plato.stanford.edu/entries/goedel-incompleteness/

[Method] https://en.wikipedia.org/wiki/Industrial_Workers_of_the_
World_philosophy_and_tactics#Sabotage

[Padua] The Thrilling Adventures of Lovelace and Babbage: The (mostly)
true story of the first computer. Sydney Padua 2015 Pantheon.

[Saboteur] https://en.wikipedia.org/wiki/Sabotage#Etymology

[Swan] http://www.atlasobscura.com/places/silver-swan

[Turk] https://en.wikipedia.org/wiki/The_Turk

[Veldhuizen] Libraries and their Reuse: Entropy, Kolmogorov
complexity, and Zipf’s Law. OOPSLA 2005
August 2015 | Overload | 3

http://buontempoconsulting.blogspot.co.uk/2015/05/eigenfaces-ftw-or-zebranon-zebra.html
http://buontempoconsulting.blogspot.co.uk/2015/05/eigenfaces-ftw-or-zebranon-zebra.html
http://www.elegantcoding.com/2011/07/software-frameworks-resistance-isnt.html
http://www.elegantcoding.com/2011/07/software-frameworks-resistance-isnt.html
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
http://www.hrc.wmin.ac.uk/theory-babbagesdancer2.html
http://www.etymonline.com/index.php?term=factory
http://martinfowler.com/bliki/HarvestedFramework.html
http://www.investinganswers.com/education/famous-investors/50-quotes-wealthiest-man-america-3088
http://www.investinganswers.com/education/famous-investors/50-quotes-wealthiest-man-america-3088
http://plato.stanford.edu/entries/goedel-incompleteness/
https://en.wikipedia.org/wiki/Industrial_Workers_of_the_World_philosophy_and_tactics#Sabotage
https://en.wikipedia.org/wiki/Industrial_Workers_of_the_World_philosophy_and_tactics#Sabotage
https://en.wikipedia.org/wiki/Sabotage#Etymology
http://www.atlasobscura.com/places/silver-swan
https://en.wikipedia.org/wiki/The_Turk

FEATURE SERGEY IGNATCHENKO
Multi-threading at Business-logic
Level is Considered Harmful
Multi-threaded code promises potential
speed-up. Sergey Ignatchenko considers
how it often slows things down instead.
Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

Assumption is a mother of all screw-ups
~ Honorable Mr. Eugene Lewis Fordsworthe

or quite a long time (since I first needed to deal with non-trivial multi-
threading 15 years ago) I knew that mixing multi-threading (especially
thread synchronization) with business logic is a Really Bad Idea and

argued for avoiding it whenever possible (see, for example, [NoBugs10]).
This notion became so deeply ingrained in my mind, that I’ve erroneously
started to assume that everybody else shares this knowledge (or belief,
depending on which side of the argument you are).

As usually happens with most assumptions, Mother Nature has once again
proved that I was wrong. Recently I wrote an article on networking for
games [NoBugs15], where I took ‘mixing multi-threading with business
logic is a Bad Idea’ as granted; I’ve had feedback that this is unclear and
needs explaining. Ok, here goes the explanation (an outline for this
explanation has already been provided in [Ignatchenko15], but this is a
much more elaborate version with a few additional twists).

There are four Big Reasons for avoiding handling both business logic and
non-trivial multi-threading within the same pieces of code. However,
before going into reasons, we need to provide some definitions.

Definitions
In this field, a lot depends on how trivial your multi-threading is. For
example, if you have multi-threading where all the synchronization is
performed on one single mutex, we can call it ‘trivial’ (and, as shown
below, you’re likely to be able to get away with it1). However, the window
for triviality is very narrow: for example, even going into two interrelated
mutexes instead of one, can easily make multi-threading non-trivial (and,
as discussed below, has potential to make your life a nightmare).

Another example is trivialized multi-threading (a close cousin of the trivial
one); one good example of trivialized multi-threading is when all the inter-
thread interactions are made only via queues. It doesn’t mean that
implementing queues is trivial, but that from the point of view of the
developer-who-writes-business-logic, he doesn’t need to care about queue
implementation details. In other words, the problem is not about having

multi-threading within your program, it is about mixing multi-threading
synchronization with business logic in the same piece of code.

Now, we’re all set to start discussing why you shouldn’t intermix non-
trivial multi-threading synchronization with business logic.

Reason 1: Cognitive limits of the human brain
In psychology, there is a well-known ‘7 2’ cognitive limit [Wikipedia].
This means that the number of objects an average human can hold in
working memory is 7 2.2 When you go above this limit, you a get kind
of ‘swapping’ (to ‘swap out’ some entities to free space in your working
memory, only to ‘swap them back in’ when they’re needed). And from our
programming experience, we all know what swapping does to
performance (‘slowing down to a crawl’ being a very mild description). A
similar thing happens when a human being goes beyond his cognitive
capacity – the process of solving the problem becomes so slow that often
the problem cannot solved at all (unless it can be split into smaller
problems, with each of these problems fitting into cognitive limits).

BTW, don’t think that as you are not an average person3, you will be able
to process 70 objects or entities instead of the average 7 – you won’t; the
best you can realistically hope for is 10–15, and this difference won’t
change our analysis. And even if you have on your team one person with
an exceptionally high cognitive limit, you can be sure that it is extremely
uncommon, which means that relying on her abilities to maintain your
program is a Really Bad Idea. The simple question, “What are we going
to do when she leaves?” is enough to bury the idea of relying on One Single
Developer (however much of a genius she is).

So, how does this 7 2 limit apply to combining business logic with multi-
threading? The answer is simple: for real-world programs, each of these
things is already complicated enough and usually is already pushing this
“7 2” limit. Combining them together will very likely take you over the
limit, which will likely lead to the problem of ‘making the program work’
becoming unsolvable. Exceeding the limit becomes even more obvious
when we observe that when adding multi-threading to business logic,
we’re loading our brain with not only analysis of readily visible entities
such as threads and mutexes, but also with less obvious entities such as
how existing business objects will interact with this mutex? With these
TWO mutexes? This brings the number of entities even higher, which in
turn makes the cognitive overload even worse.

For trivial (and trivialized) multi-threading, this effect, while present, can
be seen as adding (very roughly) only one additional entity; while even one
additional entity can also bring you over the cognitive limit, it is still much
better than having dozens of additional entities in scope. Also, cognitive

F

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko using
the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He currently holds the position of Security
Researcher and writes for a software blog (http://ithare.com). Sergey
can be contacted at sergey@ignatchenko.com

1 Also with a single mutex you can easily lose most (or all) the multi-
threading parallelism – depending on your specific task, but this is
beyond the scope now.

2 There are arguments in scientific community about exact numbers (one
popular number is four), but there is pretty much a consensus that
whatever the numbers of entities are – they’re single-digit.

3 Of course you aren't, I wouldn’t dare to question it
4 | Overload | August 2015

FEATURESERGEY IGNATCHENKO

if you have a bug in your multi-threading code,
you won’t really be able to jump to a certain point

in the debugger and see what’s going on
limits are not exactly hard limits as in “9 and you’re fine, 10 and you’re
mine”, and while one extra entity over the limit would clearly mean
reduced overall performance of the developer, it isn’t likely to cause 100%
drop in performance (so it shouldn’t go into the ‘problem never solved’
area). Therefore, given the very small typical numbers for cognitive limits,
while adding even one entity will be noticeable (so is not desirable), it is
not very likely to be fatal.

Reason 2: Non-determinism is bad enough, but
inherently untestable programs are even worse

We don’t know what we have until we lose it
~ proverb

Non-trivial multi-threaded code usually has one property – it is inherently
non-deterministic.

By the very definition of pre-emptive multi-threading, context switches
happen not when you expect them, but between any two assembler-level
instructions (yes, we’re not considering disabling interrupts within
business logic). On one run of the program, a context switch may happen
between lines A and B, and on the next run of the very same program, it
may happen between lines B and C (on some runs it may happen even in
the middle of a line of code, if it is compiled to more than one assembly
instruction). It means that the multi-threaded program MAY become non-
deterministic, i.e. it MAY behave differently from one run to another even
if all the program inputs are exactly the same.

