


April 2016 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed 
as such. The use of such terms is not intended to support nor disparage any trade mark claim. 
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author. 
By submitting material to ACCU for publication, an author is, by default, assumed to have granted 
ACCU the right to publish and republish that material in any medium as they see fit. An author 
of an article or column (not a letter or a review of software or a book) may explicitly offer single 
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) 
members to copy source code for use on their own computers, no material can be copied from 
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of 
programmers who care about 
professionalism in programming. That is, 
we care about writing good code, and 
about writing it in a good way. We are 
dedicated to raising the standard of 
programming.

The articles in this magazine have all 
been written by ACCU members - by 
programmers, for programmers - and 
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 The Tao of Scratch
Patrick Martin walks us through Scratch to help young 
people learn to code.

8 Knowledge-Sharing Architects As An 
Alternative to Coding Architects
Sergey Ignatchenko asks if architects should write code.

11 QM Bites: Understand Windows OS 
Identification Preprocessor Macros
Matthew Wilson outlines the differences between user-
defined and predefined macros.

12 Why Collaboration is Key for QA Teams in an 
Agile World
Greg Law considers how QA departments need to 
change in an agile world.

13 How to Diffuse Your Way Out of a Paper Bag
Frances Buontempo diffuses her way out of a paper bag.

17 Stufftar
Ian Bruntlett shows us how he keeps files and folders in 
sync between various machines.

21 QM Bites: looping for-ever
Matthew Wilson advises on never-ending loops.

22 Using Enum Classes as Bitfields
Anthony Williams uses scoped enums as bitmasks.

24 9.7 Things Every Programmer Really, Really 
Should Know
Teedy Deigh introduces a 9.7 step plan for programmers.

OVERLOAD 132

April 2016

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.
uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in 
Overload 133 should be submitted by 
1st May 2016 and those for 
Overload 134 by 1st July 2016. 



EDITORIAL FRANCES BUONTEMPO
Where Does All The Time Go?
There’s never enough time. 
Frances Buontempo wonders 
what this really means.
Time has flown by and I still haven’t got around to
writing an editorial. Given that time passes at a rate of
1 Hertz, or one second per second, claiming that time
has flown faster than usual  as an excuse is
unconvincing. Can one second ever appear faster or
slower than usual? Can an effect be observed before

a cause? When I look back through text messages on my phone I often
see a response to a question before I asked it, since its clock slips, making
the timestamp on my message later than that of the reply. I can rearrange
the conversion in my head, so it’s not a problem. Does it matter when
things happened? Or in the case of an editorial, if it happens at all?

Time can be a real issue in distributed computing. The machines can
synchronise their clocks, so that at the same moment they each reset the
current time to a chosen time. How do you define a moment anyway? We
could become very philosophical very quickly but the requirement
‘Synchronise watches at 06:00 hours’ certainly begs a couple of
questions: how can I tell it is 06:00 and where, since local time-zones
vary? If you have managed to get all your machines to report the same
time at the same moment, using radio signals, or a Network Time
Protocol [NTP], being careful to avoid doing it too frequently thereby
adding network load, you cannot ensure each clock will continue ticking
at the same rate. Clocks are said to be ‘syntonised’ if they have the same
frequency, even if they aren’t running at 1 Hertz. Often crystals that
vibrate at a known frequency are used for time keeping in a computer,
however they are affected by various fluctuations in the environment,
such as heat, and they age. You can buy a high quality more stable crystal
on a PCI but that costs. The IEEE 1588 defines a precision time protocol
[PTP] for synchronising multiple clocks over a network. While a group
of people stood beside each other could get their watches to display 06:00
simultaneously if they turned up on time at the same place to synchronise
their watches, the further the message about the current time has to travel
the more significant the time taken for the message to arrive becomes.
The PTP uses a ‘sync’ and ‘follow-up’ message to overcome this. This
still does not deal with frequencies differing between machines, so will
have to happen periodically. As noted, more expensive crystal oscillators
are less prone to environmental changes, however the topology of a
network of machines will still affect time signals. Jitter, or variation in
latency, increases with more devices. Network traffic fluctuates. Using
software, even following a well-defined protocol can make jitter worse.
IEEE 1588 also can be used for hardware time stamping. Rather than
stray well beyond my knowledge I will leave an interested reader to, well,

read. See [Dopplinger and Innes] for example.

If we don’t need sub-millisecond accuracy
we do have one osci l lator  we can
currently rely on. The earth rotates at a

rate of one revolution per day. How much can you achieve in a day? If I
have a day off I tend to make a to-do list, motivated by all the things I feel
I need to do. I frequently fail to get more than half way through this. For
a while I have started with ‘Item 1. Make a to-do list’. This ensures I at
least complete one task. I need to learn to be more realistic in my
expectations. I am gradually learning to say “No” or at least “Not yet”. It
is ok to have a backlog and just concentrate on one thing at a time. I am
noticing how easily distracted I become by emails or following the
references in articles and academic papers I read as I try to find out about
something. Minimising my web-browser, closing my email client and
putting my phone on silent help me to concentrate. Going for a long walk
armed only with pen and a notepad, and my door keys, can also help.
Once I am ‘in the zone’ I find it easier to be more brutal with potential
distractions and time wasting temptations. If a book is only vaguely
relevant I can put it aside. The same might happen as I code. If I am
concentrating, I can see I’ve gone off in a terrible direction and delete
everything and start again much more readily than if it only has part of
my attention. Then I am much more likely to slap in a few Boolean flags
and experiment until it appears to work. I also tend to under-estimate how
long something will take me. If I have a free hour this evening, I tend to
think, “I have an ACCU conference talk to write. I have an hour.
Therefore I will write a conference talk in an hour.” This is clearly
ridiculous. Based on previous experience, I will spend about 50 hours in
total, coding up something I’ve never done before and doing a lot of
background reading. Sometimes our estimates at work are formed, or
even forced upon us, by sales people who have promised a client
something will be ready next month, therefore we must ensure it is ready.
This combination of backwards thinking and lack of experience
inevitably leads to broken promises. The work we are asked to do is often
something we have never done before and requires background reading.
The sales people have often never written an application before. If they
have and claim they could do it themselves in a week, it’s good to avoid
the temptation to tell them to get on with it themselves. In one of my first
programming jobs, I saw this happen frequently. After many demands to
work over the weekend I asked to go with the salesman and be involved
in the up-front promise. We made a couple of moves towards a more
iterative approach, delivering one small functional requirement that
could form a basis of discussion about future work, rather than promising
an entire system in three months and failing to get any one part of it
working properly. For a small business this means the potential for more
regular cash flows, which is a good thing. Again, though, I am straying
from my main point.

Is time always important? Why does it always seem to slip by quicker
when you need it the most? Does it matter what order things happen in?
Lessons from relativity will tell us that the order in which things appear

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in 
Chemical Engineering, but mainly programming and learning about AI and data mining. She works at 
Bloomberg, has been a programmer since the 90s, and learnt to program by reading the manual for her 
Dad's BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | April 2016



EDITORIALFRANCES BUONTEMPO
to happen will depend on your standpoint. Sometimes a strictly linear
order of events is not required. With my text messages, even without a
sequence number, I can reassemble the conversation. With some
messaging protocols a sequence number is provided so communications
can be reassembled in order if required. This also draws attention to
missing packets of data. We can launch things asynchronously and
respond when they are done. This can speed things up – true multitasking,
rather than constant context switching, is a beautiful thing. It can seem
unnatural if you are used to thinking things through in a step-by-step
known order. Messages can be time-stamped, though as discussed this
will cause confusion if local machines each have their own idea of ‘now’.
Things get worse if they don’t all use universal time coordinates, UTC, or
GMT if you will. Imagine a log-file, with local-time timestamps and day-
light saving kicking in midway through. All your log-files use UTC,
right? When your customer says this happen at 6 a.m., do check where
they were at the time, as well as what they were doing. One person’s
6 a.m. is another’s lunch-break. If you just have one application you
probably just have one log file to search through on one machine. A
multithreaded application should obviously have the manners to log the
thread id as well as the time stamp. If you have a larger distributed system,
with many moving parts including services, middleware, engines,
databases and who knows what else, you may have many log files to look
through if you want to find out what just happened and why. Chris
Oldwood has rant^H^H^H^H written extensively on sensible logging.
Through limiting my RIPs (reads in progress) I rediscovered his Overload
article on distributed ‘diagnostic contexts’ [Causality] and forced myself
to avoid re-reading all his blogs and articles. Without going into too many
details, just thinking about what you need to see in a log file is important.
Next time I write a new program I am tempted to start with the logging,
and avoid a big mess that screams “ERROR” at me every few lines, only
to be told, “Those errors are normal.” In an ideal world, I would be able
to hunt for a specific pattern and unique number in a log file, with a script,
and extract the details I need to re-run the scenario to troubleshoot. Be
nice to yourself and write better logging.

I am on the verge of running out of space, and time. Log files can leave a
trace of what happened when, and are therefore akin to diary keeping.
How many of us keep a diary? One of the reasons I am over-optimistic
about how much I can achieve is because I do not have an accurate record
of how long things usually take me. I have decided to start tracking my
time spent on my to-do lists so I can come out with more sensible
estimates next time. I might timetable slots for certain things – like
reading emails – and only do this in batches to avoid interruptions. I know
I waste ages reading things that turn out to be no help, arguing with people
about things that don’t really matter, debugging the wrong bits of code
because log files lead me astray. Time is precious and easily wasted.
Perhaps you can try turning down meeting invites for a month and see if
you manage to be more productive. If you track how you spend a day, you
might be surprised by the amount of time you spend doing admin tasks.

Measuring what’s actually going on often leads to surprising results. In
order to learn new things, or tackle ‘chewy’ problems, you need long
unbroken periods of concentration. We all recognise the clarity that comes
with several hours of focus on one thing. Focus is not an ‘F’ word! If, like
me, you feel time slipping away from you, take a leaf out of Richard
Feynman’s book, or rather lecture [Feynman]:

To do real good physics work, you do need absolute solid lengths
of time … it needs a lot of concentration … if you have a job
administrating anything, you don’t have the time. So I have invented
another myth for myself: that I’m irresponsible. I’m actively
irresponsible. I tell everyone I don’t anything. If anyone asks me to
be on a committee for admissions, ‘no’, I tell them: I’m irresponsible.

We can choose how we spend our time. It’s ok, and in fact, important to
spend time relaxing and having fun. You need to spend time with your
family and friends. If you want to achieve great things, or even one
specific thing, like writing an email or fixing a bug, you need to make
space and time for it. Timetable in a weekend off, or a holiday and
timetable in some space to keep learning and achieving great things.
Being busy isn’t the same as being productive.

It always takes longer than you expect,
even when you take into account

Hofstadter’s Law.
~ Douglas Hofstadter, Gödel, Escher, Bach:

An Eternal Golden Braid

References
[Causality] ‘Causality – Relating Distributed Diagnostic Contexts’ Chris 

Oldwood, Overload 114, April 2013 http://accu.org/index.php/
journals/1870

[Dopplinger and Innes] ‘Using IEEE 1588 for synchronisation of network 
connected devices’ 2007 http://www.embedded.com/design/
connectivity/4007059/Using-IEEE-1588-for-synchronization-of-
network-connected-devices

[Feynman] in various places, including in Study Hacks Blog: ‘Feynman 
didn’t win a Nobel by promptly responding to email’ 
http://calnewport.com/blog/2014/04/20/richard-feynman-didnt-win-
a-nobel-by-responding-promptly-to-e-mails/

[NTP] http://www.ntp.org/

[Neville-Neil] ‘Time is an Illusion Lunchtime Doubly So’ George V. 
Neville-Neil Communications of the ACM, Vol. 59 No. 1, 
pages 50–55 http://cacm.acm.org/magazines/2016/1/195723-time-
is-an-illusion-lunchtime-doubly-so/fulltext

[PTP] ‘Introduction to Distributed Clock Synchronization and the IEEE 
1588 Precision Time Protocol’ http://www.ni.com/tutorial/2822/en/
April 2016 | Overload | 3

https://accu.org/index.php/journals/1870
https://accu.org/index.php/journals/1870
http://www.embedded.com/design/connectivity/4007059/Using-IEEE-1588-for-synchronization-of-network-connected-devices
http://www.embedded.com/design/connectivity/4007059/Using-IEEE-1588-for-synchronization-of-network-connected-devices
http://calnewport.com/blog/2014/04/20/richard-feynman-didnt-win-a-nobel-by-responding-promptly-to-e-mails/
http://www.ntp.org/
http://cacm.acm.org/magazines/2016/1/195723-time-is-an-illusion-lunchtime-doubly-so/fulltext
http://cacm.acm.org/magazines/2016/1/195723-time-is-an-illusion-lunchtime-doubly-so/fulltext
http://www.ni.com/tutorial/2822/en/


FEATURE PATRICK MARTIN
The Tao of Scratch
Scratch is an environment designed to help 
young people learn to code. Patrick Martin 
walks us through it.
hen I look at Scratch, I see something ‘different’.

