

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

December 2018 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members – by
programmers, for programmers – and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Diseconomies of Scale
Allan Kelly considers why bigger isn’t
always better.

6 Flip Model: A Design Pattern
Daniele Pallastrelli presents the Flip Model to
publish dynamic, complex data to many clients
in a threadsafe manner.

10 Memory Management Patterns in
Business-Level Programs
Sergey Ignatchenko considers memory
management from an application level.

14 Compile-time Data Structures in C++17:
Part 3, Map of Values
Bronek Kozicki shows a compile time map of
values allows code to be tested more easily.

20 Algol 68 – A Retrospective
Daniel James reminds us just influential Algol 68
has been.

27 Measuring Throughput and the Impact of
Cache-Line Awareness
Richard Reich and Wesley Maness investigate
suitable metrics to measure throughput.

32 Afterwood
Chris Oldwood reminds us to make
sympathetic changes.

OVERLOAD 148

December 2018

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson@gmail.com

Klitos Kyriacou
klitos.kyriacou@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 149 should be submitted by
1st January 2019 and those for
Overload 150 by 1st March 2019.

EDITORIAL FRANCES BUONTEMPO
Revolution, Restoration
and Revival
Trends cycle in seasons. Frances Buontempo wonders
what programmers should on the lookout for.
I had a splendid week away in Yorkshire catching up
with some friends recently but all the fresh air gave me
a stinking cold, so I spent time trying to revive instead
of writing an editorial. Sorry, again. Prior to my week
away, I attended the Software Craftsmanship
Conference in London [SC18a]. Most of the talks are

on their YouTube channel [SC18b] so you can watch at your leisure. The
closing talk from Michael Feathers encouraged us to be creative and not
be unhappy at work. He talked through a few company models he’d seen,
focusing on new-ish start-ups, aiming to get stuff done that was interesting
and covering costs, rather than aiming to be the next big thing and make
a fortune. Michael was emphasising that programmers have an amazing
skill set and can do all kinds of creative and useful things, if they allow
themselves time to imagine.

Recently, we’ve seen a rise of hipster bars, artisan coffee shops and start-
ups or cottage industries, so the possibility of trying new small-scale
enterprises extends beyond programming. In many cases, these new
companies are reviving dying old towns and cities. With larger companies
closing, and high streets tending to ‘shut’, the so-called gig economy has
driven many people to find new ways of working. People are still willing
to pay for food and drink, creating an obvious marketplace for home-made
food or small batches of niche beer. Though jokes abound about food and
drink served in various strange ways, such as chips in mini frying baskets,
beer in a boot, or scrambled egg with a comb from a shoe [BlackBooks00],
while countless quips are made about avocados, this direction seems here
to stay for a while. While in Yorkshire, we dropped off for afternoon tea
in Hebden Bridge, a small market town that was invaded by hippies trying
to escape the rat-run in the 1960s. In many ways, the range of shops was
similar to hipster areas of London. The similarity between the old hippy
scene and the new hipster scene was striking. However, don’t forget the
hiring pro-tip: “Hippies are not the same as hipsters. I made this mistake
once and now have a frontend framework wri t ten in Fortran”
[@PHP_CEO14].

Trends often go in cycles; any current fashion is frequently a reworking
of something that has gone before. Sometimes the economy drives
changes, as alluded to by the move to the cottage industry and small start-
ups in many places. We see trends and fashions in programming too.
Kevlin Henney talked about Algol 86 at SCL. He’s given variants of this
talk before, including once at last year’s ACCU conference. By
coincidence, this issue has an Algol68 retrospective. Furthermore, Russel

Winder recently commented on accu-general on old
trends and techniques coming to the fore

recently. For example, “Message passing
over channels (or queues) between
threads has to be The One True Way. Lots

of people have been banging on about this for 40+ years, but it has taken
40 years for all the shared memory multi-threading people to admit defeat
and come to their senses!” He also noted that despite different idioms
between programming languages, “most programming languages are
rapidly converging on a quasi-object, quasi-functional, with generics,
coroutines, threadpools and fibres model. Which, of course, indicates we
are due a new programming language revolution.” Many revolutions,
particularly in programming, are re-discoveries or re-vamps of older
ideas.