One may ask, “What is so bad about that?” Unfortunately, this potential
non-determinism has several extremely unpleasant implications.

A: Untestability
As you have no way to control context switches, you cannot really test your
program.

Your multi-threaded program can pass all of your tests for years, and then,
after you’ve changed a line in one place, a bug in a completely unrelated
place (which has existed for all these years, but was hidden) – starts to
manifest itself. Why? Just because context switching patterns have shifted
a bit, and instead of context switch between lines A and B, you’ve got a
context switch between lines B and C.

In [Ignatchenko98] a multi-threading bug is described, which has
manifested itself on a 20-line program which has been specially written to
demonstrate the bug, and it took any time between 20ms to 20s (on the very
same computer, just depending on the run) for the bug to manifest itself
(!). On a larger scale – it was a bug no less than in the Microsoft C++ STL
implementation shipped with MSVC (carrying a copyright by no less than
P.J. Plauger), and while the bug was sitting there for years and has
manifested itself in a real-world environment, the manifestation was
usually like “our program hangs about once a month on a client machine
with no apparent reason”, which is virtually impossible to debug. Only
careful analysis of the STL code found the bug (and the analysis wasn’t
related to any specific problem with any specific program, it was done out
of curiosity).

Another example of untestability is as follows. Your program passes all
the tests in your test environment, but when you deploy it to the client’s
computer, it starts to fail. I’ve observed this pattern quite a few times, and
can tell that it is extremely unpleasant for the team involved. The reason
for failure is the same – context switch patterns have shifted a bit due to
different hardware or due to different load patterns on client’s machine.

Bottom line: you cannot rely on testing for multi-threaded programs.
Bummer.

B: Irreproducibility
Non-determinism implies that on every program run you get different
patterns.

This means that if you have a bug in your multi-threading code, you won’t
really be able to jump to a certain point in the debugger and see what’s
going on (nor will you be able to print what happens there, unless you’re
printing everything in sight over the whole program, which by itself will
shift patterns and may mask the bug). Ok, technically you are able to jump
to any point of your program, but the variables you see may (and if you
have a multi-threaded bug – will) differ every time you jump there.

This makes debugging multi-threaded issues a nightmare. When the bug
manifests itself about every 50th run of the program, it is already bad
enough for debugging, but when the pattern you see is a bit different every
time when it happens – your task of debugging the program can easily
become hopeless.

Many of you will say “Hey, I’ve debugged multi-threaded programs, it
works perfectly”. Indeed, much debugging works in a multi-threaded
environment, and you can debug a multi-threaded program, you just cannot
debug subtle multi-threaded issues within your non-trivial multi-threaded
program.

To allow for multi-threaded debugging in one of many complicated multi-
threaded projects, we went as far as creating our own fiber-based
framework which simulated threads, with our own simulated scheduler
and switching at the relevant points. Our simulated scheduler was run using
a pseudo-random generator, so when seeding it with the same original
seed, we’ve got determinism back, and were able to debug the program.
For us, it was the only way to debug that program (!). There are similar
tools out there (just Google for “deterministic framework to debug multi
threaded program”), and they might help, but while helpful for debugging
small primitives, such methods are inherently very time-consuming and
most likely will be infeasible for ongoing debugging of your business
logic.

C: Need for proofs of work (or exhaustive deterministic testing)
So, we’ve found (both from theory and illustrated by experience) that no
kind of testing can serve as a reasonable assurance that your multi-threaded
program will work, and that debugging is likely to be a real problem.
Sounds Really Bad, doesn’t it? More importantly, can we do something
about it?
August 2015 | Overload | 5

FEATURE SERGEY IGNATCHENKO

Any change in business logic is likely to affect
non-trivial thread synchronization, which in turn
is likely to lead to impossible-to-test and next-to-
impossible-to-debug bugs
In practice, I tend to provide proofs of work for any non-trivial multi-
threaded code. I’ve found from experience, that it is the only way to ensure
that a multi-threaded program will work 100% of the time (opposed to
working 99.99% of the time, which means failing here and there), and will
work everywhere.

For small pieces of code (20–50 lines) it is perfectly feasible. The level of
formality you need for your proofs is up to you, but it is important at least
to convince yourself and somebody else, that with any pattern of switches
the piece of code in question will work as expected. One good example of
code where more or less formal proofs are feasible (and necessary) is an
implementation of the queue for inter-thread communications.

Of course, for thousands-of-lines business logic, such proofs are not
feasible (that is, unless you trivialize the interaction of business logic with
multi-threading).

An alternative to proofs of work is to use one of those deterministic testing
frameworks mentioned above, and to perform exhaustive testing, testing
the program behavior for all the possible (or at least relevant, though the
notion of ‘relevant’ requires very careful consideration) context switches.
Our own framework (the one mentioned above) did allow such testing, but
times for such exhaustive testing were growing at least exponentially as
the size (more precisely – number of points of interest where the context
switch might be relevant) of the program grew, so once again such
exhaustive testing wasn’t feasible for the programs with over 20–50 lines
of code.

Reason 3: Code fragility
A logical consequence of untestability and the need for proofs of work is
code fragility. If, whenever you need to change the program, you need to
re-prove that it still works, this cannot be safely entwined with business
logic (which, by definition, changes 5 times a day). If, whenever you’re
changing something, you’re afraid that it might break something
somewhere 50000 lines of code away, it won’t work either.

More formally, a non-trivial mixture of business logic with thread
synchronization is inherently fragile. Any change in business logic is likely
to affect non-trivial thread synchronization, which in turn is likely to lead
to impossible-to-test and next-to-impossible-to-debug bugs.

Reason 4. Context switching granularity
To be efficient, multi-threading programs SHOULD make sure that they
don’t cause too much context switching (i.e. multi-threading SHOULD be
coarse-grained rather than fine-grained). The thing is that context switches
are damn expensive (taking into account the cost of recovery from thread
caches being flushed out by another thread, think of the order of 10,000
CPU clock ticks on x86/x64).

For example, if you want to move integer addition to another thread, you’re
likely to spend 20,000 CPU clock ticks for 2 context switches (to another
thread and back, with roughly half of the work being in your original
thread), and to save 0.75 CPU clocks on offloading the addition. Of course,

this is an extreme example, but way too often multi-threading is used
without understanding the implications of the cost of the context switches.

In this regard, separating business logic from threading helps to establish
a well-defined interface which encourages (though doesn’t guarantee)
coarse-grained granularity. For example, when having queues for inter-
thread communications, it is usually easier to write a coarse-grained
program, which is (as a rule of thumb; as with anything else, there are
exceptions) a Good Thing.

On the opposite side, code which intermixes business logic and thread
synchronization tends to overlook the need to keep granularity in check;
while in theory it is possible to handle it properly, in practice adding it to
the equation is not feasible, not least because of adding yet another layer
of entities, overloading (already overloaded) cognitive limits even further.

Hey, there are working multi-threaded programs out
there!
One may say: “Hey, you’re saying that writing multi-threaded programs
is impossible, but everybody and his dog is writing multi-threaded
programs these days!”. You do have a point. However:

 Quite a few multi-threaded programs are using trivial multi-
threading (for example, with a single mutex). Have you ever seen a
multi-threaded program which is able to utilize only 1.2 cores?
They’re likely using single mutex. And BTW, I cannot blame them
as soon as they provide adequate overall performance: if one
marketing guy has said “we need to write ‘support for multiple
cores’ on our website, because all the competition does it”, a single
mutex is one way to do what marketing wants without jeopardizing
the whole project.

 Quite a few programs (think of video codecs) do really need to
utilize multiple cores, but don’t really have much business logic
(depends on how you define ‘business logic’, but at least it doesn’t
change too often for codecs). They may get away with more or less
complicated thread sync, but even for video codecs having per-
frame (or per-large-part-of-frame) processing granularity (with
clearly defined inter-thread interfaces such as queues) tends to work
better than alternatives.