I’d like persuade you to my viewpoint by going through what I
see are the Good Points.

I’ll be up-front here and state my target audience is the ‘noble corporate
toiler’. It has hopefully been a while since you were introduced / subjected
to a computer based teaching tool. Scratch is a tool for implementing
computing projects based upon many years of thought, and it is well worth
taking a look.

Just what is Scratch?
The best place to start is the Scratch web site, where there is a description
of the project [Scratch-1] and the main portal [Scratch-2]. The Wikipedia
page is also good [Wikipedia-1].

It’s a visual programming language, consisting of composable code
blocks that form the elements of a program. It is available as a web
application online, and implements a visual stage as the program output.

There is also an offline version now, which largely matches the basic
capabilities of the web version, omitting online-only features.

A whistle stop tour
Scratch operates on a visual stage of 480 x 360 virtual pixels, and can be
viewed at varying dpi – Good Point 1: fixed stage extent. The stage is a
sprite [Wikipedia-2] and can be given script code, and any number of
sprites can be placed on the stage to compose a visual scene. The sprites
have a scripts container, which owns aggregations of code blocks that can
interact with stage changes, key and mouse events and manipulate the
sprites’ properties. The sprites have a concept of their direction and can
be made to orient in any direction, move and ‘bounce’ within the stage
area automatically. Finally, the large array of primitive code blocks
available for the scripts can react to events and messages and with the
sprites, and allow the programmer to construct a range of different
behaviours and visual experiences.

Figure 1 is a grab of a minimal project put together from an empty project
and the built in resources.

Visualisation
The entire (basic) environment is visual, with editors for all aspects of the
sprites and code blocks. The stage is manipulated at both ‘run time’ and
‘design time’ in the same way, which is Good Point 2: persistence of
stage state. This allows fine positioning by eye, avoiding too many
demands on mental arithmetic for the initial learning stages.

Resources
Image and audio resources are embedded into to the project and are
available in a standard library – Good Point 3: built in resources – which
can be expanded by assets uploaded to the project. All of these can be
copied, and modified once embedded.

Running the project
There is a Green button to start running, and a Red button to stop running.
What running means can be deceptively simple – the simplest event is
‘when flag clicked’, which can have some code blocks attached
underneath – this could perform initialisation or start a processing loop of
some kind. You can have as many as you like.

Debugging
Debugging is an interesting proposition for the target audience.

 Adults (example) @garybernhardt: “I’m in a super good mood.
Everything is still broken, but now it’s funny instead of making me
mad.”

 Years 3–8: Now, I’ve seen their projects, and for some let me assure
you: ‘Everything is broken’, but they’re not fazed.

There is a learning curve on the road to learning to debug your project, and
there are some useful built-ins, like message and comment notes. The
coolest of which, though, is: Good Point 4: code blocks can be modified
at runtime in the designer. All versions allow blocks to be dragged in, then
dragged out while the project is running.

Can your tool do that?

Figure 2 is a grab of the code blocks being inspected while the code is
running and Figure 3 is a grab of a chunk of code blocks after being pulled
out of their container block while the code is running.

Did I mention you can do this while the code is running?

You can do this while just using the mouse – the selection extends
naturally from your selected block to the end of the enclosing container
block – making Good Point 5: selection of blocks has some subtle but
powerful affordances. Making use of Good Point 6: the positioning of
code blocks in the scripts area can be arbitrary, you can park a small
chunk of logic within the visual context of where it was running to reduce
the cognitive load.

This works particularly well on an interactive whiteboard to show the
effect of a chunk of code blocks.

Even more impressively: the Old Scratch 1.x desktop version, has a
similar single step, which illuminates the currently running block! Clearly
this was too mind-blowing and is no longer available in the current
version.

Why should I be interested in Scratch?
A good question. Here are some topics to persuade you.

W

Patrick Martin Patrick’s github repo was classified using a 
machine learning gadget as belonging to a ‘noble corporate toiler’. 
He can’t top that. Patrick can be contacted at 
patrickmmartin@gmail.com.
4 | Overload | April 2016



FEATUREPATRICK MARTIN

There is a learning curve on the road to learning to 
debug your project, and there are some useful built-ins, 
like message and comment notes 

Figure 1
It’s coming to a ‘classroom near you’
Good Point 7: ‘This Thing is Happening’ Note also that Scratch at this
moment is on the way to being taught in the UK in primary and secondary
schools – that’s years 3–8! (around 7 to 12 years old). [gov.uk]

The Scratch heritage
The Scratch environment is inspired by the work of Seymour Papert
[Papert], epitomised in the book Mindstorms [Papert93]. Listing the
whole corpus of the back story is out of scope, so this is going to be left
for the interested reader.

Some examples
You can explore for yourself by visiting the website [Scratch-2], making
use of Good Point 8: it has a single entry search box. Having found a
project of interest, you can dive straight in and take a look using Good
Point 9: Scratch has a ‘See Inside’ button. If you like what you find you
can then simply fork it using Good Point 10: Scratch has a ‘Remix’ button
That new project is now available for you to modify, debug and run in any
way you see fit.

Now, although it ruins the nice 3-part list rhetorical flourish, let me just
mention here Good Point 11: Scratch lets you edit before login and then
allows you to login and save if you wish.

Question: how many paid for services that we use for generating wealth
can say the same? For the classroom environment, when dealing with the
early years where it is a stretch to require detailed forward planning, this
is a Good Thing.

What can be done in Scratch?
I won’t promote individual projects, and further I will assert that I don’t
need to. Instead let’s rely upon Good Point 8: it has a single entry search
box and I can list some jump off points:

 Yorkshire to English dictionary [Scratch-Dictionary]

 Innumerable RPG type things about cat clans [Scratch-Cats]

no, me neither

 Space Invaders [Scratch-Invaders]

aww, yeah...

 Pacman [Scratch-Pacman]
April 2016 | Overload | 5



FEATURE PATRICK MARTIN
Who are the users?
Although it seems to be primarily educationalists
and UK scholastic years 3–8 (at least), there are
10s of millions of projects and millions of users,
leading to Good Point 12: a cast of thousands.
[Scratch-Stats1] [Scratch-Stats2]

A list of additional Good Points
There’s a raft of features: Good Points 13–21:

Logo-like Sprite Primitives*, Code Blocks*,
Messa ge  Pas s ing ,  Composab l e
Mathematical Operations*, Sprite
C lon ing ,  En t ry  P rom pt s ,  Tex t
Messages, Pen operations and Sound.
The annotated items (*) are all shown
illustrated in Figure 2 in one way. The
items listed are in my personal order of
a p p re c i a t i o n .  A  f ea tu re  w o r th
mentioning is Message Passing, which
allows broadcasts of user defined
messages to all items on a stage.

Supported development styles
So, the possibilities are limitless, but there is a definite set of approaches
that practitioners will work through.

 Basic: sprites, backdrops, costumes

Coupled with setting some properties, the bounce/direction/
touching colour capabilities allow treating the visual stage as a mini
engine with some rudimentary support for using the stage as a
dressed ‘set’.

 Advanced: explicit positioning/drawing

To move onto to more dynamic generation of content, it is possible
to use explicit positioning, and the use of pens to craft arbitrary
shapes.

Immediacy
This is the type of benefit mentioned in the kind of thing Brett Victor has
talked about [Victor] – the good stuff, in my opinion, started around
10:00. A brief summary is that he demonstrates a ‘Braid’-like game
[Braid] in a live editor, which has the ability to adjust variables using
sliders at run time and to record and overlay timelines of the program
state. The gist of the open question raised was “What could you do , if you
could only visualise the outcomes?”

I still think about the impression that talk had on me. It’s not quite possible
to reproduce that talk right now in Scratch, but the immediacy of the run–
change–run loop is still very forceful.

Accessibility
Why haven’t I mentioned entirely free to use yet? If you care about
diversity and granting access to self-improvement to all then this is huge.

Sharing
From Good Point 10: Scratch has a ‘Remix’ button

 It exists and works – if you like something and want to have a try at
improving it, you just press the button

 Is this due to Good Point 22: Scratch has No Merge Action (for you
corporate warriors)?

This point maybe bears some examination – there are no libraries in
basic Scratch and no code sharing. In order to add some code
inspired by code from elsewhere, one has to understand what to
splice in to a project, and actually do it. Because there are two ways
to generate Scratch projects – remix and create new – there is at least
some pseudo Darwininan process that improves the fitness of
remixes, while the ‘gene pool’ gets a steady stream of new projects.

Deployment
From Good Point 23: Scratch has a ‘public’ checkbox, almost nothing
could be simpler – you just click the ‘public’ checkbox.

Politeness
From Good Point 24: Scratch seems to be incredibly good natured, is it
because they’re all under 12? (or over 30?) Well, there are The Rules
[Scratch-3] and there are the banned topics [Scratch-4]. There even seems
to be a Scratch version of Herobrine [Scratch-Herobrine].

Don’t worry: it’s not like ‘coding’
It is important to point out that ‘just coding’ is not the point – it’s
engagement with the environment, using creative approaches and
problem solving that are the real end games here. [code.org]

Suitability for classroom and distributed teaching
Good Point 25: Scratch supports multiple sessions on the same account
and concurrent work on different projects This is one setup I can
advocate: given each project has a thumbnail in the account’s list of
projects: Good Point 26: all projects have a thumbnail makes it very easy
for a supervisor to see what individuals are up to. This also allows the
supervisor to investigate and debug a project remotely if needs be.

Teachable moments 1: big chunks of blocks  vs message passing
When did you, dear reader, love to learn message passing as a style? In
the Scratch environment, it seems to be a few months from a standing
start. Very quickly, the users seem to grasp that giant chunks of nested
blocks and variables can be replaced by sending the appropriate message
to be handled by a smaller chunk of code blocks.

Teachable moments 2: Space Invaders vs Pacman
This seems to be one of challenges that sorts the population. Caveat: this
is from my purely personal sampling. I have found the Space Invaders
clones tend to be very high quality, whereas for the ‘deceptively simple’
Pacman there tends to be a raft of issues that challenge the users Good
Point 27: some tasks lend themselves to ‘teachable moments’. My
suspicion is that there are a couple of required complex concepts in a maze
game that Scratch neither delivers in its default toolbox, nor allows to be
easily synthesised. This might be a fruitful area to extend the sprite’s
capabilities.

Confession time: for the second time (approx 30+ years after the first
attempt) I am re-implementing Pacman and I’m finding that talking about
the incomplete (broken?) versions I created on the way can be used for
some ‘teachable moments’, for example:

Figure 2

Figure 3
6 | Overload | April 2016



FEATUREPATRICK MARTIN
 various ‘baby step’ projects that show the small adjustments to the
code blocks that will implement the stages of a ghost

 moving smoothly between points on a grid

 choosing between N, E, W, S to head towards Pacman/some other
target

 turning left instead of reversing direction on the next choice (which
delivers the distinctive Pacman ‘ghost patrolling in circles’
behaviour for free)

User straw poll
It hit me that I should get an assessment from the horse’s mouth, as it
were. I therefore ran a very unscientific poll of a miniscule sample set of
users, and asked them one question.

The results for answers to “What’s the best thing about Scratch?” are:

So, making games wins it, but the ability to express yourself is clearly
highly valued. It’s very encouraging that user agency afforded by working
in Scratch is prized over passive consumption.

Can it really all be Lovely In The Garden?
Sounds too good to be true, right?

 Well, it is a social environment with quite young users interacting
over the internet running arbitrary code. Security concerns will
always be with us, but there as mentioned are rules and admins
which (touch wood) seem to work.

 Is it so addictive as to prevent people progressing to (say) HTML
and python? This is a concern I have heard expressed: Scratch can
seem to easily become the tool of choice to prototype an idea, which
is dual edged: it’s a good thing to get an idea captured quickly, but
conversely it would be good to stretch oneself and branch out.

 There is a very serious number of games, some of which are quite
impressive and diverting...

Conclusion and lessons for ‘grown ups’
So here we come to the punchline: I have joked that some companies
could figure out how to write and deploy their business apps using
Scratch. That’s not in fact a serious proposition, but I suggest we can see
that the secret of the success is all the Good Things, working to make the
environment as expressive as possible.