Despite the apparent convergence, different languages do have different
approaches. We all spot C-style code in places it doesn’t belong. I still
catch myself writing a for loop instead of a list comprehension in Python
once in a while. Old habits die hard. Shoe-horning techniques into the
wrong place is a recurring theme, with deep parallels to the craftsmanship
movement. If you have a hammer, as the saying goes, everything looks
like a nail. A true craftsperson will pick the right tools for the job. If they
are restoring an old finely made cabinet, they need to know the proprieties
of the wood, varnish, nails, and so on, as well as the right tools to use. I’ve
noticed a few television programmes recently about antiques and furniture
restoration, perhaps as a result of some afternoon telly while recuperating.
An inappropriate restoration can devalue or even destroy an antique. It
takes skill to be able to fix something. Just slapping some sticky-backed
plastic or gaffer tape might hold parts in place, but spoils the look and feel,
and possibly functionality of the piece.

Restoring an existing code base has similar problems. If someone tries to
‘fix’ code in an unfamiliar codebase, they might make things worse. A true
craftsperson might be able to spot where something like an enterprise code
base doesn’t follow natural language idioms, and work with the ‘grain’
of that particular code base more easily than someone with less
experience. I could wax lyrical about the parallels between blacksmiths,
saddle makers, cabinet makers and metal workers, and writing and
maintaining code, but I’ll rein myself in. The analogies do work and in
both cases we are talking about a skill, which takes time to learn, and is
best learnt from a master. Books and online courses might get you started.
A YouTube video may show you how to fix an oven element or replace
a roof tile, but that’s many miles away from being a qualified electrician
or being able to re-thatch a cottage. There is also an expectation that
masters will be able to train apprentices. Can you mentor or teach
someone? Another point that emerged at SCL was you know you
understand something properly when you can explain it to someone else.
That’s why some many of us give talks, or write articles. If you haven’t
tried this yet, please do. The ACCU local groups can help and support you
and the editorial teams for both Overload and CVu can nurture and
encourage you if you want a helping hand.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | December 2018

EDITORIALFRANCES BUONTEMPO
A craftsperson uses their hands. Always. Programmers use their hands too.
We type, sometimes we use a mouse. We draw diagrams, point (and
sometimes laugh) at the code, we press buttons. Many other skills involve
senses beyond just tactility. Metal and wood workers can hear the
difference between something working well or being about to break.
Attempts have been made to interpret and project code musically. We do
talk about code smells as well. Sometimes code feels right, other times it
seems more like the sticky-backed plastic hack. Can you explain what
kicks off either feeling? Have a think for a moment. This kind of craft or
skill is challenging to vocalise. I suspect it’s similar to trying to program
a grammar checker. I mention that because I can see green wiggly lines as
I type, where my word processing software is ‘trying to help’ and failing
to parse a few of my sentences correctly. Trying to be exact about language
is difficult. Trying to be exact about anything can be difficult. And yet, you
know when you’ve managed to communicate with someone. You know
when your mentee has ‘got it’; they then mentor someone else and you sit
back and know your work here is done. Last time I mentioned trying to
assess the progress of a mentee [Buontempo18]. I couldn’t find any precise
metrics, and now suspect that’s the way it goes with crafts.

As a final note on the craftsperson metaphor, consider the process of
making or restoring a thing, either code or something more physical. The
BBC’s recent ‘Made in Britain’ observed a skilled artisan or craftsperson
has a hand in the product from start to end. Some companies talk about
the software development lifecycle, expecting more senior devs to be able
to step beyond the differences between a for or while loop and talk about
how to build and release a product. A really skilled developer can also
revive and restore a product once it has been realised. This might include
bug fixing, as well as adding new features. I suspect there’s a similarity
between new features in code and up-cycling old furniture. I’ll leave the
reader to work out a quip about the trendy ‘distressed’ look, wherein an
old cupboard or chair is sandpapered to look even more beaten up, then
whitewashed and sold for a fortune, and a code based being distressed or
even distraught, or bugged, if you will.