 Quite a few multi-threaded programs out there do have those
difficult-to-find-and-debug bugs. This is especially true for those
programs which don’t have a multi-million install base
[Wikipedia-2], but having a large install base certainly doesn’t
guarantee that the program is multi-threaded-bug-free. I would
guesstimate that for those programs which are released (i.e. out of
the development shop), at least 50% of crashes are related to multi-
threading.

 And finally, there are programs out there which do follow the
principles outlined in the next section, ‘Divide and conquer’.
6 | Overload | August 2015

FEATURESERGEY IGNATCHENKO
Divide and conquer
The first step in solving a problem

is to recognize that it does exist
~ Zig Ziglar

Despite the ‘Divide and conquer’ concept (originally Latin Divide et
impera) coming from politics, it is still useful in many fields related to
engineering, and is usually a Good Thing to use in the context of
programming (not to be confused with programming team management!).

Jokes aside, if we can separate business logic from non-trivial multi-
threading (trivializing multi-threading interaction from the point of view
of business logic), we will be able to escape from (or at least heavily
mitigate) all the problems described in this article. The number of entities
to fit into cognitive limits will come back to reasonable numbers, business
logic will become deterministic again (and while multi-threading
synchronization will still require proofs of work, they are feasible for small
and almost-never-changing pieces of code), code will be decoupled and
will become much less fragile, and coarse-grained granularity will be
encouraged.

The only teensy-weensy question remaining is “how to do it”. There are
several approaches to start answering this question, and I hope to describe
one of them sooner rather than later . For now, we need to recognize that
we do have a problem, solving it is the next step.

References
[Ignatchenko15] Sergey Ignatchenko, ‘Three Reasons to Avoid

Intermixing Business Logic and Thread Synchronization’,
http://java.dzone.com/articles/three-reasons-avoid

[Ignatchenko98] Sergey Ignatchenko, ‘STL Implementations and Thread
Safety’, C++ Report, July/Aug 1998

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs10] ‘No Bugs’ Hare, ‘Single-Threading: Back to the Future?’,
http://accu.org/index.php/journals/1634

[NoBugs15] ‘No Bugs’ Hare, ‘64 Network DO’s and DON’Ts for Game
Engines. Part IIIa: Server-Side (Store-Process-and-Forward
Architecture)’, http://ithare.com/64-network-dos-and-donts-for-
game-engines-part-iiia-server-side-store-process-and-forward-
architecture/

[Wikipedia] https://en.wikipedia.org/wiki/The_Magical_Number_
Seven,_Plus_or_Minus_Two

[Wikipedia-2] https://en.wikipedia.org/wiki/Installed_base

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.
August 2015 | Overload | 7

http://accu.org/index.php/journals/1634
http://ithare.com/64-network-dos-and-donts-for-game-engines-part-iiia-server-side-store-process-and-forward-architecture/
http://ithare.com/64-network-dos-and-donts-for-game-engines-part-iiia-server-side-store-process-and-forward-architecture/
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,
_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,
_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/Installed_base
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://java.dzone.com/articles/three-reasons-avoid

FEATURE DIETMAR KÜHL
Two Daemons
Most people have come across C++11’s
forwarding references. Dietmar Kühl
explains what && really means.
hen playing Nethack [Nethack] using the traditional terminal-
based interface you may be confronted by a monster taking the
form of a & character: a daemon of some sort. Depending on your

level of experience, facing one daemon is often OK but facing two tends
to get you into way more trouble. Since the release of C++11 we are
frequently faced with the two daemons &&!

Now, if you think that the two characters next to each other represent the
two daemons, you’d be right in the Nethack sense. In C++ any instance of
these two characters applied to a type actually represents one of two
daemons. When you have got a T&& it is either a reference to an object
which can be moved from or it is an entity whose type is deduced to match
what the entity is initialized with. It uses exactly the same notation for two
entirely different things! To relieve you from being haunted by these
daemons and rather be prepared to fight them, I’ll describe below how
these entities differ. In addition, I’ll show how you may use these insights
to support movable entities with pre-C++11 compilers to some extent.

How to know when to move
First let’s make a quick detour. In C++ a lot of temporary objects are
floating around. When functions or expressions return their results as
values you get a ‘temporary’. If the temporary isn’t of a simple data type,
it may be quite involved and expensive to copy. On the other hand, since
they are temporaries, there isn’t much use in them as they are about to be
destroyed! Instead of copying a temporary to get the value elsewhere and
destroying the temporary, it makes much more sense to move the
temporary’s content if it is expensive.

It would be great if we could indicate whether an object shall be moved or
copied! The C++ approach to indicate different processing is to use
different types. Since lvalue references are already used to indicate
copying and we don’t want to move lvalues by accident, we could
reasonably use a different type, let’s call it movable_ref<X>, to indicate
that an object can be moved (bear with me – I know about X&& and I’ll get
to this).

If a type is used to indicate that an object can be moved, the compiler can
choose an appropriate overload of a function which may move from the
object. For example, a class supporting a move construction could be
declared like Listing 1.

It is even possible to implement movable_ref<X> using a pre-C++11
compiler! All it takes is a class which internally holds a reference to an
object indicating that the object won’t be used again and to provide suitable
access to that reference. For example, a corresponding class template and
a suitable factory function could look something like Listing 2 (see the
‘Further reading’ for a pointer to a complete implementation).

With roughly the declaration in Listing 2, it is possible to use a simple
expression like move(x) to create an object which indicates that the
content of x can be transferred! This works like a charm for lvalues. For
temporaries things become a little bit harder: a temporary cannot be bound
to a non-const reference but it would still be desirable to move them.
Carrying on just a little bit more with the class template above, it would
be possible to create a move() member function for types which need to
be moved. For example, the move() operation of a std::string could
look like this:

 movable_ref<std::string> std::string::move() {
 return ::move(*this); }

Note that temporaries are non-const. They just can’t be bound to non-
const lvalue reference. It is entirely possible to call a non-const member
function like std::string::move() on them (assuming such a
function exists)! So creating the above function would just work and allow
temporaries to be moved using a notation like this:

 std::string("temporary on the").move()

Note that so far there is no use of C++11 at all! The class template
movable_ref<X> can be used with pre-C++11 compilers to move
objects. There is the small caveat that it doesn’t allow moving objects in
return statements but with reasonable compilers there isn’t much need for
that as they’ll use copy-elision with carefully written functions anyway.

Of course, we wouldn’t like this approach as it is a bit clumsy. Especially
for temporaries it requires too much work! Also, the compiler can actually

W

Listing 1

class foo {
 // ...
public:
 foo(foo const& other);
 // well-known copy
 foo(movable_ref<foo> other);
 // move the referenced object
 // ...
};

Listing 2

template <typename T>
class movable_ref {
 // suitable friend declaration goes here
 T* pointer;
 explicit movable_ref(T& object):
 pointer(&object) {}
public:
 operator T&() const { return *this->pointer; }
};
template <typename T>
movable_ref<T> move(T& object) {
 return movable_ref<T>(object);
}

Dietmar Kühl Dietmar is a senior software developer at Bloomberg
L.P. working on the data distribution environment used both
internally and by clients. In the past, he has done mainly consulting
for software projects in the finance area. He is a regular attendee
of the ANSI/ISO C++ standards committee and a moderator of the
newsgroup comp.lang.c++.moderated.
8 | Overload | August 2015

FEATUREDIETMAR KÜHL

if the object wasn’t given a name, it
can be moved as there is no way for

the object to be accessed otherwise
automatically tell whether an object can be moved or needs to be copied in
many cases: if the object wasn’t given a name, it can be moved as there is
no way for the object to be accessed otherwise (well, the object could
register itself somewhere but a class supporting moving is well-advised not
to do so). Apart from unnamed objects there are also a few other cases when
the compiler knows that the object can be safely moved. For example, when
a named variable is returned from a function it can be moved:

 T f() {
 T value(...);
 // ...
 return value;
 }

Note that the C++ standard considers moving value for the above
function but will use copying if the return statement is written like this:

 return (value);

In cases where it is known that an object won’t be used the compiler could
generate the call to move() implicitly and yield a movable_ref<X>. It
turns out this is nearly what happens! Instead of using the type
movable_ref<X> the compile uses a type which matches the declaration
X&& where X is not a deduced type (I’m using X instead of T to indicate
that X is not a deduced type; T tends to be used for template parameters
and is often deduced), i.e., it uses rvalue references. Before diving into
more details of rvalue references note that the notation movable_ref<X>
can be used interchangeably for X&& assuming the following using alias
is visible:

 template <typename T>
 using movable_ref =
 std::add_rvalue_reference_t<T>;

The interesting aspect of this using alias is that it allows code written in
terms of movable_ref<X> to be used both with a C++03 and a C++11
(or later) compiler. With a few support functions the identical code can be
used to move objects! This yields a neat migration path for libraries which
need to compile with both new and old compilers. The main flaw of this
idea is that it is presented in 2015 and not, at least, 5 years ago. However,
better late than never: it may still help some C++ users who haven’t
migrated off C++03 compilers.

Using std::add_rvalue_reference_t<X> in the definition of
movable_ref instead of X&& has the advantage of preventing deduction
of X. This nearly makes the using alias useful in general in C++11 rather
than just for libraries which need to compile with both C++03 and later
versions. The main danger is that using std::movable_ref<X>& x is
legal and looks as if x would be a reference to an object which can be
moved from but it isn’t. Instead the references are collapsed and the
notation simply yields a X&.

rvalue references
Now let’s have a look at rvalue references. When you have got a X&& for
some non-reference type X, e.g. std::string&&, you have got a
reference which can only be bound to something which can be moved

from. Either there are rules allowing the compiler to implicitly consider
the object movable or the user has used a cast to have an lvalue look like
an rvalue reference, e.g.:

 std::string s("lvalue");
 std::string&& r = static_cast<std::string&&>(s);

Using std::move(s) is just another way to write the cast above:
std::move() is specified to deduce the argument type and do the cast.

A declaration even when using an rvalue reference, e.g., r in the above
code, introduces an entity with a name. Since it has a name using r yields
an lvalue! That is, the compiler won’t allow moving from the referenced
object. The name rvalue reference derives from the kind of entities which
can be bound to this sort of reference: rvalue references only allow binding
objects which are about to go away or which are made to look as if that is
the case with a cast. The compiler won’t allow binding an lvalue to an
rvalue reference without a cast.

The net effect of these rules is that using X&& x as part of a function
signature indicates that the function was called with an object which can
be moved from and it is OK to change the state of x. The typical change
is to move the content, i.e., to transfer resources from x to another object.

According to the core language this transfer can leave the object in some
arbitrary state as long as it is safe to call the destructor on the object.
However, the standard library mandates that the respective class invariants
are retained for the moved-from object when using move construction or
move assignment.

Forwarding references
Sadly, when you see a name declared as T&& t the object referenced by
T cannot necessarily be moved! More specifically, if T is used to deduce
the type the meaning of T&& is entirely different! For example, assume you
have the class template in Listing 3.

The type for x is not deduced. That is, x is a reference to a movable object
of the template argument X specified to instantiate the class template
example. On the other hand, the type T for t can be deduced based on
the arguments given to f(). Listing 4 contains a few examples on how
f() could be called and what the type T becomes.

When replacing T in the function template f() with std::string& i.e.,
when instantiating f() for the type std::string the second argument
type becomes std::string& &&. This odd-looking type doesn’t exist
as the references are collapsed: if there are multiple reference qualifiers
on a type, they get collapsed so there is only one reference qualifier:

 & && becomes &

 && & becomes &

 && && becomes &&

That is, depending on how f() is called, t may be an lvalue reference or
it may be an rvalue reference. Just because the argument is spelled as T&&
and looks like an rvalue reference, it isn’t necessarily one. Unconditionally
trying to move from t would, thus, likely yield incorrect behavior.
August 2015 | Overload | 9

FEATURE DIETMAR KÜHL

This yields a neat migration path for
libraries which need to compile with both
new and old compilers
Independent of how f() is called, t will be considered to be an lvalue. It
always has a name and the compiler will not move from a named object
implicitly unless the name is about to go away. If you want to potentially
m ov e a n a rg u m e n t wh o s e t yp e wa s d e d uc e d , yo u ’d u s e
std::forward<T>(t): depending on the explicit template argument
type T the function argument t will be cast to a suitable reference type: if
T is not an lvalue reference type, the function yields a T&&. Otherwise the
function yields the type T.

Since it is a bit awkward to talk about a T&& where the T is deduced, there
needs to be a name. Scott Meyers refers to these references as universal
references. The C++ standard defines the term forwarding reference for
the same entities. I think this term describes what these entities are doing
better.

auto and &&
The rules for the type deduced when using auto are identical to the rules
used with deduced arguments for function templates. Thus, you’ll get the
following:

 auto v = expr; declares v to have the value type of the
expression expr and the result of expr will be copied into v (of
course, the copy can possibly be elided).

 auto& r = expr; declares r as an lvalue reference to the result
of expr which assumes that expr indeed yields an lvalue.

 auto const& c = expr; declares c to a const lvalue reference
to the result of expr. If expr doesn’t yield an lvalue but a
temporary, the life-time of the temporary gets expanded until c goes
out of scope.

 auto&& s = expr; declares s to be some reference to the result
of expr. If expr yields a value s will be an rvalue reference to the
temporary whose life-time gets expanded until s goes out of scope.
Otherwise s will be a reference to the reference yielded by expr.

Similar to the use in function templates whether s can be moved from
depends on how s actually happens to be declared despite the use of &&.
That is, with names declared using auto&& you wouldn’t use
std::move(). Instead you would use std::forward() with a
somewhat ugly-looking type:

 std::forward<decltype(s)>(s)

Of course, spelling out the actual type may be a lot more ugly than
decltype(s).

Since we are on the topic of auto declarations: do not use range-based
for loops using a variable declared as a plain auto unless you know that
the value type of the iterator is a type which can be efficiently copied and
you don’t need to mutate the elements. Otherwise you are much better off
to use auto with a reference qualifier. As a default it is reasonable to use
auto&&:

 for (auto&& v: container) { ... }

When the elements are only read you may want to explicitly indicate that
the elements are not mutated in which case auto const& is the way to
go. Similarly, if you know you are going to mutate the elements you may
want to explicitly indicate that using auto&.

Summary
C++ uses the notation T&& for two entirely unrelated things:

 If T is deduced T&& just means that an object is referenced and the
type of T indicates whether the referenced object can be moved from.

 If T is not deduced T&& indicates that the referenced objects can be
moved from unconditionally.

To support move semantics using pre-C++11 compilers a class template
can be used to indicate that an entity is movable. With a corresponding
using alias and a few access functions the same notation can be used for
rvalue references in C+11 providing a migration path.

Reference and further reading
[Nethack] http://www.nethack.org/

For further reading on this topic see one of these:

Thomas Becker’s articles: http://thbecker.net/articles/rvalue_references/
section_01.html

Effective Modern C++, Scott Meyers, Item 24

Github: https://github.com/bloomberg/bde/blob/master/groups/bsl/bslmf/
bslmf_movableref.h

Scott Meyers. ‘Universal references in C++11’ Overload, 20(111):8:12,
October 2012.

Listing 3

template <typename X>
struct example {
 template <typename T>
 static void f(X&& x, T&& t) {
 // ...
 }
};

Listing 4

std::string s("mutable");
std::string const c("immutable");
example<int>::f(int(1), s);
 // T == std::string&
example<int>::f(int(2), c);
 // T == std::string const&
example<int>::f(int(2), std::string("tmp"));
 // T == std::string
10 | Overload | August 2015

It may not be the software. How clear are the release notes? What
about the product manual, online help, training materials, ...?