Many operations take one step
A case in point is the debugging example already demonstrated; in fact the
users slip naturally into re-initialising or exploring different initial
conditions for the stage in a rough manner by dragging the sprites back
into position while the project is running. It’s only upon writing the
sentence that it has struck me how extraordinary that is. There is an
analogue with, for example, the mavens of languages supporting a

command line REPL for ‘real work’, and also raw web development. Yet
for many commercial systems, many steps exist between us and the prize.

Most things are quick
This multiplies the time savings with the prior point, but more importantly
is key to a learning environment that encourages and rewards exploration.
This is why coding club ‘classes’ should ideally not need a squad of
instructors to oversee and guide work as the users can very well formulate
hypotheses and test them themselves in short order.

The ‘Ah, of course’ moments
Hopefully I have shied away from employing too much hyperbole (!) in
going over Scratch, and have instead relied upon the Good Points to make
my case. In re-reading I see a pattern emerging of key concepts that have
been selected and made available in a frictionless manner. This is part of
the power of the Scratch approach, as the cognitive load is minimized,
driving out distractions from the flow of working with the concepts of the
project. For me this is the key takeaway: a real commitment to reducing
the superfluous complexity of our tool sets leads to better outcomes. 

Acknowledgments
Bloomberg LP (http://www.bloomberg.net) very generously supports my
volunteering of time to mentor at an after school club, under the auspices
of Code Club [CodeClub].

References
[Braid] https://en.wikipedia.org/wiki/Braid_(video_game)

[CodeClub] http://codeclub.org.uk

[code.org] http://worrydream.com/MeanwhileAtCodeOrg/

[gov.uk]  https://www.gov.uk/government/news/harmful-ict-curriculum-
set-to-be-dropped-to-make-way-for-rigorous-computer-science

[Papert] http://www.papert.org/

[Papert93] Papert, Seymour (1993) Mindstorms 
http://www.goodreads.com/book/show/703532.Mindstorms

[Scratch-1] https://llk.media.mit.edu/projects/783/

[Scratch-2] http://scatch.mit.edu

[Scratch-3] http://wiki.scratch.mit.edu/wiki/Scratch_Rules

[Scratch-4] http://wiki.scratch.mit.edu/wiki/
List_of_Controversial_Topics_on_Scratch

[Scratch-Cats] https://scratch.mit.edu/search/google_results/
?q=cat+clans

[Scratch-Dictionary] https://scratch.mit.edu/search/google_results/
?q=Yorkshire+Dictionary

[Scratch-Herobrine] http://minecraft.gamepedia.com/Herobrine

[Scratch-Invaders] https://scratch.mit.edu/search/google_results/
?q=space+invaders

[Scratch-Pacman] https://scratch.mit.edu/search/google_results/
?q=pacman

[Scratch-Stats1] http://wiki.scratch.mit.edu/wiki/Scratch_Statistics

[Scratch-Stats2] https://scratch.mit.edu/statistics

[Victor] http://worrydream.com/#!/InventingOnPrinciple

[Wikipedia-1] https://en.wikipedia.org/wiki/
Scratch_(programming_language)

[Wikipedia-2] https://en.wikipedia.org/wiki/Sprite_(computer_graphics)

Thing Votes

You can draw costumes 1

You can use your imagination 2

You can make games 4

It’s simple 1

It’s easy to share 1

It’s satisfying to finish things 1
April 2016 | Overload | 7

https://en.wikipedia.org/wiki/Braid_(video_game)
http://codeclub.org.uk
http://worrydream.com/MeanwhileAtCodeOrg/
https://www.gov.uk/government/news/harmful-ict-curriculum-set-to-be-dropped-to-make-way-for-rigorous-computer-science
https://www.gov.uk/government/news/harmful-ict-curriculum-set-to-be-dropped-to-make-way-for-rigorous-computer-science
http://www.papert.org/
http://www.goodreads.com/book/show/703532.Mindstorms
https://llk.media.mit.edu/projects/783/
http://scatch.mit.edu
http://wiki.scratch.mit.edu/wiki/Scratch_Rules
http://wiki.scratch.mit.edu/wiki/List_of_Controversial_Topics_on_Scratch
http://wiki.scratch.mit.edu/wiki/List_of_Controversial_Topics_on_Scratch
https://scratch.mit.edu/search/google_results/?q=cat+clans
https://scratch.mit.edu/search/google_results/?q=cat+clans
https://scratch.mit.edu/search/google_results/?q=Yorkshire+Dictionary
https://scratch.mit.edu/search/google_results/?q=Yorkshire+Dictionary
http://minecraft.gamepedia.com/Herobrine
https://scratch.mit.edu/search/google_results/?q=space+invaders
https://scratch.mit.edu/search/google_results/?q=space+invaders
https://scratch.mit.edu/search/google_results/?q=pacman
https://scratch.mit.edu/search/google_results/?q=pacman
http://wiki.scratch.mit.edu/wiki/Scratch_Statistics
https://scratch.mit.edu/statistics
http://worrydream.com/#!/InventingOnPrinciple
https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Sprite_(computer_graphics)
[Code Club]
http://www.bloomberg.net


FEATURE SERGEY IGNATCHENKO
Knowledge-Sharing Architects As 
An Alternative to Coding Architects
Should architects write code? Sergy Ignatchenko 
explores this controversial subject.
n recent years, quite a few articles have appeared with pro and contra
arguments (mostly pro ones) on the question of whether software
architects should code. Just to give a few examples, [Bryson15],

[ArchitectsDontCode], and [Mirakhorli16] all argue for architects coding.
There are a few articles out there such as [Langsworth12] which are trying
to discuss both sides of this choice, but they seem to be overwhelmed by
what was probably started by [Coplien05] and is rapidly becoming a
‘common wisdom’ of ‘Architects Should Code’. Moreover, the
‘Architects Should Code’ point of view is supported by lots of developers
out there, often by those who suffered from the hands of idiotic architects
(who are unfortunately as abundant as not-so-good developers).

We will take a closer look at the arguments presented, double-check them
against anecdotal evidence available (a.k.a. what I’ve seen and heard
myself), and see where such analysis leads us. Let’s start with considering
the arguments which are commonly presented in this debate.

Pro architect-coding arguments
Avoiding being ignorant of implementation details. In particular,
[Coplien05] has said that:

...many software architects limit their thinking and direction to
abstractions, and abstraction is a disciplined form of ignorance. Too
many projects fail on ‘details’ of performance, subtleties of APIs, and
interworking of components – or, at best, they discover such
problems late.

I agree that this is a valid point. However, I don’t agree that it can be only
avoided by the architect coding (ways to deal with it without specifically
coding will be discussed below).

Responsibility. The most common argument in favour of architects
coding is that architects should be responsible for the delivery of the
project. I am not arguing with the ‘should be responsible’ part, but I don’t
see that being responsible necessarily means coding. Yes, a good architect
must work closely with the delivery team [Bryson15]. No, working
closely with the delivery team doesn’t necessarily mean coding (which is
consistent with [Langsworth12]).

Feedback. The second common line of pro-architect-coding arguments is
that development is an inherently iterative process, so architecture should
evolve as the product is being developed. I am not arguing with this point
either, but I agree with [Langsworth12] that not writing code doesn’t
necessarily mean lack of feedback. 

Respect. For the project to be successful, the architect should be respected
by the team. Once again, there is no argument against this point.
Moreover, it does imply that architect should be able to write code. 

Observation 1: “Developers have more difficulty [than architects]
implementing architectural choices” [Mirakhorli16]. This observation is
interesting because it has a solid science behind it (there was a scientific
study, with statistical analysis etc.). And yes, my own experience does
support this observation. Once again, there is nothing to argue about here.

Observation 2: “Non-architecture savvy developers introduce more
defects into architecturally significant code snippets than architecture-
savvy developers” [Mirakhorli16]. This one is also supported by solid
science, and once again my own experience supports this observation as
such. And no, I still don’t see why it means that the architect should code.

As you see, I do not argue with any of the points commonly presented as
arguments for architects coding. On the other hand, I do not see why they
necessarily mean architects should be coding on a day-by-day basis. Of
course, I realize that ‘I don’t see why this or that point means coding’ is a
very weak argument – that is, until I can articulate a development model
which addresses all these issues without coding. Don’t worry – it will
follow below.

Contra architect-coding arguments
Now we should consider the other side of the story, and see why architects
coding might not be that good an idea. Note that we’re speaking about
those architects who do work closely with code, but do not code
themselves.

Not seeing the forest for the trees. A biggie. Working on one part of the
whole large project reduces opportunities to see the Big Picture. This is
especially risky if your project has the concept of ‘code ownership’, but
even without it, an architect too busy with debugging a piece of code is
less likely to ‘swap out’ of this task to see a substantial architectural
problem in the adjacent project. Been there, seen that (and was guilty of
it myself too).

Time is better spent on other parts of the same project. This one seems
to be strongly underestimated, but it is just a fact of life. There are only
24 hours in a day, and it is much more efficient for a good architect to
spend her time on the other code-related things, such as code reviews and
sharing knowledge about the architecture of this specific project (as well
as about programming practices in general) with team members. More on
this below.

Context switches are expensive (and no, I’m not speaking about threads).
By the very nature of the architect’s job, on the one hand he needs to be
‘readily available’ as soon as somebody needs architectural advice. The
usual pattern goes as follows: somebody wants to add a function (class,
whatever) to an infrastructure-level API, effectively exposing certain
previously hidden implementation details. At this point, it is the
architect’s job to say that it doesn’t belong here, and should be done on
top of existing API in such and such manner (which happens 80% of the
time), or to agree that such a function is indeed necessary (remaining
20%). This pattern happens all the time for all the teams around the world
(from a kernel team to a big government development, with everything
else in between). Even for a team of 5, this process leads to interruptions

I

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko using 
the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including 
architecture of a system which handles hundreds of millions of user 
transactions per day. He currently holds the position of Security 
Researcher and writes for a software blog (http://ithare.com). Sergey 
can be contacted at sergey@ignatchenko.com
8 | Overload | April 2016



FEATURESERGEY IGNATCHENKO
being quite frequent (and the larger the team, the more interruptions
experienced). On the other hand, being involved in a significant
development requires concentration for several days, and such
interruptions cause ‘context switches’ from coding to architecture advice.
These ‘context switches’ (just as for threads) tend to be extremely
annoying and lead to suboptimal decisions both for coding and for
architectural advice. 

While DIY is easier in the short run, it doesn’t scale, and knowledge-
sharing does scale in the long run. Another biggie. If the architect is a
hands-on one but she doesn’t code, then to fix some architecture-related
problem she’ll need to explain the problem (and how to solve it) to
somebody else. And as soon as you’re explaining something, it means that
the knowledge and, even more importantly, the ‘feeling’ about the
architecture of your specific project is spread among developers. This is
extremely beneficial in the long run (both according to Observation 2
above, and according to my own experience). Yes, for a good architect it
is much easier and faster to code it herself. But after doing it herself, very
little has changed in the minds of the other developers, so the next time
she will need to code it herself again; and again; and again. It means that
the development process doesn’t really scale well. On the other side, if she
spends more time now to explain things, the next time there will be more
understanding of this kind of task (in terms of Observation 2, there will be
more architecture-savvy developers in the long run), so more and more
tasks can be safely delegated (and will be done according to the proper
architecture for this project, too). I see this point as a Really Big Argument
for knowledge sharing practices.

Dependency on the Architect. As noted above, non-coding (but working
closely with code) architects are pretty much forced to share their
knowledge to have things running. As a nice side effect, the very same
knowledge sharing weakens a dependency on the architect (and reducing
any dependency on a specific person is a Universally Good Thing™).
While not-so-good architects might go nuts after realizing this point, good
ones don’t need to protect their jobs by being ‘the only
person who knows how to change this damn thing’.

Contra architect-coding non-arguments
There are also several non-arguments which are often pushed
to support non-coding architects.

Architecture should not be concerned
with implementation details. A Really
Bad non-argument. In my book, an
architect’s job is to deliver a solution,
plain and simple. Doing that means that the
architect needs to be sure that more-or-less
optimal implementations are possible for
all the components of the architecture;
moreover, the architect needs to suggest
these implementations if the need arises.

Architecture is written once, then the
architect can leave for another project.
Note that this one is very different from the
‘Time is better spent on other parts of the
same project’ point made above. Moving on
to a different project, at least until current
project enters the maintenance phase, is an
almost-sure recipe for disaster.

Architect is a high-level role, is all about business lunches with
customers, and developers even don’t know how to play golf. I don’t
even want to discuss this one. If you’re an architect and are thinking along
these lines – you’re horribly out of place.

Two things which work
Ok, we’ve stated all the arguments (and ignored non-arguments) from
both sides. Now we need to architect a system which provides a
reasonable balance of the answers.