In addition to furniture/code, restoration, revival and repurposing, we
briefly touched on seasonal fashions reoccurring, meaning many
revolutions are just that. What goes around comes around. Coroutines,
functional programming, Algol68 or similar, roll back into view regularly.
Ideas revolve. I have observed some fashions tend to pop up every other
generation. Parents hate tattoos, so the rebellious teenagers start to love
them, only to discover Grandma was a painted lady displaying her fine
covering of art work at fairs and fashion shows years ago. I wonder if
programming paradigms and languages do likewise. The youth don’t know
the new trendy stuff happened before and yet Grandad can tell them all
about it. Perhaps we could spot some patterns and make predictions about
the future. For sure, the next revolution will not be televised, but stream
live on some app that doesn’t exist yet, no doubt. When Overload had
proper editorials, Rik Parkin suggested ‘The Computing Revolution Will
Be Televised (Again)’ [Parkin12], noting that 30 years ago we had to plug
our first computers into the TV. Raspberry Pi anyone? He ends by saying,
“Nostalgia has never been more cutting edge.”

By looking into the history of a discipline, we can find trends and try to
see where things are heading. I tried to find a definitive list of
breakthroughs in computing, though this strays into the realms of opinions
all too easily. I did find a time line [Aaronson14] Scott Aaronson, a
quantum computing expert, compiled for MIT’s 150th anniversary. He
lists when the top 150 innovations happened (I know that’s more than 150
– I checked).

Things appear to have tailed off, with a slight uptick when the internet hit
the streets. So much of the history entwines with the history of
mathematics, and has occasional outburst of skilled craftspeople or

engineers managing to build a machine capable of increasingly precise and
complicated movements. Games and viruses also get a mention. I don’t
think any patterns were obvious, so don’t have any predictions of what to
look out for next year. As I read the blog, I realised I am not up to date
with cutting edge mathematical research, though I do keep my eyes open
for trends in machine learning. An area I know little about is quantum
computing. I did learn one thing from the blog headline: “Quantum
computers would not solve hard search problems instantaneously by simply
trying all the possible solutions at once.” If anyone would care to write a
slightly longer summary for Overload, you know what to do.

Now, Scott mentions viruses. In my attempt to track down old trends that
are being revived, I did a random walk through the C2 wiki and fell across
the ‘Worse Is better’ page [C2]. Part way down, C is described as a virus.
This caught my attention. This comes from a paper by Richard Gabriel,
where he describes early Unix and C as examples of the ‘Worse is better’
school of design [Gabriel94]. This principle prioritises simplicity over
correctness. He says it means,

that implementation simplicity has highest priority, which means Unix
and C are easy to port on such machines. Therefore, one expects that
if the 50% functionality Unix and C support is satisfactory, they will start
to appear everywhere. And they have, haven’t they? Unix and C are
the ultimate computer viruses. [my emphasis]

He notes that the virus must be “basically good” in order to spread or gain
traction. Once the programming language or approach is prevalent, people
will then spend time ironing out some of the flaws. He finally concludes
C is the wrong language for AI software. It appears that Python is gaining
traction here, though I suspect Richard was suggesting Lisp is the right tool
for the job.

If we use a compiled language, like C, we make things (or cmake them or
use scons). Even if we use an interpreted language, we are still being
creative. I have no idea where this will go next, but the journey is
interesting. We are creative and have lots to offer. If
you don’t feel like part of the next revolution, take a
restorative, and allow yourself time to revive. Cheers
and Happy Christmas (assuming you are reading this
just after it hits the decks). Or failing that, Happy New
year. Viva la revolution!

References
[@PHP_CEO14] https://twitter.com/php_ceo/status/

475056653285736448?lang=en

[Aaronson14] Scott Aaronson, ‘Timeline of computer science’ (updated
2014) at https://www.scottaaronson.com/blog/?p=524

[BlackBooks00] Episode 3 of series 1 of Grapes of Wrath, broadcast in
the UK on Channel 4 from 2000–2004: https://en.wikiquote.org/
wiki/Black_Books#The_Grapes_of_Wrath_(1.3)

[Buontempo18] Frances Buontempo, 2018, ‘Are we nearly there yet?’ in
Overload 147, October 2018

[C2] ‘Worse is better’ at http://wiki.c2.com/?WorseIsBetter

[Gabriel94] ‘Lisp: Good News, Bad News, How to Win Big’ Richard P
Gabriel, 1994: from https://www.dreamsongs.com/Files/
LispGoodNewsBadNews.pdf

[Parkin12] Ric Parkin (2012) ‘The Computing Revolution Will Be
Televised (Again)’ in Overload 108, April 2012
https://accu.org/index.php/journals/1933