Changes may meet a business need, but if what worked
yesterday doesn’t work today, people may resent them. And when
today’s way involves extra steps, people work around them. After
all, their priority is getting the job done.

Result: those shiny new features remain unused, and your
application appears not to live up to its promise.

If you would like some help in turning nervous cats into contented
ones, get in touch.

Not quite the reaction
 you were expecting to

the latest release?

We share your belief in professionalism and are members of the Institute
of Scientific and Technical Communicators, the UK professional body for
technical authors and related professions (visit www.istc.org.uk)

T 0115 8492271

E info@clearly-stated.co.uk

W www.clearly-stated.co.uk

FEATURE ANDY BALAAM
Don’t Design for Performance
Until It’s Too Late
People claim optimisation can cause unreadable
code. Andy Balaam argues good performance
should be at the core of code design.
here is a piece of ancient wisdom which states:

 Premature optimisation is the root of all evil

This ancient wisdom [Knuth74] is, like all ancient wisdom, correct.

However.

It appears to have been reinterpreted as essentially meaning:

Don’t design for performance until it’s too late

which is clearly, and very importantly, very wrong.

Performance is a feature
Before I begin I want us all to agree that performance is a feature.
[Atwood09]

I work on a real-life ‘enterprise’ [Vinh07] application. Its features are
entirely driven by the need for immediate cash, not by developers
following pipe dreams. And yet, for the last 6–12 months the majority of
my time has been spent trying to retrofit performance into this application.
Believe me, this is not because we have users who are obsessive about
wasting valuable seconds – it’s because our performance sucks so hard it’s
deeply embarrassing.

What is your favourite program? How well does it perform? What is your
least favourite? Why?

For me, and many other people, their answers to those questions
demonstrate the importance of performance. Firefox was launched to
improve the performance of Mozilla. People love git because of how fast
it is. Lotus Notes is hated so much partly because of its performance. My
main complaints about programs I use involve performance (e.g.
Thunderbird is too slow for IMAP email).

A fast response to the user is one of those crucial inches [Spolsky07] on
the journey to software that makes people happy. Making people happy
gives you the kind of scary fanboyism that surrounds git. Wouldn’t you
like that for your product?

What is optimisation?
When my hero said that premature optimisation was the root of all evil,
he was talking in the days when you had to hand-optimise your C in
assembly language. Or, more likely in his case, you had to hand-optimise
your assembly language into faster assembly language. Optimisation like
that very often obfuscates your code.

These days, 99% of the time, your compiler does all of this work for you,
so you can have relatively comprehensible code in whatever trendy
language you like, and still have the fastest possible local implementation
of that in machine code.

Meanwhile, Knuth knew that 99% of your code is simply not performance-
critical – it only runs a few times, or it’s just so much faster than some other
bit that it doesn’t matter. The lesson we all learn eventually is that the slow
bit is never quite what you thought, and you have to measure to find out
where to concentrate your effort.

So, if optimisation is obfuscation, and 99% of your code isn’t the bit you
need to make faster, it becomes clear that premature optimisation is the
root of much evil.

But optimisation is not designing for performance.

Design for performance
Fundamentally, to get good performance, you are going to need to measure
the time spent in various parts of your code (I suggest Very Sleepy
[VerySleepy] if you’re on Windows) and make the slow bits faster (or
happen less often). However, there are still some principles you can follow
that will mean you need to spend less time doing this (which is a pity,
because I really love doing it).

If you don’t design for performance you are almost certainly going to need
to restructure large parts of your program later, which is very difficult and
time-consuming.

There are two aspects to designing for performance: writing good local
code, and creating good global structure.

Write good local code
Before you write an algorithm, think for a few minutes about how to make
it work efficiently. e.g. if you’re writing C++, consider whether a deque
or a list would be better than a vector for how you’re going to use it.

Think about what is idiomatic for your language and why. Think about
what the computer really has to do to produce the results you are asking
for. Are there going to be a lot of objects about? Maybe you can avoid
copying them too many times. Are you creating and deleting a lot of
objects? Can you reuse some instead? (Exercise caution with that one,
though – if you start obfuscating you come into conflict with the ancient
wisdom.)

Often, if you think through what you are doing, and the most efficient way
to do it, you will end up with a faster and more memory-efficient algorithm,
that expresses your intention better than if you’d written the first thing that
came into your head. There is no downside to that.

Try to minimise the number of times you need to ask the operating system
for a chunk of memory: this is surprisingly slow. E.g. in C++, prefer
creating by-value data members instead of pointers to objects allocated
with their own call to new.

By the way, don’t worry if this sounds intimidating. The way to learn this
stuff is to measure what you have done and then work out why it is slow.
Next time you’ll jump straight to the fast solution without the detour to
the slow one.

Of course, none of this will matter if you don’t have good global structure.

T

Andy Balaam Andy is happy as long as he has a programming
language and a problem. He finds over time he has more and more
of each.

You can find his many open source projects at artificialworlds.net
or contact him on andybalaam@artificialworlds.net
12 | Overload | August 2015

FEATUREANDY BALAAM

if different parts use different string
classes you are going to spend most of

your time copying from one to the other
Create good global structure
The hardest and most important work you need to do to have good
performance is to have good structure in the ways the different parts of your
program interact.

This means thinking about how classes and components communicate
with and control each other.

It may be helpful to use a streaming style of communication – can you send
little chunks of information to be processed one by one instead of a huge
great blob?

Try to make sure your components to use a common infrastructure: if
different parts use different string classes you are going to spend most of
your time copying from one to the other.

The hardest and deepest mystery in getting good performance (and in
programming generally) is choosing the right fundamental data structures.
I’ll never forget the lesson I learnt when a friend of mine had a conversation
with me about a toy project I was doing (that was particularly focussed on
trying to be fast) and then went away and produced code that was orders
of magnitude faster, simply because he had chosen the right data structure.
The lesson I learnt was that I am not as good as I think I am.

To be honest this section is a little shorter than I’d like because I know I
don’t have a lot of answers about how to do this well. I do know, though,
that if you don’t think about it now you will have the pain of restructuring
your program later, when it’s full of bug fixes that are going to get re-
broken by the restructuring.

Of course, if you do think about it now you’re still pretty likely to need to
change it later…

Ancient wisdom
Ancient wisdom is usually right, but misinterpreting it and using it as a
license to write bad code is a bad idea. Carry on.

References
[Atwood09] Atwood, Jeff ‘A Few Speed Improvements’

http://blog.stackoverflow.com/2009/08/a-few-speed-improvements/

[Knuth74] Knuth, Donald ‘1974 Turing Award Lecture’ from
Communications of the ACM 17 (12), (December 1974), p 671

[Spolsky07] Spolsky, Joel ‘A game of inches’
http://www.joelonsoftware.com/items/2007/06/07.html

[Stroustrup12] Stroustrup, Bjarne ‘Why you should avoid Linked Lists’
from GoingNative 2012:
https://www.youtube.com/watch?v=YQs6IC-vgmo

[VerySleepy] ‘Very Sleepy’ http://www.codersnotes.com/sleepy

[Vinh07] Vinh, Khoi ‘If It Looks Like a Cow, Swims Like a Dolphin and
Quacks Like a Duck, It Must Be Enterprise Software’
http://www.subtraction.com/2007/10/19/if-it-looks-/

[Wicht12] Wicht, Baptiste ‘C++ benchmark – std::vector VS std::list’
https://dzone.com/articles/c-benchmark-%E2%80%93-stdvector-vs

C++’s standard containers are specified to fulfil certain ‘performance’
criteria, and also to give certain guarantees (e.g. about how long iterators
stay valid) that are influenced by the algorithms that are expected to be
used. The ‘performance’ criteria specify algorithm complexity, which
means they are important when the number of elements in a container
is very large, but real-world performance when numbers are smaller may
be very different. Bjarne Stroustrup (among others) has observed
[Stroustrup12] that even with thousands of elements, vectors can
comprehensively outperform the other containers, even for operations
that sound like the kinds of operations more suited to lists or maps.