Actually, there are at least two approaches which work. The first one is
very simple – an architect who’s coding (yes, current ‘common wisdom’).
It will work, at least as long as the architect is not too concerned about his
own part of code and is not interrupted too often. However, knowledge
sharing won’t happen, pretty strong dependency on the architect will still
exist (which is a good thing for the architect, but not necessarily for the
project), and lack of time for reviewing code may lead to code quality
taking a slippery road towards being unmanageable. All these issues are
admittedly non-fatal, but I know that we can do better than that.

The second approach is the one I am arguing for, and I prefer to name it
the ‘knowledge-sharing architect’.

Knowledge-sharing architect
Here we’ll be speaking about an architect who is one of the best coders
around, but is not normally coding herself. 

Note that for a knowledge-sharing architect, ‘not normally coding’ does
not mean ‘not involved with code’, but the exact opposite: ‘working with
as much code as possible’. Such ‘working with code’ can and generally
should involve most of the following: 

 code reviews (formal ones and informal ongoing ones too)

these often lead to showing ‘how to code it better’

 pair programming (which was in particular suggested by
[Coplien05], though I don’t think that it is the only thing which can
work in this regard)

 considering architecture-change (and often certain high-level API-
change) requests from the team

 these normally lead either to an explanation ‘how to do it’…

 …or to changes to APIs, code guidelines, etc.

 and discussions with team members on possible solution for arising
problems (which lead to guidelines updates etc.). 

Let’s see how such a knowledge-sharing architect will deal
with the pro and contra arguments listed above.

Both responsibility and feedback are right within the process,
and respect among coders is not too difficult to achieve (after
all, our architect is one of the best coders around). The impact

of Observation 1 is not too bad (as there is a constant
education, and enough time for code reviews). With

regards to Observation 2, the long-terms
effects of having a knowledge-sharing
architect are much better than with the
coding-architect approach due to, well,
knowledge sharing.

One additional argument in this regard is:
“how do knowledge-sharing architects

maintain that level of brilliance in coding once
they don’t code anymore?” The answer is
simple: as knowledge-sharing architects (as

described above) are working with more code rather
than with less code, this will help them to keep

their coding skills top-notch. In other words
(and for one specific example): knowledge-
sharing architects are giving up up-to-date

training in the skill of ‘how to find that off-by-one
error’ in exchange for the skill of understanding the code of the others
(and learning new tricks from them too). There is no magic here, and to
improve one skill, you need to give up another one, but I am arguing that
the skill of understanding what’s going on is more important for an
already good coder than day-to-day training in figuring out rather stupid
bugs (and 90% of all the bugs are outright stupid, so  dealing with them
doesn’t benefit coding skills much).

Now let’s consider the arguments listed in the contra section. With a
knowledge-sharing architect, ‘Not seeing the forest for the trees’ has
much less chance to occur, and there is more time for working with code
(so that much more code can be covered; this is also helped by not having
April 2016 | Overload | 9



FEATURE SERGEY IGNATCHENKO
those expensive context switches). Even more importantly, due to
knowledge sharing the development process becomes more scalable, and
dependency on the architect is reduced.

Side-by-side comparison
Let’s summarize the above findings in a table:

As you can easily see from the table above, I am a big fan of the
‘knowledge-sharing architect’ approach. And it has worked for me in
quite a few projects too. Yes, a coding architect might work (and is indeed
orders of magnitude better than an architect who has no clue about the
code), but a knowledge-sharing architect will
generally work better.

Exceptions
While the knowledge-sharing architect is not normally
coding, there are a few exceptions to this rule-of-thumb. 

The very beginning of the project
One Big Exception to the ‘architect not
coding’ rule-of-thumb usually occurs at the
very beginning of the project.

It is always a good idea for the architect to
establish a framework which will be used
for the project, and it is often a good idea
for the architect to write a big chunk of
su ch  a  f r amewo r k  ( a nd  th e  f i r s t
implementation over it) himself. 

At this point in the project, the team (at least
the part which can meaningfully participate
in development) is small, so knowledge-
sharing is not that big issue; and as the team
is small, lack of time is not a big issue
either. It means that at these early stages, the
advantages of the architect coding may easily outweigh
the knowledge-sharing aspect.

However, it is a Really Good Idea to prepare for moving to the
knowledge-sharing phase as soon as the framework that defines the
architecture is written, and not to be ‘the only person who knows about
this piece of code’ longer than is absolutely necessary.

Things which nobody else can do
The second exception occurs when (for the sake of your project, I really
hope these occur really rarely) it happens that the architect is the only

person who can implement a certain feature. (While in theory it shouldn’t
happen, in reality it does.) As we stated, the ideal architect should be one
of the best coders around, and the other good coders might not have
sufficient understanding of the Big Picture – or the time – to implement
this specific feature.

In such rare cases you simply won’t have an option other than for the
architect to code this feature herself, and it won’t be the end of the world.
Note, though, that this is different from the ‘architect coding only the
difficult stuff’ approach (which was criticized in [Bryson15], and I do
agree with that criticism): here we’re not speaking about cherry-picking
the difficult (and interesting) stuff, but rather about doing it when there are
simply no other options. 

Conclusion
I hope that I have managed to convince you that a knowledge-sharing
architect is better than a coding architect. The difference is subtle, but I’ve
seen teams with knowledge-sharing architects scale better, and deliver
higher quality code, than those teams with merely coding architects.
While YMMV, and batteries not included, there are good reasons for
these observations (which were outlined above).

However, there is one big practical problem with switching to the
‘knowledge-sharing architect’ development model. The problem is that
most good architects won’t be willing to give up coding (often ‘cherry-
picking’ the most interesting pieces, but that’s beyond the scope now), so
the question of how to convince them to start knowledge-sharing isn’t
likely to be trivial. 

On the other hand, as soon as it is understood that knowledge-sharing
architects are beneficial to the project as a whole, the architect naturally
faces a dilemma: either to continue to code (in the understanding that this
is not the best way to serve the project), or to start knowledge-sharing.
While certainly not an easy choice, this might lead to a switch for your
architect from coding to knowledge-sharing (and if it doesn’t, it is usually

better not to push them too hard, as a persistently unhappy
knowledge-sharing architect won’t be any better than a happy
coding one).

In any case, there is no argument that having an architect who
has no clue about the code and doesn’t bother himself with

‘implementation details’ is pretty much a guaranteed one-way
ticket to a nothing-good-comes-out-of-it land. 

Acknowledgement
Cartoons by Sergey Gordeev from
Gordeev Animation Graphics, Prague.

References
[Coplien05] https://sites.google.com/a/

gertrudandcope.com/info/
Publications/Patterns/
TopTenPatterns

[Bryson15] http://www.infoq.com/
articles/architects-should-code-
bryson

[Mirakhorli16] http://
blog.ieeesoftware.org/2016/02/why-
should-software-architects-
write.html

[ArchitectsDontCode] http://c2.com/cgi/
wiki?ArchitectsDontCode

[Langsworth12] http://randomactsofarchitecture.com/2012/11/20/
should-software-architects-write-code/

[NoBugs15] ‘No Bugs’ Hare, ‘Non-Superfluous People: Architects’. 
Overload #127.

Coding architect
Knowledge-

sharing architect

Ignorance about 
implementation details

No No

Responsibility Yes Yes

Feedback handling Time permitting Yes

Respect of team members Yes Yes

Observation 1: difficulty with 
implementing architectural 
choices

Better in the short run, 
but no knowledge 
sharing in the long run

Worse in the short 
run, but better in 
the long run

Observation 2: more defects 
from non-architecture-savvy 
developers

Better in the short run, 
but no knowledge 
sharing in the long run

Worse in the short 
run, but better in 
the long run

Not seeing the forest for the 
trees

Medium risk Low risk

Time available to spend on 
architectural issues

Less time More time

Expensive ‘context switches’ More Less

Knowledge sharing Worse Better

Dependency on the architect Stronger Weaker
10 | Overload | April 2016

https://sites.google.com/a/gertrudandcope.com/info/Publications/Patterns/TopTenPatterns
https://sites.google.com/a/gertrudandcope.com/info/Publications/Patterns/TopTenPatterns
http://www.infoq.com/articles/architects-should-code-bryson
http://www.infoq.com/articles/architects-should-code-bryson
http://blog.ieeesoftware.org/2016/02/why-should-software-architects-write.html
http://blog.ieeesoftware.org/2016/02/why-should-software-architects-write.html
http://c2.com/cgi/wiki?ArchitectsDontCode
http://c2.com/cgi/wiki?ArchitectsDontCode
http://randomactsofarchitecture.com/2012/11/20/should-software-architects-write-code/
http://randomactsofarchitecture.com/2012/11/20/should-software-architects-write-code/


FEATUREMATTHEW WILSON
QM Bites: Understand Windows OS 
Identification Preprocessor Macros
There’s confusion between user-defined and predefined 
Windows 32/64-bit operating-system identification macros. 
Matthew Wilson shines light on the issue.
TL;DR:
Compiler defines _WIN32 and _WIN64. You define WIN32 or WIN64.
Carefully discriminate.

Bite:
When compiling for Windows 32 and 64-bit architectures, there are four
preprocessor object-like macro definitions for discriminating operating
system that one may encounter:

 _WIN32

 _WIN64

 WIN32

 WIN64

You must take care that you understand the origins and meanings of these.

_WIN32 and WIN64
The symbol _WIN32 is defined by the compiler to indicate that this is a
(32bit) Windows compilation. Unfortunately, for historical reasons, it is
also defined for 64-bit compilation.

The symbol _WIN64 is defined by the compiler to indicate that this is a
64-bit Windows compilation.

Thus:

To identify unambiguously whether the compilation is 64-bit Windows,
one tests only _WIN64 as in:

  #if defined(_WIN64)
  /* Is Windows 64-bit */
  #else
  /* Is not Windows 64-bit */
  #endif

To identify unambiguously whether the compilation is 32-bit Windows,
one tests both _WIN32 and _WIN64 as in:

  #if defined(_WIN32) && \
      !defined(_WIN64)
  /* Is Windows 32-bit */
  #else
  /* Is not Windows 32-bit */
  #endif

To identify unambiguously whether the compilation is a form of Windows
one tests both _WIN32 and _WIN64 as in:

  #if defined(_WIN64)
  /* Is Windows 64-bit */
  #elif defined(_WIN32)
  /* Is Windows 32-bit */
  #else
  /* Not Windows */
  #endif

WIN32 and WIN64
The symbol WIN32 is defined by the user to indicate whatever the user
chooses it to indicate. By convention, the definition of this symbol
indicates a 32-bit Windows compilation, and nothing else! Microsoft (and
other) tools generate projects with this symbol defined.

The symbol WIN64 is defined by the user to indicate whatever the user
chooses it to indicate. By convention, the definition of this symbol
indicates a 64-bit Windows compilation, and nothing else!

When properly defined, these symbols can be used to indicate
unambiguously the 32- and 64-bit Windows compilation contexts.

Caution with WIN32 / WIN64
Unfortunately, when duplicating a Win32 project to x64, the Microsoft
Visual Studio wizards do not translate WIN32 to WIN64. You must
remember to do this yourself, in order for the inferences given above to
hold. Do not add a separate WIN64 to the x64 configuration settings:
replace the existing WIN32 with WIN64.

Why bother with WIN32 / WIN64 
(and not simply rely on _WIN32 / _WIN64)?
There are doubtless many reasons. The reasons I adhere strictly to this are:

 it is a widely adopted and meaningful convention, so adheres to the
principle of least surprise [PoLS].

 it facilitates the ability to emulate (parts of) other operating systems
(e.g. UNIX [UNIXem]) while on Windows, which can be
tremendously helpful when porting code. 

References
[PoLS] The Art of UNIX Programming, Eric S. Raymond, 

AddisonWesley, 2003

[UNIXem] UNIXem is a simple, limited UNIXAPI emulation library for 
Windows. See http://synesis.com.au/software/unixem.html.

Matthew Wilson Matthew is a software development consultant 
and trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of articles 
and books that attempt to do the same. He can be contacted at 
matthew@synesis.com.au.
April 2016 | Overload | 11

http://synesis.com.au/software/unixem.html


FEATURE GREG LAW
Why Collaboration is Key for 
QA Teams in an Agile World
Agile processes can have an impact on QA 
departments. Greg Law considers how 
they can adapt to survive and even thrive.
he entire software industry is currently undergoing major, ongoing
change. The rise of agile development, test-driven development,
continuous integration and continuous deployment are all

transforming how software is created and provided to customers. At the
same time the spread of software into more and more of the devices
around us and the interconnectivity of those devices means that the sector
is growing in scale, complexity and importance.

These factors are having an enormous impact on testing and QA
departments. If more software is being produced and needs to be deployed
in shorter and shorter timeframes, traditional testing methodologies have
to change, hence the rise of automation in the testing process (and
corresponding worries among testers that their jobs will disappear).