[SC18a] Software Craftsmanship London http://sc-london.com/

[SC18b] Software Craftsmanship conference: https://www.youtube.com/
playlist?list=PLGS1QE37I5lSWm0rmE7UkgEmZq6Spg9z7

Pre-
1600s

1600s 1700s 1800s 1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

2 3 2 7 1 0 2 4 16 20 29 23 15 19 9
December 2018 | Overload | 3

https://twitter.com/php_ceo/status/475056653285736448?lang=en
https://twitter.com/php_ceo/status/475056653285736448?lang=en
https://www.scottaaronson.com/blog/?p=524
https://en.wikiquote.org/wiki/Black_Books#The_Grapes_of_Wrath_(1.3)
https://en.wikiquote.org/wiki/Black_Books#The_Grapes_of_Wrath_(1.3)
http://wiki.c2.com/?WorseIsBetter
https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf
https://www.dreamsongs.com/Files/LispGoodNewsBadNews.pdf
https://accu.org/index.php/journals/1933
http://sc-london.com/
https://www.youtube.com/playlist?list=PLGS1QE37I5lSWm0rmE7UkgEmZq6Spg9z7
https://www.youtube.com/playlist?list=PLGS1QE37I5lSWm0rmE7UkgEmZq6Spg9z7

FEATURE ALLAN KELLY
Diseconomies of Scale
Bigger is not always better. Allan Kelly considers
when smaller is more productive.
ithout really thinking about it, you are not only familiar with the
idea of economies of scale: you expect economies of scale. Much
of our market economy operates on the assumption that when you

buy or spend more you get more per unit of spending. The assumption of
economies of scale is not confined to free-market economies: the same
assumption underlies much Communist-era planning.

At some stage in our education – even if you never studied economics or
operational research – you will have assimilated the idea that if Henry Ford
builds a million identical black cars and sells a million cars, then each car
will cost less than if Henry Ford manufactures one car, sells one car, builds
another very similar car, sells that car, and continues in the same way
another 999,998 times.

The net result is that Henry Ford produces cars more cheaply and sells more
cars more cheaply so buyers benefit. This is economies of scale.

The idea and history of mass production and economies of scale are
intertwined. I’m not discussing mass production here, I’m talking
economies of scale, diseconomies of scale and software development.

Milk is cheaper in large cartons
That economies of scale exist is common sense: every day one experiences
situations in which buying more of something is cheaper per unit than
buying less. For example, you expect that in your local supermarket buying
one large carton of milk – say four pints – will be cheaper than buying four
one-pint cartons.

So ingrained is this idea that it is newsworthy when shops charge more per
unit for larger packs complaints are made. In April 2015, The Guardian
newspaper in London ran this story headlined ‘UK supermarkets dupe
shoppers out of hundreds of millions’ about multi-buys which were more
expensive per item than buying the items individually.

Economies of scale are often cited as the reason for corporate mergers.
Buying more allows buyers to extract price concessions from suppliers.
Manufacturing more allows the cost per unit to be reduced, and such
savings can be passed on to buyers if they buy more. Purchasing
departments expect economies of scale.

I am not for one minute arguing that economies of scale do not exist: in
some industries economies of scale are very real. Milk production and
retail are examples. It is reasonable to assume such economies exist in most
mass-manufacturing domains, and they are clearly present in marketing
and branding.

But – and this is a big ‘but’...

Software development does not have economies of scale

In all sorts of ways, software development has diseconomies of scale. If
software development was sold by the pint, then a four-pint carton of
software would not just cost four times the price of a one-pint carton, it
would cost far more.

Once software is built, there are massive economies of scale in reselling
(and reusing) the same software and services built on it. Producing the first
piece of software has massive marginal costs; producing the second
identical copy has a cost so close to zero it is unmeasurable – Ctrl-C,
Ctrl-V.

Diseconomies abound in the world of software development. Once
development is complete, once the marginal costs of one copy are paid,
then economies of scale dominate, because marginal cost is as close to zero
as to make no difference.

Diseconomies
Software development diseconomies of scale have been observed for some
years. Cost estimation models like COCOMO actually include an
adjustment for diseconomies of scale. But the implications of
diseconomies are rarely factored into management thinking – rather,
economies-of-scale thinking prevails.

Small development teams frequently outperform large teams: five people
working as a tight team will be far more productive per person than a team
of 50, or even 15. Academic studies have come to similar findings.