Stroustrup provides a rule of thumb he calls ‘Use compact data’, which
reflects the fact that often the most performance-critical aspect of code
is the locality of the data being operated on. The enormous differences
in memory access speed between different levels of cache and the
system memory mean that the effect of keeping data close together (as
a vector does) can swamp any effects of algorithmic complexity.
[Wicht12]

When choosing a C++ container, normally the most important
consideration will be simplicity and comprehensibility of the code, but
when performance is the primary consideration, you should measure,
and you may be surprised how often vector is the right choice. Many
argue vector should be your default choice.

Always consider using vector in C++

We’re always looking for new articles and new authors. If you are
interested in writing for us but are looking for inspiration, take a look at
our current wish-list of topics...

Overload wish-list
* crypo-currencies
* C++17
* property-based testing
* how to structure large python projects
* Qt
* Boost
* SQL
* NoSQL
* programming paradigms in general - especially

functional
* Gcc architecture or internals.
* Anything GNU/Linux tool chain related
* History of computing
* Maintaining old systems
* Computational geometry using rounded arithmetic
* Puzzles

then read the ‘Guide for Contributors’ on the website (http://accu.org/
index.php/journals/1414) and discuss your idea with the Overload editor.
August 2015 | Overload | 13

https://www.youtube.com/watch?v=YQs6IC-vgmo
http://www.accu.org/index.php/journals/1414
https://dzone.com/articles/c-benchmark-%E2%80%93-stdvector-vs
http://accu.org/index.php/journals/1414
http://accu.org/index.php/journals/1414
http://blog.stackoverflow.com/2009/08/a-few-speed-improvements/
http://www.joelonsoftware.com/items/2007/06/07.html
http://www.codersnotes.com/sleepy
http://www.subtraction.com/2007/10/19/if-it-looks-/

FEATURE NICK WEATHERHEAD
Template Programming Compile
Time String Functions
Practising old exercises in new ways can keep you
sharp. Nick Weatherhead demonstrates some well-
known code katas using C++ compile time tricks.
any of us will recall some of the first programming exercises we
had to solve. Possibly they involved converting strings into
different representations and detecting some properties. When

learning a new programming language or technique, it’s not unusual to
revisit and apply some of these. I will look at three examples using C++
templates for compile time constant expressions; an integer to string
conversion, then the reverse by generating an integer from a Roman
numeral, and finally detecting whether a string is a palindrome.

As a string is a sequence of adjacent characters it is common to physically
represent it as an array. However, we soon discover that templates do not
permit the use of string literals as parameters. There are a couple of
workarounds – they can be defined with external linkage indicating that
they are a single entity across translation units or, alternatively, they can
be defined as a class member and passed in as a type. However, their use
in compile time expressions is limited because pointer arithmetic isn’t
allowed, and further, whilst integral types can be evaluated at compile time
with a propagated constant expression, there isn’t a similar mechanism that
recursively expresses the sequence of elements required in an array
initialisation. Let’s consider some alternatives.

A basic integer to ASCII conversion can be defined as in Listing 1. The
arithmetic can be determined at compile time, but a sequence of calls is
required to place each individual character into the output stream. It also
shows how ‘X’ Macros are used in generating repeated code when multiple
template specialisations are required. Instead of individually outputting
each character, each class could be composed of a single character (1 byte).
Typically, a compiler will align characters on a one byte boundary such
that, when these are constructed together, they form a contiguous block of
characters that can be cast as a string. Note that this technique isn’t
guaranteed to work; whilst C and C++ compilers retain the order in which
members are declared in a structure they can add padding between them.
Adapting the above gives Listing 2.

For the specialisation of one digit there is an out function and in the
general case to concatenate digits there is a nested class named out too;
both can be called with the same out() in order to return a null terminated
string. The nested class can work on a completed definition of the outer
template object, thus becoming a functor.

The constructors are specified with constexpr. This indicates that they
can be evaluated and their resulting objects initialised at compile time. If

M

Listing 1

#include <iostream>
using namespace std;
template< size_t I > struct itoa {
 friend ostream& operator<<(
 ostream& os, const itoa&) {
 return os << itoa< I / 10 >()
 << itoa< I % 10 >();
 }
};
#define DIGITS X(0) X(1) X(2) X(3) X(4) \
 X(5) X(6) X(7) X(8) X(9)
#define X(I) \
template< > struct itoa< I > { \
 operator char() const { return 0x3##I; } \
}; \
DIGITS
#undef X
int main() {
 cout << "\n3210 = " << itoa< 3210 >()
 << "\n26 = " << itoa< 26 >()
 << "\n9 = " << itoa< 9 >();
}

Listing 2

#include <iostream>
using namespace std;
template< size_t I > struct itos
: itos< I / 10 > {
 const char _;
 constexpr itos() : _(0x30 + I % 10) {
 static_assert(
 sizeof(itos)
 == sizeof(itos< I / 10 >) + 1
 ,
 "unwanted padding"
);
 }
 struct out {
 const itos< I > _; const char nil;
 constexpr out() : nil('\0') {
 static_assert(
 sizeof(out)
 == sizeof(_) + 1
 ,
 "unwanted padding"
);
 }
 constexpr operator const char* const()
 const {
 return _;
 }
 };
};

Nick Weatherhead Nick's first encounter with programming was
copying lines of code from magazines into the now venerable
family BBC B. His teacher persuaded him to take computer science
during his first term of A-Levels. This led to many hours of puzzle
solving and programming, a relevant degree and finally gainful
employment within London's financial sector. You can contact Nick
at weatherhead.nick@gmail.com
14 | Overload | August 2015

FEATURENICK WEATHERHEAD

Expressions are not evaluated until the last
character is read and the stack unwinds; thus

the numerals are evaluated as if read in reverse
constexpr isn’t present calls to each constructor will be generated
instead. Whether the constant expression branch is taken can be
determined using the noexcept operator, for example:

 noexcept(itos< 10 >::out())

will evaluate to true in the example in Listing 2, but if constexpr is
removed from either of the constructors it will return false. Static
assertions are included in the constructors to verify that the characters are
contiguous.

The code in Listing 3 uses variadic templates to interpret Roman numerals
with the combinations of I, V and X, from I up to and including XXXIX
i.e. from 1 to 39. However, it does so without validating the numerals.
Roman numerals are written from left to right in descending
denominations with the exception of subtractive cases e.g. IV and IX; they
should also be represented using the fewest characters necessary.

In Listing 4, an underlying structure n_ is defined to cater for a running
total of the decimal value d, and counts for consecutive Is, Vs and Xs (i,
x, v) which are then encapsulated in a class n. As each class is called a
character is pushed onto the stack and these properties are transitively
passed from one nested template to the next in the chain. Expressions are
not evaluated until the last character is read and the stack unwinds; thus
the numerals are evaluated as if read in reverse. Specialisations for n are
defined for I, V and X; each adds its respective denomination of 1 (in the
subtractive case of an I appearing before a V or an X this is negated), 5 or
10 to the running decimal and increases its character count.

Further consideration is given to glyphs that are greater in value to the one
preceding them. Where this occurs any active counts for higher
denomination characters are floored to one; this allows the subtractive
cases to be dealt with and the likes of VX and IIX to be eliminated.
Counters for denominations smaller than the one being examined are
already accounted for so are zeroed out. In order to ensure a numeral is
represented using the fewest characters any occurrence of more than three
consecutive Is or Xs or more than one V are identified. To prevent a
combination a class definition is supplied which matches the count of the
characters but has no body – this causes compilation to fail if any result.