Rather than fear change and automation, however, test departments need
to embrace it. With QA at the beginning of the automation process, it is
worth looking at the impact it has had on other industries. Automation
tends to affect the number of people employed in an industry – for
example, in 1900 41% of the US workforce was involved in agriculture,
and in 2000 it was 1.9%. Agriculture is now many times more productive
than it was when it relied on brawn, rather than brain. The same applies to
the disruption caused by robots to factory jobs in the 20th century. In both
cases, those who survived and thrived were the ones who embraced
automation.

So how do test teams adapt to the new DevOps world? In my experience
there are three areas to focus on.

Be part of the process
Agile is here to stay, and there is no point in denying that change is
happening. So test departments need to understand agile, and look at how
they can automate and work with developers to deliver the right services
to meet overall business needs. In this world testers have to be able to
become developers of a sort, scripting for automated test tools if they want
to remain relevant.

At the same time, test and QA teams need to retain their independence
from the development process, by challenging and testing development
assumptions. This is one of the key strengths of having a separate
function, and has to be preserved. Testers therefore need to work together
with developers, but keep a certain distance from them, and testers should
not be afraid to use their skills to ask potentially awkward questions.

Embrace new technology
Test automation brings a whole new set of opportunities and challenges.
As I mentioned testers will need to be able to script tests to run on these

tools, but more importantly they need to be able to understand, and
communicate, the results.

The combination of agile, test automation and potentially unlimited
compute resources via the cloud means more (and more detailed) tests are
being run, more frequently, on more complex software. A software
project of a given size can easily run two or three orders of magnitude
more tests every day than the equivalent project would have run ten years
ago. This means that there is a consequent growth in test failures, which
threatens to overwhelm QA teams. If many thousands of tests run every
hour, and 0.1% of them fail, triaging these failures can quickly become a
nightmare. (And a failure rate as low as 0.1% is rare; I have spoken to
companies where more than 10% of their overnight tests fail.)

Test teams therefore need to look at new technology that can help them
not just to automate their tests, but they also need technology that will
help them deal with the resulting failures. Tools such as Jenkins can help
with more basic fails, allowing QA teams to focus their efforts on more
complex or unpredictable issues. Software is becoming available to
support test teams with these tougher cases as well, and can add greatly to
productivity and speed.

Work more closely with developers
Software developers are QA’s customers, so it is imperative that test
teams provide a service that meets their needs. In pre-automated days, QA
knew that simply handing over a list of red/green pass/fails was never
going to help engineering find and fix the root cause of a problem. That’s
why they added verbose bug reports to give as much detail and context
about a problem as they could. Obviously, this approach doesn’t scale in
the automated test world, which leads back to the point that using tools
that can provide more details on what went wrong is highly valuable, even
if it is as basic as “this was the commit that caused the code to fail”. Talk
to developers in their own language and give information in a usable form
if you want to remain relevant and valued.

At the same time, testers need to be proactive and fight for their right to
exist. For example, if you wait to be asked to attend development
meetings there is a risk that the invitation will never arrive. So talk to
developers, get involved early and use your skills to provide a higher level
service that is valued by the whole company. If there are daily stand-up
meetings, make sure you attend those.

I’m currently seeing a big change when I talk to customers and prospects.
Three years ago I was speaking to development teams; now I’m
increasingly talking to smart QA departments who understand that they
need to be closer to developers, and want the tools to deliver this change.
Obviously, the bad news for testers is that automation is likely to reduce
their numbers, but arguably those that remain will move up the stack and
be seen as more strategic and important to the entire agile development
process. The choice may seem stark, but if they embrace change, test
departments can survive – and thrive – in an agile world. 

T

Greg Law Greg is the CEO and co-founder of Undo Software 
(http://undo-software.com). He is a coder at heart with over 15 
years experience in the software industry, but likes to bridge the 
gap between the business and software worlds. Greg has a PhD in 
Computer Science from City University, London, and can be 
contacted at contactus@undo-software.com.
12 | Overload | April 2016



FEATUREFRANCES BUONTEMPO
How to Diffuse Your Way 
Out of a Paper Bag
Diffusion models can be used in many areas. Frances 
Buontempo applies them to paper bag escapology.
any applications in variety of areas from finance to epidemiology
use Monte Carlo simulations of stochastic models, that is one using
random variables. This article will revise the basics of Monte Carlo

simulation and show how to simulate standard and geometric Brownian
motion, ending with jump diffusion. The aim will simply be to move
points out of a paper bag, since everyone should know how to program
their way out of a paper bag. The simplest case, standard Brownian
motion, simulates a cloud of particles spreading out, or diffusing, over
time. This will allow us to introduce a mathematical model to simulate in
code and form a basis for further simulations – geometric and jump
diffusion. Both of these will show how a stock price might move over
time. We will resort to cheating in order to make the price eventually end
higher than the top of the bag. The reader can then decide if we have
actually programmed our way out of a paper bag, or simply developed a
simulation which allows discovery of appropriate parameters to meet a
requirement. This, of course, is an essential use for much simulation
software and will thereby demonstrate the value of coding up models to
see what happens. The three diffusion models produce animations which
move over time, so a paper article cannot do full justice to these. The code
is available on github [github] for the reader to experiment with if desired.

Monte Carlo simulation
A Monte Carlo simulation allows one to answer, with varying degrees of
accuracy, numerical problems that cannot be solved directly. For
example, in order to find the area under a curve various approaches can be
used. If the curve has a known equation which is integrable, the definite
integral in the desired range can be calculated to give the area under part
of the curve, or the indefinite integral will give the area under the whole
curve. If the function describing the curve cannot be integrated, this
approach will not work. If the curve were a hand drawn squiggle, we
would not even have a function to attempt to integrate. In both cases,
various estimation schemes may be used. Consider the curve in Figure 1.
If a grid is superimposed, the area enclosed by the squiggle can be
estimated by counting how many unit squares contain some of the interior
of the curve. Finer grained grids will give more accurate estimates.
Alternatively, a Monte Carlo simulation can be used, illustrated by the
‘darts’ in the last containing rectangle. If we randomly throw some darts,
here 30, at the rectangle and find 10 are inside, we have 10/30 = 1/3 inside
the curve, so around 33% of the area of the rectangle approximates the
area inside the curve. Several such experiments will inevitably give
varying areas, which may then be averaged or used to give a lower and
upper bound as desired. The essence of any such simulation is the same;
run an experiment a few times, and either see what happens, or try to
answer a question. This introduction asked “What’s the area of a curve?”
Our subsequent simulations will discover if we can diffuse our way out of
a paper bag.

Brownian motion
There are various diffusion equations as indicated in the introduction.
Diffusion is a process whereby substances move, apparently randomly,

from places of higher concentration to those with lower concentration,
eventually reaching equilibrium. This can be at the molecular level, in
solids, liquids and gases, driven by pressure, temperature or electrical
energy. Further details are available in various resources, for example see
[Mostinsky]. For our simplest case, Brownian motion describes the
motion of particles bouncing around in a fluid – either a liquid or a gas.
Since we wish to model particles escaping from a paper bag, it is prudent
to use the gas model.

Brownian motion is a special case of a random walk. It is a Markov
process; that is, it has no memory. At any moment in time, the next
position depends on where it is now, not how it got there. Other types of
random walks are non-Markovian, for example taking their steps at
random times. Brownian motion has two further properties: it has a mean

M

Figure 1

Frances Buontempo has a BA in Maths + Philosophy, an MSc in 
Pure Maths and a PhD technically in Chemical Engineering, but 
mainly programming and learning about AI and data mining. She 
works at Bloomberg and learnt to program by reading the manual 
for her Dad's BBC model B machine. She can be contacted at 
frances.buontempo@gmail.com
April 2016 | Overload | 13



FEATURE FRANCES BUONTEMPO

since each direction is equally likely the 
particles are quite free to sneak back inside 
the bag, even if briefly
change of zero and its change has a variance equal to the time step. In fact,
the change, or step, is normally distributed. These properties make it a
Wiener Process [Hull]. To get an intuitive sense of this, consider a simple
random walk with a step size of one along a line, either going left or right.
After starting at an origin, 0, the first step will take a particle either left,
-1, or right, +1, with equal probability. So, for several experiments of one
step, we will have an average of 0 steps. For experiments of more steps,
we still get an average of zero, since the average of the total number of
steps, is the total of the average step. If we now consider the step sized
squared, we get 1. The distance squared will always be more than zero. In
fact, the average of the sum of squared steps will be the number of steps.
This gives us the variance property. The details can be found elsewhere,
but [Schmidt] gives a simple explanation. If we then allow the step size to
vary, in particular following a Gaussian distribution with mean 0 and
variance 1, we nearly have Brownian motion. If we do this for two
dimensions we are there. Consider a particular at some point (x, y). Given
a source of two independent Gaussian random variables, mean 0, variance
1 ,  ca l l e d  φ 1 ,φ 2  r e spec t i ve ly ,  t he  pa r t i c l e  w i l l  m ove  t o

. To implement this, we can make two independent
draws from one random number generator. We could let  to
simplify the equation. 

Given a point, or particle starting at (x, y) we can then update it easily
using a normal distribution in C++11 as seen in Listing 1. Details, such as
the constructor implementation should be obvious, and how you would
wish to report the current position is left to the reader. I used the Simple
and Fast Media Library [SFML] to demonstrate the Brownian motion.

If we initialise several particles in the centre of a ‘paper bag’, indicated by
three edges, and leave them to update according to this simple formula,
they gradually diffuse. The greater the time step the faster they move. The
next set of figures does indeed show a cloud of particles spreading out
from the centre. The more astute reader may have realised that since each
direction is equally likely the particles are quite free to sneak back inside

the bag, even if briefly. It is possible to add paper bag edge detection to
stop this happening, though this slows the dispersion down. The final
figure shows some particles stopped just above the bag, since the code
makes them stop when they have escaped from a paper bag.

Geometric Brownian motion
We have seen how simple the Brownian motion simulation was. Since
this allows particles to move freely in two dimensions, they will either go

x t1+ y t2+ 
dW dt=

Figure 2

class Particle {

public:
  Particle(double root_t,
          double x = 0,
          double y = 0,
          unsigned int seed = 1);
  void Update() {
    x += move_step();
    y += move_step();
  }

private:
  double root_t;
  double x;
  double y;
  std::mt19937 engine;
  std::normal_distribution<T> normal_dist;
  double move_step() {
    return root_t * normal_dist(engine);
  }

};

Listing 1
14 | Overload | April 2016



FEATUREFRANCES BUONTEMPO

Given an initial stock price, and a drift and
volatility parameter it is then easy to

generate a sequence of possible stock
prices after each time step
through the sides of the paper bag, or if constrained not to, eventually go
out of the top of the bag. If we now simulate a model of stock prices
tending to go up, this will get us out of the bag more quickly. In order to
do this we will use geometric Brownian motion. This is very similar to the
first model. The logarithm of our new quantity follows Brownian motion
but the process also has drift. In other words, taking the exponential of a
Brownian motion with drift gives us geometric Brownian motion. This
time, our quantity will be a fictitious stock price, S, giving us the
y-coordinate, and we can just use the time, t, instead of an x-coordinate.

dS = μSdt + σSdW

This stochastic differential equation can be discretised taking a previous
stock price S and the step to the next stock price as ΔS = S(μΔt + σΔW).
Adding this step to the previous price gives us the next price. We still have
the dW as before, but now we have a drift, μ, which is the rate of return on
our investment, and a scale parameter, σ, which is usually described as
volatility in a finance context. If this is zero, we have ‘turned off’ the
stochastic, or random, part of the model and just see a simulation of the
returns from a completely secure investment with a known return.
Different stochastic differential equations (SDEs) will have different
discretisation schemes, where we move from a stochastic differential
equation to the move in a discrete step. Another common SDE is St+dt =
St e

μdt+σdW(t).

Given an initial stock price, and a drift and volatility parameter it is then
easy to generate a sequence of possible stock prices after each time step,
dt. This is shown in Listing 2. If we treat the left most side of a paper bag,
again indicated by three lines – a left side, the bottom and a right side, we
can start the stock price somewhere above the bottom of the bag, which
would be a value of 0, and see what happens. Clearly, if the stock is

initially zero, each step ΔS will be zero since .
Any initial stock value greater than zero will do. Similarly, if we take the
left most side of the bag as time 0, and simulate the potential stock prices
over a couple of years, each result can be plotted with a line drawn
between each sample point. These then give scales for displaying the
results. Figure 3 shows what happens with 10 simulations, using time
steps of 0.1, with a drift of 0.5 and volatility of 0.2.