The more lines of code a piece of software has, the more difficult it is to
add an enhancement or fix a bug. Putting a fix into a system with a million
lines of code can easily be more than ten times harder than fixing a system
with 100,000 lines.

Experience of Kanban style work in progress limits shows that doing less
at any one time gets more done overall.

Studies show that projects that set out to be big have far higher costs and
lower productivity per deliverable unit than small systems.

W

Allan Kelly helps companies large and small enhance their agile
processes and boost their digital products. Past clients include:
Virgin Atlantic, Qualcomm, The Bank of England, Reed Elsevier
and many small innovative companies you've never heard of. He
invented Value Poker, Time-Value Profiles and Retrospective
Dialogue Sheets. A popular keynote speaker he is the author of
Dear Customer, the truth about IT and books including Project
Myopia, Continuous Digital, Xanpan and Business Patterns for
Software Developers. His blog is at https://
www.allankellyassociates.co.uk/blog/ and on twitter he is
@allankellynet.
4 | Overload | December 2018

FEATUREALLAN KELLY

Producing the first piece of software has
massive marginal costs; producing the

second identical copy has a cost so close
to zero it is unmeasurable
Testing is another area where diseconomies of scale play out. Testing a
piece of software with two changes requires more tests, time and money
than the sum of testing each change in isolation.

When two changes are tested together the combination of both changes
needs to be tested as well. As more changes are added and more tests are
needed, there is a combinatorial explosion in the number of test cases
required, and thus a greater than proportional change in the time and money
needed to undertake the tests. But testing departments regularly lump
multiple changes together for testing in an effort to exploit economies of
scale. In attempting to exploit non-existent economies of scale, testing
departments increase costs, risks and time needed.

If a test should find a bug that needs to be fixed, finding the offending code
in a system that has fewer changes is far easier than finding and fixing a
bug when there are more changes to be considered.

Working on larger endeavors means waiting longer – and probably writing
more code – before you ask for feedback or user validation when compared
to smaller endeavors. As a result there is more that could be ‘wrong’, more
that users don’t like, more spent, more that needs changing and more to
complicate the task of applying fixes.

Think diseconomies, think small
First of all you need to rewire your brain: almost everyone in the advanced
world has been brought up with economies of scale since school. You need
to start thinking diseconomies of scale.

Second, whenever faced with a problem where you feel the urge to ‘go
bigger’, run in the opposite direction: go smaller.

Third, take each and every opportunity to go small.

Fourth, get good at working ‘in the small’: optimize your processes, tools
and approaches to do lots of small things rather than a few big things.

Fifth – and this is the killer: know that most people don’t get this at all. In
fact, it’s worse, they assume bigger is better.

This is an excerpt from Allan Kelly’s latest book, Continuous Digital,
which is now available on Amazon and in good bookshops.
December 2018 | Overload | 5

Best Articles 2018

Vote for your favourite articles:

 Best in CVu

 Best in Overload

Voting open now at:
https://www.surveymonkey.co.uk/r/HNP773J

https://www.surveymonkey.co.uk/r/HNP773J

FEATURE DANIELE PALLASTRELLI
Flip Model: A Design Pattern
Publishing dynamic, complex data to many clients in a
threadsafe manner is challenging. Daniele Pallastrelli
presents the Flip model pattern to overcome the challenges.
n this article, I describe a design solution that I have adopted several
times in the past while working on applications for the diagnosis of
complex distributed systems. This solution worked well in several

contexts, and it’s still proving robust in many running systems.

Although I know for sure it’s used by other developers, after some research
I could not find any reference to it in the literature, and this finally
convinced me to write about it.

After some thought, I decided to document it under the well-known form
of a Design Pattern as I believe that it’s still a convenient way to discuss
software design and architectural design (that – from my point of view –
remain fundamental topics in Software Engineering and should not be
neglected in favor of more mundane topics).

Furthermore, some young developers might not know the book Design
Patterns [Gof 1995] that made history, so I hope this article might fill a
gap and makes them curious about patterns and software design in general.

In the remainder of the article, I present the pattern following the classic
documentation format proposed in the original book (see the
‘documentation’ section in the Wikipedia article [Wikipedia] or – even
better – read the original book).

Pattern name and classification
Flip Model (behavioral).