Listing 2 (cont’d)

#define DIGITS X(0) X(1) X(2) X(3) X(4) \
 X(5) X(6) X(7) X(8) X(9)
#define X(I) \
template< > struct itos< I > { \
 const char _; \
 constexpr itos() : _(0x3##I) { } \
 constexpr static const char* const out() { \
 return #I; \
 } \
 constexpr operator const char* const() \
 const { \
 return &_; \
 } \
}; \

DIGITS

#undef X

int main() {
 cout << "\n3210 = " << itos< 3210 >::out()
 << "\n26 = " << itos< 26 >::out()
 << "\n9 = " << itos< 9 >::out();
}

Listing 3

#include <iostream>
using namespace std;

template< char N, char... NS > struct ns {
 static const int d =
 ns< N >::d
 + ns< NS... >::d;
};

template< > struct ns< 'I' > {
 static const int d = 1;
};

template< > struct ns< 'V' > {
 static const int d = 5;
};

template< > struct ns< 'X' > {
 static const int d = 10;
};

template< > struct ns< 'I', 'V' > {
 static const int d = 4;
};

template< > struct ns< 'I', 'X' > {
 static const int d = 9;
};

int main() {
 static const int
 v = ns<'V'>::d
 , xix = ns<'X','I','X'>::d
 , xxiv = ns<'X','X','I','V'>::d
 , xxxviii = ns<'X','X','X','V','I','I','I' >::d;
 cout << "\nV = " << v
 << "\nXIX = " << xix
 << "\nXXIV = " << xxiv
 << "\nXXXVIII = " << xxxviii;
}

August 2015 | Overload | 15

FEATURE NICK WEATHERHEAD

The strategy to detect a palindrome is to step
from the outermost to the innermost
characters, comparing the beginning and end
letters to see if they match
To aid legibility the nested templates are wrapped by a variadic template
class (see Listing 5).

In Listing 5, the outer class l defines a concatenation of characters and the
nested template class p test to see if these represent a palindrome (reading
the same backwards as forwards). The strategy to detect a palindrome is
to step from the outermost to the innermost characters, comparing the
beginning and end letters to see if they match until either they don’t, in
which case it isn’t a palindrome, or the middle is met, in which case it is.
For a single character, the specialisation l with a nil continuation, this
is trivially true; however, for a concatenated list indexing and iteration of
elements is required. This is achieved by indexing each element, as each
is added to the list, with a propagated count i. When calling p the outer
class will reference the last character C at the index i (being the length of
the list minus one). Template p takes a parameter I which is the index of

Listing 4

#include <iostream>
using namespace std;

template< int D, int I, int V, int X >
struct n_ {
 static const int d = D, i = I, v = V, x = X;
};

template< int D, int V, int X >
struct n_< D, 4, V, X >;

template< int D, int I, int X >
struct n_< D, I, 2, X >;

template< int D, int X >
struct n_< D, 2, 1, X >;

template< int D, int I >
struct n_< D, I, 1, 1 >;

template< int D, int I, int V >
struct n_< D, I, V, 4 >;

template< int D, int V >
struct n_< D, 2, V, 1 >;

template< char C, typename N = n_< 0, 0, 0, 0 > >
struct n { };

template< typename N > struct n< 'I', N >
: n_<
 N::d + (N::v || N::x ? -1 : 1)
 , N::i + 1
 , N::v ? 1 : 0
 , N::x ? 1 : 0
 >

{ };

template< typename N > struct n< 'V', N >
: n_<
 N::d + 5
 , 0
 , N::v + 1
 , N::x ? 1 : 0
 >

{ };

Listing 4 (cont’d)

template< typename N > struct n< 'X', N >
: n_<
 N::d + 10
 , 0
 , 0
 , N::x + 1
 >

{ };

template< char N, char... NS > struct ns
: n< N, ns< NS... > >

{ };

template< char N > struct ns< N >
: n< N >

{ };

int main() {
// static const int
// iiv = ns<'I','I','V'>::d
// , vv = ns<'V','V'>::d
// , vxx = ns<'V','X','X'>::d
// , xxxx = ns<'X','X','X','X'>::d;

 static const int
 v = ns<'V'>::d
 , xix = ns<'X','I','X'>::d
 , xxiv = ns<'X','X','I','V'>::d
 , xxxviii = ns<'X','X','X','V','I','I','I'
 >::d;
 cout << "\nV = " << v
 << "\nXIX = " << xix
 << "\nXXIV = " << xxiv
 << "\nXXXVIII = " << xxxviii;
}

16 | Overload | August 2015

FEATURENICK WEATHERHEAD

... the interpretation and pattern matching
capabilities of templates and their ability to

prevent as well as action state transitions
the corresponding character to make a comparison with; in the outermost
case this is the first at index zero. The recursive function is checks to see
if the index requested indicates that the middle has been met or, in the case
of even length strings, crossed. If it hasn’t then the characters are compared
with one another and, if they match, the link L is followed to the previous
character and p is called again with the next index. In this way the elements
are being evaluated in reverse order to which the chain is defined. When
finding a corresponding character c the link to previous elements is
recursively followed until the index I is found.

In summary, ‘integer to string’ looked at alternative ways in which a string
can be emitted with templates. It also demonstrated how nested classes can
be used to define functions on the template definition of the outer class,
the use of X macros to generate code for repeating specialisations, and
introduced the use of the C++11 constexpr to evaluate constructors at
compile time. ‘Roman numeral’ highlighted the interpretation and pattern
matching capabilities of templates and their ability to prevent as well as
action state transitions. Finally ‘palindrome’ built on the use of nested class
functors to iterate over a sequence of characters.

Acknowledgements
I’d like to thank the Overload review team for their advice, particularly
for suggesting that I explore the use of variadic templates, commenting that
static assertions can be used to verify whether character alignment within
a structure is contiguous, and also for cautioning against the use of
reinterpret_cast.

Further reading
constexpr specifier (since C++11), May 2015.

http://en.cppreference.com/w/cpp/language/constexpr

C++11FAQ : constexpr – generalized and guaranteed constant
expressions, September 2014
http://www.stroustrup.com/C++11FAQ.html

C++ Template: The Complete Guide, David Vandevoorde and Nicolai
M. Josuttis, Addison Wesley, 2002, pp.40-41, 209-210.

Data structure alignment, June 2015,
https://en.wikipedia.org/wiki/Data_structure_alignment

Listing 5

#include <iostream>
using namespace std;

struct nil;

template< char C, typename L = nil > struct l {
 static const size_t i = L::i + 1;
 template < size_t I = 0 > struct p {
 static const char c =
 I < i ? L::template p< I >::c : C;
 static const bool is =
 (
 I >= i
 ||
 c == C
 &&
 L::template p< I + 1 >::is
);
 };
};
template< char C > struct l< C, nil > {
 static const size_t i = 0;
 template< size_t I = 0 > struct p {
 static const char c = C;
 static const bool is = true;
 };
};
template< char C, char... CS > struct ls
: l< C, ls< CS... > >
{ };
template< char C > struct ls< C >
: l< C >
{ };

int main() {
 static const bool
 arora = ls<'a','r','o','r','a'>
 ::p< >::is
 , hannah = ls<'h','a','n','n','a','h'>
 ::p< >::is
 , ania = ls<'a','n','i','a'>
 ::p< >::is;
 cout << "\narora = "
 << (arora ? "y" : "n")
 << "\nhannah = "
 << (hannah ? "y" : "n")
 << "\nania = "
 << (ania ? "y" : "n");
}

August 2015 | Overload | 17

http://en.cppreference.com/w/cpp/language/constexpr
http://www.stroustrup.com/C++11FAQ.html
https://en.wikipedia.org/wiki/Data_structure_alignment

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

FEATUREANTHONY WILLIAMS
Numbers in JavaScript
JavaScript floating point numbers can confuse
C++ programmers. Anthony Williams draws our
attention to some surprising behaviour.
’ve been playing around with JavaScript (strictly, ECMAScript) in my
spare time recently, and one thing that I’ve noticed is that numbers are
handled slightly strangely. I’m sure that many experienced JavaScript

programmers will just nod sagely and say “Everyone knows that”, but I’ve
been using JavaScript for a while and not encountered this strangeness
before as I’ve not done extensive numerical processing, so I figured it was
worth writing down.