As expected the lines do resemble a stock price moving upwards over
time. Unfortunately many of the final prices fail to end out of the bag.
Some thought, or some time tweaking the parameters reveals that turning
off the volatility and ramping up the drift to over 50% (recall this is a
made up stock offering, sorry to disappoint!) will cause all of the
simulated paths to escape the paper bag. This is shown in Figure 4. Since
we have turned off the volatility, the stochastic variable will be zero, and
each path of stock prices is deterministic and therefore follows the same
path.

Jump diffusion
Resorting to turning off the volatility in the previous diffusion model is
disappointing. With a higher drift rate and smaller volatility it is possible
to end with most of the simulation paths escaping the paper bag. An
alternative is to introduce jumps into the simulation. A key point of the
Brownian motion models is their continuity. This is a precise
mathematical concept, but it is sufficient to say a line or path is continuous
if it can be drawn without taking your pen off the paper. A discontinuous
path will have a jump – a point where the path breaks and pick up
elsewhere. Jump diffusion can be used for a variety of application areas,
but was introduced by Merton for financial pricing [Merton] and is often
used in credit risk models. Without going into too many details, our initial
stock model only allows each stock price change to be relatively small. A
jump diffusion model will allow occasional large jumps, which might be
more realistic. If we cheat and force these jumps to be positive, we are

class PriceSimulation {
public:
  PriceSimulation(double price, double drift,
                  double vol, double dt, 
                  unsigned int seed);
  double update() {
    double stochastic = normal_dist(engine);
    double increment =
      drift * dt + vol * sqrt(dt) * stochastic;
    price += price * increment;
    return price;
  }

private:
  std::mt19937 engine;
  std::normal_distribution<> normal_dist;
  double price;
  double drift;
  double vol;
  double dt;
};

Listing 2

0 t  t+  0=

Figure 3
April 2016 | Overload | 15



FEATURE FRANCES BUONTEMPO
more likely to escape the paper bag. The obviously probability
distribution to use to simulate something happening occasionally is the
Poisson distribution. Calling this dN gives a stock price move in time dt
of ΔS = S(μΔt + σΔW + JΔN) where J is the jump size. When dN gives us
0, this collapses to our previous model. When it is non-zero we have
introduced a discontinuity. It is not immediately obvious whether it is ok
to use  the  same underlying generator  for  both dW and dN
[StackOverflow] however, for this simple demonstration it suffices.

This requires a relatively small change to our PriceSimulation class.
A new member variable is required :

  std::poisson_distribution<> poisson_dist;

This is initialised with the probability of jumping, which can be passed
through from the command line. The new update function is shown in
Listing 3.

Figure 5 shows one outcome of our new jump diffusion model with 10
paths, time step 0.1, drift 0.5, volatility 0.2 and a jump size of 1 with a
50% chance of jumping. This time the majority of the stock price paths
have managed to escape the paper bag. We could drop the drift and
increase the probability of jumping in order to ensure the majority of paths
escape. This indicates how useful coding up a model in order to
experiment with the parameters can be.

Conclusion
This article has given an overview Brownian motion, geometric Brownian
motion and jump diffusion. We have not considered how many
simulations would be required to give realistic models. The accuracy of
such a simulation improves with the square root of the number of runs, so
a vast number are often required. Other approaches can mitigate this, for
example antithetic variates can be used as a variance reduction technique
– if dW gives us stochastic variable w we form a second path at the same
time using -w. Another approach is the use of so-called ‘low discrepancy
numbers’ rather than pseudo-random numbers. Both methods are beyond
the scope of this short article. Further details can be found in the literature,
for example see [Jäckel].

This article aimed to show how useful Monte-Carlo simulations can be,
and gave a high level description of some diffusion models. The reader is
encouraged to try to program their own way out of a paper bag and is free
to use the github code, or snippets herein as a starting point. 

Acknowledgements
My heartfelt thanks to Cassio Neri for taking time to read through this
article and stop me from using an incorrect discretization for an SDE. I
hope this has made the article both easy to read, and equally importantly,
correct. 

References
[github] https://github.com/doctorlove/paperbag

[Hull] p265 John C. Hull Options, Futures and other Derivatives. 6th 
Edition

[Jäckel] 2002 Monte-Carlo methods in finance. Wiley.

[Merton] 1976, ‘Option pricing when underlying stock returns are 
discontinuous’. Journal of Financial Economics 3: 125-144 

[Mostinsky] ‘Diffusion’ http://www.thermopedia.com/content/695/

[Schmidt] http://www.mit.edu/~kardar/teaching/projects/
chemotaxis(AndreaSchmidt)/random.htm

[SFML] http://www.sfml-dev.org/

[StackOverflow] http://stackoverflow.com/questions/9870541/using-
one-random-engine-for-multi-distributions-in-c11

Figure 4

double PriceSimulation::update() {
  double stochastic = normal_dist(engine);
  double dn = poisson_dist(engine); 
  double increment  =
               drift * dt
               + vol * sqrt(dt) * stochastic
               + jump * dn;
  price += price * increment;
  return price;
}

Listing 3

Figure 5
16 | Overload | April 2016

https://github.com/doctorlove/paperbag
http://www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/random.htm
http://www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/random.htm
http://www.sfml-dev.org/
http://stackoverflow.com/questions/9870541/using-one-random-engine-for-multi-distributions-in-c11
http://stackoverflow.com/questions/9870541/using-one-random-engine-for-multi-distributions-in-c11


FEATUREIAN BRUNTLETT
Stufftar
How do you quickly transfer data from 
one machine to another? Ian Bruntlett 
shows us the bash script he uses.
A complex system that works is invariably found to have evolved
from a simple system that worked. A complex system designed from
scratch never works and cannot be patched up to make it work. You

have to start over, beginning with a working simple system.
~ John Gall

ome time ago Frances Buontempo was looking for articles for
Overload. I mentioned in an e-mail that I had a backup script called
stufftar that I could write about. Frances kindly provided the

questions that this article was built on.

What inspired it? Were you trying to solve a specific 
problem?
I use both Ubuntu and Lubuntu Linux. I am a volunteer tester of both. For
personal use, I use Ubuntu and LUbuntu and I want to keep up to date so
I needed some method to create backups and transport of key files and
folders as flexibly as possible.

Initially I was backing up key files (all of ~/stuff) to a .tar.gz file. Then
I decided I wanted to automate it a bit so I worked out how to
automatically create its destination filename:

  DESTINATION_FILENAME=$1`date "+_%d_%B_%Y.tar.gz"`

Then I added commands to display the time taken to do the backups using
the line:

/usr/bin/time -f "%E mins:secs " tar -czf 
$DESTINATION_FILENAME $4 $5 $6 $7 $8 $9 ${10} 
${11} ${12} ${13} ${14} ${15} ${16} ${17} ${18} 
${19} ${20}

I had to call time from /usr/bin because bash was ‘hiding’ it with its
own, less flexible, time implementation, which doesn’t support the
options I wanted.

Because of my inexperience with bash, testing was very important to me.
As new features were developed, I would put a ‘test’ framework in place,
thoroughly test each new feature and then remove the ‘test’ framework.
Having functions ensure they had been given sufficient parameters was
particularly important.

As time went by, I added more options. In particular I wanted to backup
individual folders leading to the options (desktop, extra, rpg, home
and localhost) being implemented. For convenience I wanted to be
able to specify ‘backup everything’ so I implemented the all option. To
keep things transparent, I implemented the verbose option for stufftar to
output more information about what it is currently doing. I typically have
a refurbished Lenovo ThinkPad T420 (from www.tier1online.com) as my
main computer (hostname newton) running Ubuntu Linux. I have an old
32 bit Samsung NC10 that I take with me when visiting family (running
lubuntu Linux). I back up my .tar.gz files to USB flash drive. I also back
them up to external hard drives. I’ve got three external 500GB hard drives
and, once a month, I copy that month’s latest .tar.gz files to one of them.
I rotate my use of external hard drive so that I’m backing up to the one
containing the oldest backup of the set. About once a year I archive

everything to dual-layer DVD-R – mainly as individual folders but I put
the ‘home’ and ‘localhost’ .tar.gz files as is onto the DVD-R.

What does it do?
I’ve got a bunch of important digital files I carry around and backup to
USB flash drives and hard drives. My ~/Desktop files are my key files
for general use. Other folders are ~/stuff (the original folder I put my
‘stuff’ in), ~/extra (the folder I moved from ~/stuff when it became
too large), ~/RPG (the folder I use to keep RPG PDFs etc in). The home
option backs up key shell scripts. The localhost option backs up key
files (/var/www/) from LAMP studies.

How do you use it?
For help type in ./stufftar and it gives you a list of command line options
(see Figure 1).

What future improvements do you envisage?
As a side-effect of writing this article, I’ve started a ‘TO DO’ comment
section. Currently it does everything I need it to do. Also, despite having
written a bash shell script helped by my copy of the Linux Pocket Guide
(O’Reilly) I’ve never really studied bash. I’ve just muddled through. I
have copies of How Linux Works and The Linux Command Line to make
my way through sometime next year – I am concentrating on Ruby this
year. The command line options are non-standard but OK for my purposes
bu t  c ou l d  be  m od i f i e d  t o  h a n d l e  a r gu m e n t s  l i k e  -f
some_kind_of_parameter. There is a UNIX tool called TripWire,
used to report changes to folders of files. I think I’ll be looking at tackling
that – in the future.

A walk through the code (edited highlights)
The line #!/bin/bash tells Linux that this is a bash shell script. Some
people to specify sh instead of bash but as this script is for personal use,
I’m using bash.

  #!/bin/bash
  
  # stufftar backup script by Ian Bruntlett, 
  # 2012 - December 2015, expanded and desktar 
  # merged in on August 11th 2012, 
  # March 2013 added "coder" file to Desktop tar,
  # added BACKUP_HOME

As is usual, information about the script is stored at the start of the script
(summarised for brevity).

S

Ian Bruntlett Ian refurbishes old Windows XP systems on behalf 
of people with mental health problems, installing Lubuntu and a 
selection of free software packages. As part of that effort, he is a 
volunteer tester for the Lubuntu project and has created an 
illustrated guide to Lubuntu, specifically targeted at people with 
mental health problems.
April 2016 | Overload | 17



FEATURE IAN BRUNTLETT

As new features were developed, I would
put a ‘test’ framework in place, thoroughly

test each new feature and then remove
the ‘test’ framework
  # echo_and_log(logfilename, text to put in log
  # file and echo to screen)
  function echo_and_log()

This is a ‘helper’ function that echoes its parameters both to the screen and
to a specified log file. Useful to avoid repeated identical echo statements.

  # if error code set ($1), display error messages
  # and exit programme
  function exit_if_failed()

This is another ‘helper’ function. It gets passed an error code by its caller.
Normally it is 0 so this function does nothing. If it is non-zero then
diagnostic information is echoed and it exits/aborts the script with a return
code of 1.

  # $1 log filename aka $LOG_FILE
  # $2 file to get MD5 from aka $SOURCE_FILENAME
  # example:- get_and_log_md5 "~/md5log.txt"
  "localhost_04_May_2015.tar.gz"
  function get_and_log_md5()

This function calculates the MD5 checksum of the file (function
parameter $2) and logs it to a logfile (function parameter $1). It is a
‘helper’ function used by function perform_backup (Listing 1) when
global variable $STUFFTAR_VERBOSE is greater than zero.

perform_backup is the ‘engine’ of the script. It validates its
parameters. It does some logging, if running in verbose mode. It does the
backup using both the time command and tar. The backup is created by
tar and time outputs the amount of time taken. It also lists the number
of files in the tar file by piping a list of file to the word count utility wc.

Figure 1

ian@newton:~$ ./stufftar
./stufftar Usage : stufftar followed by one or more commands: desktop, 
extra, rpg, localhost, stuff, home and all
All data files are:-
1. Named after the relevant command name, followed by day number, month, year.
   For example: Desktop_01_March_2014.tar.gz
2. Are created using the tar command with file compression switched on.

Explanation of stufftar commands:-
desktop   - copy desktop files to a desktop tar file
extra     - copy extra to a tar file –  Linux Voice, Overload, QL Today
stuff     - copy stuff – anything I want to keep (main files are here)
rpg       - copy ~/RPG to a tar file
home      - copy refurb, stufftar, coder, removefiles.c to a home tar file
localhost - copy the whole /var/www/html subtree to a tar file
all       - execute stuff, extra, desktop and home commands in one go. 
            Use when you want a full backup.
verbose   - display more details about the work being done.
status    - display status info about the stufftarred files on this system.

Also consider backing up Firefox bookmarks, and .emacs config file.

# perform_backup
# $1 - stub of .tar.gz filename
# $2 - name of log file 
# e.g. "scripts/stufftarlog.txt"
# $3 - directory to do the tarring in
# $4 onwards - files/directories to put in .tar.gz
# file relative to $3
function perform_backup()
{
  if [ $# -lt 4  ]
  then
    echo "Error perform_backup() insufficient no 
of parameters";
    return 1;
  fi;
 FILENAME_STUB=$1
 DESTINATION_FILENAME=$1`date 
"+_%d_%B_%Y.tar.gz"`
 LOGFILE=$2
 TAR_DIR=$3

  if [ $STUFFTAR_VERBOSE -gt 0 ]
  then
    echo $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 ${10} ${11} 
${12} ${13} ${14} ${15} ${16} ${17} ${18} ${19} 
${20}

Listing 1
18 | Overload | April 2016



FEATUREIAN BRUNTLETT
  # show_last_line
  # $1 is the name to show
  # $2 is the log file to show the tail end of
  # $3 is the number of lines to show 

This ‘helper’ function, show_last_line, echoes some information
about a logfile – the name of the archive (‘stuff’, ‘localhost’ etc) and the
last $3 lines of the log file $2. See Listing 2.

The function in Listing 3 uses show_last_line to display the contents
of all stufftarlog.txt files. The logfile performs two purposes. On
the master computer, show_status() indicates when a particular
folder was last backed up to tar file. On other computers, it shows the age
of the data that has been transferred by tar file.   

This function, show_status, is triggered when a parameter of status
is passed on the command line. It can be used on its own or in conjunction
with other commands.

This is the main part of this script. If no parameters are passed, a help
message is displayed explaining the use and parameters of the script.

The worker  variables BACKUP_DESKTOP ,  BACKUP_EXTRA ,
BACKUP_HOME, BACKUP_LOCALHOST, BACKUP_RPG, BACKUP_STUFF
are initialised to zero here. Another variable, $STUFFTAR_VERBOSE, is
initialised near the start of the script.

Listing 4 is where I loop through the script’s command line arguments,
setting worker variables accordingly. Note if the parameter all is found,
then a bunch of worker variables are set to 1.

For information purposes, the name of the script is echoed ($0) and if in
verbose mode, ls -lh is used to show even more information about the
script file. Also for information purposes, the status of worker variables is
displayed.

  echo $# PARAMETER\(S\),
  BACKUP_STUFF=$BACKUP_STUFF
  BACKUP_EXTRA=$BACKUP_EXTRA,
  BACKUP_DESKTOP=$BACKUP_DESKTOP,
  BACKUP_HOME=$BACKUP_HOME,
  BACKUP_RPG=$BACKUP_RPG,
  BACKUP_LOCALHOST=$BACKUP_LOCALHOST,
  STUFFTAR_VERBOSE=$STUFFTAR_VERBOSE,
  STUFFTAR_STATUS=$STUFFTAR_STATUS

For consistency, the script changes the current directory to the current
user’s home directory before doing any file handling.

  cd ~

Then the .tar.gz files are created – basically checking to see if a worker
variable is 1 and then calling perform_backup to do the work.

  # backup to a stuff tar
  if [ $BACKUP_STUFF -eq 1 ]
  then
    perform_backup "Stuff" "stuff/stufftarlog.txt"
    "$HOME" "stuff" 
  fi

Similar clauses are used for the creation of the extra, rpg, desktop .tar.gz
files. Backing up the key ‘home’ files is a little different:

  # backup key /home/ian things e.g this backup
  # script to a tar file
  if [ $BACKUP_HOME -eq 1 ]
  then
    perform_backup "Home" "scripts/stufftarlog.txt"
    "$HOME" refurb scripts synclamp stufftar coder
    removefiles.c;
  fi

    echo 
DESTINATION_FILENAME=$DESTINATION_FILENAME e.g. 
Desktop_28_December_2014.tar.gz
    echo FILENAME_STUB=$FILENAME_STUB
    echo LOGFILE=$LOGFILE
    echo TAR_DIR=$TAR_DIR
  fi
  CURRENT_TIME=`date "+%H:%M:%S"`
  cd $TAR_DIR
  echo_and_log $LOGFILE $CURRENT_TIME Backing up
    key $TAR_DIR $4 $5 $6 $7 $8 $9 ${10} ${11} 
{12} ${13} ${14} ${15} ${16} ${17} ${18} ${19} 
${20}files to $DESTINATION_FILENAME 
  /usr/bin/time -f "%E mins:secs " tar -czf     
$DESTINATION_FILENAME $4 $5 $6 $7 $8 $9 ${10} {11} 
${12} ${13} ${14} ${15} ${16} ${17} ${18} ${19} 
${20}
  exit_if_failed $? "perform_backup to "     
$DESTINATION_FILENAME 
  echo File count:-
  tar -tvf $DESTINATION_FILENAME | wc -l
  ls -lh $DESTINATION_FILENAME
  if [ $STUFFTAR_VERBOSE -gt 0 ]
  then
    get_and_log_md5 $LOGFILE $DESTINATION_FILENAME 
  fi
  echo
  cd;
  return 0;
}
# end function perform_backup

Listing 1 (cont’d)

function show_last_line()
{
  if [ $# -ne 3  ]
  then
    echo "Error show_last_line() insufficient no     
of parameters ($#)";
      echo usage "show_last_line name of file,       
source log file, no of lines to show"
    return 1;
  fi;
  echo -n "$1 - $2 "
  tail -$3 $2
  echo -n
  return 0;
}
# end function show_last_line

Listing 2

function show_status()
{
  echo STUFFTAR STATUS
  show_last_line "Desktop" "$HOME/Desktop/
stufftarlog.txt" 3
  echo
  show_last_line "extra" "extra/stufftarlog.txt" 3
  echo
  show_last_line "localhost" "/var/www/html/
stufftarlog.txt" 3
  echo
  show_last_line "RPG"   "RPG/stufftarlog.txt" 3 
  echo
  show_last_line "scripts and home" "scripts/
stufftarlog.txt" 3
  echo
  show_last_line "stuff" "stuff/stufftarlog.txt" 3
  echo
  return 0;
}
# end function show_status

Listing 3
April 2016 | Overload | 19



FEATURE IAN BRUNTLETT
And localhost is used to backup key LAMP files (see Listing 5).

As its final act, if the ‘status’ option has been activated, the status of every
backup file is displayed.

  if [ $STUFFTAR_STATUS -eq 1 ]
  then
    show_status;
  fi

And that is it. 

Feedback from Overload technical reviewers
This script serves as a decent example of how to back things up in a
reproducible way using tar. I didn’t see any glaring errors in it, but I would
comment that it is not tolerant of spaces in filenames (fixing that would
require liberal use of double-quotes, and I usually find some trial-and-
error is required to get this right).

The script was written by me – a bash novice. Given the importance
of the data, it was tested heavily as it evolved. As I expected to use
the resulting .tar.gz files from the command line, I decided that my
filenames would not contain spaces. 

The article as it is now is a bit specific to one use case – I think it would
be more useful if it explained the ideas and techniques being used rather
than presenting the details of the script itself. E.g.:

 Interesting policy decisions like creating separate log files for each
piece of work being done – it would be interesting to hear how this
supports the workflow.

I thought about having a single log file, ~/stufftarlog.txt but
it wasn’t flexible enough and I’d have to somehow process that log
file, looking for status information about each type of backup. By

having separate log files, I avoid that problem and it means I can
decide to just backup certain bunches of files instead of a full-blown
backup of everything.

 How to get the last relevant line out of a log file (as the script does)
– this seems more widely-applicable and a useful little nugget.

I added the function body of show_last_line to this article. It is
quite simple and uses the tail command.

 How to deal with command line arguments (the for loop used here
looks quite convenient for simple applications like this).

Yes. With a bit of effort it can be more flexible. At the moment it
handles one word parameters that act as flags or specify a certain
backup to perform.

Supporting a syntax like -f some_kind_of_flag would be
possible. I have some ideas about it, mainly involving extending the
loop to set a flag ($ARGUMENT_F_EXPECTED) when a parameter of
-f is detected and setting a flag. Then the head of the loop would
need another set of if statements – followed by use of the
continue loop modifier.

 The benefits of writing a script rather than doing this manually (e.g.
reduced errors and less time take)

Spot on. Being able to run a command to do all the backups I
wanted, have standard filenames and contents, and walk away was
crucial. That dealt with errors during creation of the backups.
However, I used to transport my files to a Samsung NC10 NetBook
(when it wasn’t being wiped and used to test Lubuntu pre-releases),
and I noticed that I was occasionally forgetting to install the contents
of newer .tar.gz files. So I needed to know when a particular folder’s
files were created. This resulted in the function show_last_line
(it can show more than one line) which was discussed earlier. When
I’m working on the Samsung NC10, typing in ./stufftar
status means I can see how fresh this copy of my files is.

Reference
stufftar can be downloaded from:
https://sites.google.com/site/ianbruntlett/home/free-software/linux

for arg in $@
do
    if [ "$arg" = "verbose" ]
    then
      STUFFTAR_VERBOSE=1
    elif [ "$arg" = "status" ]
    then
     STUFFTAR_STATUS=1      
    elif [ "$arg" = "stuff" ]
    then
      BACKUP_STUFF=1 
   elif [ "$arg" = "extra" ]
    then
      BACKUP_EXTRA=1
    elif [ "$arg" = "rpg" ]
    then
      BACKUP_RPG=1
    elif [ "$arg" = "localhost" ]
    then
      BACKUP_LOCALHOST=1
    elif [ "$arg" = "desktop" ]
    then
      BACKUP_DESKTOP=1
    elif [ "$arg" = "home" ]
    then
      BACKUP_HOME=1
    elif [ $arg = "all" ]
    then
      BACKUP_DESKTOP=1
      BACKUP_EXTRA=1
      BACKUP_HOME=1
      BACKUP_LOCALHOST=1
      BACKUP_RPG=1
      BACKUP_STUFF=1
    else
      echo Warning! Unrecognised command : $arg
    fi
done

Listing 4

# localhost option not suitable to call
# perform_backup
if [ $BACKUP_LOCALHOST -eq 1 ]
then
# a try...   perform_backup "localhost" 
# "/var/www/html/stufftarlog.txt" "/var/www/"
# "html";
  DESTINATION_LOCALHOST=
    `date "+localhost_%d_%B_%Y.tar.gz"`
  CURRENT_TIME=`date "+%H:%M:%S"`
  LOGFILE="/var/www/html/stufftarlog.txt"
  cd 
  echo_and_log $LOGFILE $CURRENT_TIME Backing up
    localhost files to  $DESTINATION_LOCALHOST
  cd /var/www/html
  /usr/bin/time -f "%E mins:secs " tar -czf 
    ~/$DESTINATION_LOCALHOST .
  exit_if_failed $? "tar localhost"
  cd 
  ls -lh $DESTINATION_LOCALHOST
  echo
  cd ~
  echo localhost file count:-
  tar -tvf $DESTINATION_LOCALHOST | wc -l
  if [ $STUFFTAR_VERBOSE -gt 0 ]
  then
    get_and_log_md5 $LOGFILE
      $DESTINATION_LOCALHOST
  fi
fi

Listing 5
20 | Overload | April 2016

https://sites.google.com/site/ianbruntlett/home/free-software/linux


FEATUREMATTHEW WILSON
QM Bites: looping for-ever
Never-ending loop constructs can confound user and 
compiler in subtle ways. Matthew Wilson offers advice 
to maximise portability and transparency.
TL;DR:
do not use while to loop for(;;) ever

Bite:
Sometimes we want to use a loop that runs forever. This might be for a
worker thread that simply waits for receipt of work, performs the work,
and waits again, ad infinitum.

At other times the invariant for a loop may be too complex to be expressed
transparently as a single expression in the loop-construct’s loop invariant
clause, instead being handled using one or more breaks. (Note: such cases
should always give one pause for thought, and to question whether the
whole construct is too complex and should be broken down.)

Either way, we want a loop construct that loops forever, which means we
want a loop invariant that is always true.

One common method to achieve this is as follows:

  /* Commonly seen in C */
  while(1)
  {
  . . . things that are repeated forever
  }

Or the equivalent:

  /* Commonly seen in C++ */
  while(true)
  {
  . . . things that are repeated forever
  }

There are two problems with this. First, the practical. Some compilers issue
a warning about the use of a constant within the invariant of a loop
statement. For example, the Visual C++ compiler will issue warning 4127
“conditional expression is constant”. Since we always want to use

maximum warnings wherever possible, and we always want to treat
warnings as errors, this construct is something to avoid to ensure
portability and maximum effective use of warnings.

Second, the philosophical. To be sure, this is a question of perception/taste
(but I know others share my apprehension): it’s just kind of weird and
clumsy to say “loop for as long as true is true”.