Numbers are floating point
For the most part, JavaScript numbers are floating point numbers. In
particular, they are standard IEEE 754 64-bit double-precision numbers.
Even though the IEEE spec allows for multiple NaN (Not-a-number)
values, JavaScript has exactly one NaN value, which can be referenced in
code as NaN.

This has immediate consequences: there are upper and lower limits to the
stored value, and numbers can only have a certain precision.

For example, 10000000000000001 cannot be represented in JavaScript. It
is the same value as 10000000000000000.

 var x=10000000000000000;
 if(x==(x+1))
 alert("Oops");

This itself isn’t particularly strange: one of the first things you learn about
JavaScript is that it has floating-point numbers. However, it’s something
that you need to bear in mind when trying to do any calculations involving
very big numbers (larger than 9007199254740992 in magnitude) or where
more than 53 bits of precision is needed (since IEEE 754 numbers have
binary exponents and mantissas).

You might think that you don’t need the precision, but you quickly hit
problems when using decimal fractions:

 var x=0.2*0.3-0.01;
 if(x!=0.05)
 alert("Oops");

The rounding errors in the representations of the decimal fractions here
mean that the value of x in this example is 0.049999999999999996, not
0.05 as you would hope.

Again, this isn’t particularly strange, it’s just an inherent property of the
numbers being represented as floating point. However, what I found
strange is that sometimes the numbers aren’t treated as floating point.

Numbers aren’t always floating point
Yes, that’s right: JavaScript numbers are sometimes not floating point
numbers. Sometimes they are 32-bit signed integers, and very
occasionally 32-bit unsigned integers.

The first place this happens is with the bitwise operators (&, |, ^): if you
use one of these then both operands are first converted to a 32-bit signed
integer. This can have surprising consequences.

Look at the following snippet of code:

 var x=0x100000000; // 2^32
 console.log(x);
 console.log(x|0);

What do you expect it to do? Surely x|0 is x? You might be excused for
thinking so, but no. Now, x is too large for a 32-bit integer, so x|0 forces
it to be taken modulo 232 before converting to a signed integer. The low
32-bits are all zero, so now x|0 is just 0.

OK, what about this case:

 var x=0x80000000; // 2^31
 console.log(x);
 console.log(x|0);

What do you expect now? We’re under 232, so there’s no dropping of
higher order bits, so surely x|0 is x now? Again, no. x|0 in this case is
-x, because x is first converted to a signed 32-bit integer with 2s
complement representation, which means the most-significant bit is the
sign bit, so the number is negative.

I have to confess, that even with the truncation to 32-bits, the use of signed
integers for bitwise operations just seems odd. Doing bitwise operations
on a signed number is a very unusual case, and is just asking for trouble,
especially when the result is just a ‘number’, so you can’t rely on doing
further operations and having them give you the result you would expect
on a 32-bit integer value.

For example, you might want to mask off some bits from a value. With
normal 2s complement integers, x-(x&mask) is the same as x&~mask:
in both cases, you’re left with the bits set in x that were not set in mask.
With JavaScript, this doesn’t work if x has bit 31 set.

 var x=0xabcdef12;
 var mask=0xff;
 console.log(x-(x&mask));
 console.log(x&~mask);

If you truncate back to 32-bits with x|0 then the values are indeed the
same, but it’s easy to forget.

Shifting bits
In languages such as C and C++, x<<y is exactly the same as x*(1<<y)
if x is an integer. Not so in JavaScript. If you do a bitshift operation (<<,
>>, or >>>) then JavaScript again converts your value to a signed integer
before and after the operation. This can have surprising results.

I

Anthony Williams Anthony is the author of C++ Concurrency in
Action. As well as working on multi-threading libraries, he develops
custom software for clients, and does training and consultancy.
Despite frequent forays into other languages, he keeps returning to
C++. He is a keen practitioner of TDD, and likes solving tricky
problems. Contact him at anthony@justsoftwaresolutions.co.uk
August 2015 | Overload | 19

FEATURE ANTHONY WILLIAMS

JavaScript numbers are double-
precision floating point, so need to be
treated the same as you would floating
point numbers in any other language
 var x=0xaa;
 console.log(x);
 console.log(x<<24);
 console.log(x*(1<<24));

x<<24 converts x to a signed 32-bit integer, bit-shifts the value as a signed
32-bit integer, and then converts that result back to a Number. In this case,
x<<24 has the bit pattern 0xaa000000, which has the highest bit set when
treated as 32-bit, so is now a negative number with value -1442840576.
On the other hand, 1<<24 does not have the high bit set, so is still positive,
so x*(1<<24) is a positive number, with the same value as 0xaa000000.

Of course, if the result of shifting would have more than 32 bits then the
top bits are lost: 0xaa<<25 would be truncated to 0x54000000, so has the
value 1409286144, rather than the 5704253440 that you get from
0xaa*(1<<25).

Going right
For right-shifts, there are two operators: >> and >>>. Why two? Because
the operands are converted to signed numbers, and the two operators have
different semantics for negative operands.

What is 0x80000000 shifted right one bit? That depends. As an unsigned
number, right shift is just a divide-by-two operation, so the answer is
0x40000000, and that’s what you get with the >>> operator. The >>>
operator shifts in zeroes. On the other hand, if you think of this as a negative
number (since it has bit 31 set), then you might want the answer to stay
negative. This is what the >> operator does: it shifts in a 1 into the new bit
31, so negative numbers remain negative.

As ever, this can have odd consequences if the initial number is larger than
32 bits.

 var x=0x280000000;
 console.log(x);
 console.log(x>>1);
 console.log(x>>>1);

0x280000000 is a large positive number, but it’s greater than 32-bits long,
so is first truncated to 32-bits, and converted to a signed number.
0x280000000>>1 is thus not 0x140000000 as you might naively expect,
but -1073741824, since the high bits are dropped, giving 0x80000000,
which is a negative number, and >> preserves the sign bit, so we have
0xc0000000, which is -1073741824.

Using >>> just does the truncation, so it essentially treats the operand as
an unsigned 32-bit number. 0x280000000>>>1 is thus 0x40000000.

If right shifts are so odd, why not just use division?

Divide and conquer?
If you need to preserve all the bits, then you might think that doing a
division instead of a shift is the answer: after all, right shifting is simply
dividing by 2n. The problem here is that JavaScript doesn’t have integer
division. 3/2 is 1.5, not 1. You’re therefore looking at two floating-point

operations instead of one integer operation, as you have to discard the
fractional part either by removing the remainder beforehand, or by
truncating it afterwards.

var x=3;
console.log(x);
console.log(x/2);
console.log((x-(x%2))/2);
console.log(Math.floor(x/2));

Summary
For the most part, JavaScript numbers are double-precision floating point,
so need to be treated the same as you would floating point numbers in any
other language.

However, JavaScript also provides bitwise and shift operations, which first
convert the operands to 32-bit signed 2s-complement values. This can have
surprising consequences when either the input or result has a magnitude
of more than 231.

This strikes me as a really strange choice for the language designers to
make: doing bitwise operations on signed values is a really niche feature,
whereas many people will want to do bitwise operations on unsigned
values.

As browser JavaScript processors get faster, and with the rise of things like
Node.js for running JavaScript outside a browser, JavaScript is getting
used for far more than just simple web-page effects. If you’re planning on
using it for anything involving numerical work or bitwise operations, then
you need to be aware of this behaviour.
20 | Overload | August 2015

	Overload-128.pdf
	Semi-automatic Weapons
	Multi-threading at Business-logic Level is Considered Harmful
	Two Daemons
	Don’t Design for Performance Until It’s Too Late
	Template Programming Compile Time String Functions
	Numbers in Javascript