The answer to both concerns is the same: instead use a for-statement with
a blank invariant, which is interpreted as “forever” (something for which
it is designed):

  for(;;)
  {
  . . . things that are repeated forever
  }

Further, you’re not required to have a fully empty for-statement to have
infinite looping. The following will loop forever while providing you some
indication as to how many loops have been done:

  for(int i = 0;; ++i)
  {
  . . . things that are repeated forever
  }

Just be aware that this will wrap around eventually (and repeatedly).

Afterthoughts
There are other aspects to the issue of constant expressions in loop
expressions. Coming to a Bite-near-you sometime soon. 

Matthew Wilson Matthew is a software development consultant 
and trainer for Synesis Software who helps clients to build high-
performance software that does not break, and an author of articles 
and books that attempt to do the same. He can be contacted at 
matthew@synesis.com.au.
April 2016 | Overload | 21

A helping hand just when it’s needed…

� Online help

� Videos

� Simulations

� Traditional user guides and manuals

T +44 (0)115 8492271

E info@clearly-stated.co.uk

W www.clearly-stated.co.uk



FEATURE ANTHONY WILLIAMS
Using Enum Classes as Bitfields
Scope enums have many advantages over 
standard enums. Anthony Williams shows 
how to use them as bitmasks.
11 introduced a new feature in the form of scoped
enumerations, also referred to as enum classes, since they
are introduced with the double keyword enum class

(though enum struct is also permissible, to identical effect). To a large
extent, these are like standard enumerated types: you can declare a list of
enumerators, which you may assign explicit values to, or which you may
let the compiler assign values to. You can then assign these values to
variables of that type. However, they have additional properties which
make them ideal for use as bitfields.

Key features of scoped enumerations
The key features provided by scoped enumerations are:

 The enumerators must always be prefixed with the type name when
referred to outside the scope of the enumeration definition. e.g. for
a scoped enumeration colour which has an enumerator green,
this must be referred to as colour::green in the rest of the code.
This avoids the problem of name clashes which can be common with
plain enumerations.

 The underlying type of the enumeration can be specified, to allow
forward declaration, and avoid surprising consequences of the
compiler’s choice. This is also allowed for plain enum in C++11. If
no underlying type is specified for a scoped enumeration, the
underlying type is fixed as int. The underlying type of a given
enumeration can be found using the std::underlying_type
template from the <type_traits> header.

 There is no implicit conversion to and from the underlying type,
though such a conversion can be done explicitly with a cast.

This means that they are ideal for cases where there is a limited set of
values, and there are several such cases in the C++ Standard itself:
std::errc, std::pointer_safety, and std::launch for
example. The lack of implicit conversions are particularly useful here, as
it means that you cannot pass raw integers such as 3 to a function
expecting a scoped enumeration: you have to pass a value of the
enumeration, though this is of course true for unscoped enumerations as
well. The lack of implicit conversions to integers does mean that you can
overload a function taking a numeric type without having to worry about
any potential ambiguity due to numeric conversion orderings.

Bitmask types
Whereas the implicit conversions of plain enumerations mean that
expressions such as red | green and red & green are valid if red
and green are enumerators, the downside is that red * green or red

/ green are equally valid, if nonsensical. With scoped enumerations,
none of these expressions are valid unless the relevant operators are
defined, which means you can explicitly define what you want to permit.

std::launch is a scoped enumeration that is also a bitmask type. This
means that expressions such as:

  std::launch::async | std::launch::deferred

and 

  std::launch::any & std::launch::async

are valid, but you cannot multiply or divide launch policies. The
requirements on such a type are defined in section 17.5.2.1.3
[bitmask.types] of the C++ Standard, but they amount to providing
definitions for the operators |, &, ^, ~, |=, &= and ^= with the expected
semantics.

The implementation of these operators is trivial, so it is easy to create your
own bitmask types, but having to actually define the operators for each
bitmask type is undesirable.

Bitmask operator templates
These operators can be templates, so you could define a template for each
operator, e.g.

  template<typename E>
  E operator|(E lhs,E rhs){
    typedef typename
      std::underlying_type<E>::type underlying;
    return static_cast<E>(
      static_cast<underlying>(lhs) 
    | static_cast<underlying>(rhs));
  }

Then you could write mask::x | mask::y for some enumeration
mask with enumerators x and y. The downside here is that it is too
greedy: every type will match this template. Not only would you would be
able to write:

  std::errc::bad_message | std::errc::broken_pipe

which is clearly nonsensical, but you would also be able to write:

  "some string" | "some other string"

t h ou g h  t h i s  wo u l d  g i ve  a  c o m p i l e  e r r o r  o n  t he  use  o f
std::underlying_type, since it is only defined for enumerations.
There would also be potential clashes with other overloads of
operator|, such as the one for std::launch.

What is needed is a constrained template, so only those types which you
want to support the operator will match.

SFINAE to the rescue
SFINAE is a term coined by David Vandevoorde and Nicolai Josuttis in
their book C++ Templates: The Complete Guide. It stands for
‘Substitution Failure is Not an Error’, and highlights a feature of
expanding function templates during overload resolution: if substituting

C++

Anthony Williams Anthony is the author of C++ Concurrency in 
Action. As well as working on multi-threading libraries, he develops 
custom software for clients, and does training and consultancy. 
Despite frequent forays into other languages, he keeps returning to 
C++. He is a keen practitioner of TDD, and likes solving tricky 
problems. Contact him at anthony@justsoftwaresolutions.co.uk
22 | Overload | April 2016



FEATUREANTHONY WILLIAMS
the template parameters into the function declaration fails to produce a
valid declaration then the template is removed from the overload set
without causing a compilation error.

This is a key feature used to constrain templates, both within the C++
Standard Library, and in many other libraries and application code. It is
such a key feature that the C++ Standard Library even provides a library
facility to assist with its use: std::enable_if.

We can therefore use it to constrain our template to just those scoped
enumerations that we want to act as bitmasks (see Listing 1).

If enable_bitmask_operators<E>::enable is false (which it is
unless specialized) then:

  std::enable_if<enable_bitmask_operators<E>
     ::enable,E>::type

will not exist, and so this operator| will be discarded without error. It
will thus not compete with other overloads of operator|, and the
compilation will fail if and only if there are no other matching overloads.

  std::errc::bad_message | std::errc::broken_pipe

will thus fail to compile, whilst 

  std::launch::async | std::launch::deferred

will continue to work.

For those types that we do want to work as bitmasks, we can then just
specialize enable_bitmask_operators:

    enum class my_bitmask{
        first=1,second=2,third=4
    }:
    template<>
    struct enable_bitmask_operators<my_bitmask>{
        static constexpr bool enable=true;
    };

Now,

  std::enable_if
    <enable_bitmask_operators<E>::enable,E>::type

will exist when E is my_bitmask, so this operator| will be considered by
overload resolution, and

  my_bitmas::first | my_bitmask::second

will now compile.

Final code
The final code is available as a header file along with a simple example
demonstrating its use (see https://www.justsoftwaresolutions.co.uk/
cplusplus/using-enum-classes-as-bitfields.html). It has been tested with
g++ 4.7, 4.8 and 4.9 in C++11 mode, and with MSVC 2012 and 2013, and
is released under the Boost Software License. 

template<typename E>
struct enable_bitmask_operators{
    static constexpr bool enable=false;
};
template<typename E>

typename
  std::enable_if<enable_bitmask_operators<E>
     ::enable,E>::type
operator|(E lhs,E rhs){
  typedef typename std::underlying_type<E>
    ::type underlying;
  return static_cast<E>(
    static_cast<underlying>(lhs) 
  | static_cast<underlying>(rhs));
}

Listing 1
April 2016 | Overload | 23

Write for us!
C Vu and Overload rely on article contributions from members. 
That’s you! Without articles there are no magazines. We need 
articles at all levels of software development experience; you 
don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or 
overload@accu.org

https://www.justsoftwaresolutions.co.uk/cplusplus/using-enum-classes-as-bitfields.html
https://www.justsoftwaresolutions.co.uk/cplusplus/using-enum-classes-as-bitfields.html


FEATURE TEEDY DEIGH
9.7 Things Every Programmer 
Really, Really Should Know
Most of us have heard of the twelve step program. Teedy 
Deigh introduces a 9.7 step plan for programmers.
0. Start from zero
ero is the magic number. For everything. (Except Coke.)

For example, atomic numbers start at zero, not one. Hydrogen is
bohring. Neutronium is much more fun. Be sure to deploy this

fascinating nugget at length during pub quizzes and family meals and, in
case no real people find it as fascinating or redefining as you do, in online
forums.

The day begins at 00:00. Have no truck with the twelve-hour clock. It is a
nonsense that demands unnecessary modulo arithmetic and flags.

Count your indexes from zero. If your programming language doesn’t
support zero indexing, either change language or plough on regardless,
ignoring any exceptions, undefined behaviour or program failures. You
know you’re right. That’s all that matters.

1. The programmer is right
In any interaction, whether between programmer and manager or
programmer and customer or programmer and computer, the default
assumption should be that the programmer is right.

Unfortunately, not everyone seems to either know or appreciate this – the
zeroth rule of Being Right Club is, after all, “You don’t talk about Being
Right Club” – which gives rises to all those long discussions and
disagreements and disciplinary hearings.

The real problem occurs when two programmers get together. They are
both right. Even when they hold different truths. This apparent
contradiction is found in the heart of quantum mechanics, thus giving
programmers a unique, foundational and paradoxical position in the
pecking order of the universe.

It has been said that managing programmers is like herding cats. Almost.
It is more like herding Schrödinger’s cats.

2. Binary
01000110 01010100 01010111 00100001

3. Logic
Logic is a resource. It should, therefore, be applied sparingly. Of course,
employ logic in code, but it doesn’t necessarily have to be used elsewhere
(e.g., in life or dealings with colleagues). As with other resources, you
don’t want to risk using it all up.

4. Information hiding
Fundamental to resilient and reasoned program structuring is the idea of
information hiding. Keep secrets. Make sure your implementation is not

obvious and your interface is inscrutably yet charmingly quirky. Such
information hiding enhances security – especially job security.

It follows from the principle of information hiding that you shouldn’t
share things. Avoidance of sharing simplifies not only multithreaded
programming, but also means enforcing a strictly personal model of code
ownership, a desk configuration antagonistic to pairing and a ring-fenced
(and castellated and moated) spot in the office fridge.

5. Wabi-sabi
Wasabi for your sushi, wabi-sabi for your code. Spice up your source with
this Japanese aesthetic.

Instead of aiming for a purist view of perfection, wabi-sabi teaches us that
a greater whole can be achieved through carefully placed imperfection, a
recognition of impermanence and the essential completeness of
incompleteness.

Embrace this philosophy in your code.

But why settle for subtle imperfections that enhance the whole? Move
beyond the whole. Embrace imperfection more deeply and overtly. Clean
code? Better with a splash of muddy logic. Abstract classes? Weigh them
down with something concrete. A rich and healthy domain model?
Introduce poverty with an underclass of malnourished, anaemic domain
objects.

Flaunt impermanence. Comment your code with the fixes you’ve done or
the fixes you think should be done. But don’t do them. Use this also to
highlight the incompleteness of existence. Suggest the eternity of nature
that subsumes our fleeting lives. Don’t finish things. Done done? Not
even close.

6. Hexadecimals
Because The Martian.

7. Test your code
Do this by giving it to the customer. (If they ask nicely, compile it first.)

8. There are eight planets in the solar system
There is a sun, two groupings of planets, four terrestrial planets in the
inner solar system and four gas giants in the outer solar system, giving a
total of eight planets. This all conveniently aligns with powers of two, so
therefore must be right. And there are patterns within: pow(2, 3) is 8 and
Earth is the third planet. Coincidence? Of course not.

Don’t fall for the Disney conspiracy.

9. The secret to writing great code
Much has been written on what it means to write great code and how to
write it. Most of it is wrong. There is only one thing you need to know:
always– 

Z

Teedy Deigh Teedy Deigh considers herself to be a source of software 
development wisdom, negotiating (and crossing) the fine line between 
the code face and being in your face. Over the years Teedy Deigh has 
made just over 9.7 contributions to Overload. Opinion is divided as to 
whether the value of her contributions is second to none or closer.
24 | Overload | April 2016


	Where Does All The Time Go?
	The Tao of Scratch
	Knowledge-Sharing Architects As An Alternative to Coding Architects
	QM Bites: Understand Windows OS Identification Preprocessor Macros
	Why Collaboration is Key for QA Teams in an Agile World
	How to Diffuse Your Way Out of a Paper Bag
	Stufftar
	QM Bites: looping for-ever
	Using Enum Classes as Bitfields
	9.7 Things Every Programmer Really, Really Should Know