Intent
The pattern allows multiple clients to read a complex data model that is
continuously updated by a unique producer, in a thread-safe fashion.

Also known as
Model publisher, Pressman, Newsagent.

Motivation (forces)
Sometimes it’s necessary to decouple the usage of a complex data structure
from its source, in such a way that every actor can run at their own pace
without interfering with each other.

Consider, for example, an application that periodically retrieves
information from a large sensor network to perform some kind of statistical
elaboration on the collected data set and send alarms when some criteria
are met. The data collected from the sensor network is structured in a
complex lattice of objects resembling the ones you would find in the
physical world so that the elaboration modules can navigate the data in a

more natural way. The retrieval operation is a long, complex task,
involving several network protocols, that is completely uncorrelated from
the statistical analysis and alarms evaluation, and can possibly run in
separated threads. Moreover, data retrieval and its usage have different
timing (e.g., the sensor network is scanned every 5 minutes, while the
statistical elaboration is performed on request by a human operator on the
most recent collected dataset).

In this scenario, how can all the modules of the application work together
on the same data structure? How can all the clients use the most updated
data available in a consistent fashion? And how can the application get rid
of the old data when it is no longer needed?

The main idea of this pattern is to pass the sensor data structure from the
producer to the consumers by means of two shared pointers (in C++) or
two variables (in languages with garbage collection): one (named
filling) holding the object structure currently retrieving the sensor data,
the other (named current) holding the most recent complete acquisition.

A class SensorNetwork decides when it’s time to start a new acquisition
and replaces current with filling when the acquisition is concluded.
When a client needs to perform some tasks on the data acquired, it contacts
SensorNetwork, which returns current (i.e., the most recent data
acquired). An object of class SensorAcquisition is kept alive and
unchanged during the whole time a client holds the smart pointer (and the
same is still valid in garbage collected languages).

The data acquisition (performed by SensorAcquisition) and its
reading (per formed by the var ious c l ien ts : Statistics ,
ThresholdMonitor and WebService) are possibly executed in
multiple threads. The safety of the code is ensured by the following
observations:

 a SensorAcquisition object can be modified only by the thread
of SensorNetwork, and never changed after it becomes public
(i.e., the smart-pointer current is substituted by filling)

 the smart pointer exchange is protected by a mutex.

I t is worth not ing that here the mutex is required because
std::shared_ptr provides a synchronization mechanism that
protects its control-block but not the shared_ptr instance. Thus, when
multiple threads access the same shared_ptr and any of those accesses
uses a non-const member function, you need to provide explicit
synchronization. Unfortunately, our code falls exactly under that case
since the method SensorNetwork::ScanCompleted assigns the
shared_ptr to a new value.

However, if the presence of a mutex makes you feel back in the eighties,
please see the ‘Implementation’ section for some modern alternatives.

Figure 1 (overleaf) shows a typical Flip Model class structure.

Applicability
Use Flip Model when:

 You have a complex data structure slow to update.

I

Daniele Pallastrelli has been programming and designing software
for the last 20+ years and he’ s passionate about it. A professional
software engineer, speaker, author, and runner, he is reluctant to
discuss himself in the third person but can be persuaded to do so from
time to time. In his spare time, Daniele writes papers and blog posts,
which, considering where you’re reading this, makes perfect sense. He
can be contacted via twitter at @DPallastrelli
6 | Overload | December 2018

FEATUREDANIELE PALLASTRELLI

Figure 1

Figure 2
 Its clients must asynchronously read the most
updated data available in a consistent fashion.

 Older information must be discarded when is no
longer needed.

Structure
Figure 2 shows the structure.

 Participants
 Snapshot (SensorAcquisition)

 Holds the whole set of data acquired by the
source.

 Performs a complete scan.

 Possibly provides const function members to
query the acquisition.

 Possibly is a set of (heterogeneous) linked
objects (e.g., a list of Measure objects)

 Source (SensorNetwork)

 Periodically asks the source to perform a
new scan.

 Provides the latest complete scan to its
clients.

 Client (WebService,
ThresholdMonitor, Statistics)

 Asks the Source for the latest Snapshot
available and uses it (in read-only mode).

Collaborations
 Periodically, Source creates a new Snapshot

instance, assigns it to the shared_ptr filling,
and commands it to start the acquisition.

 When the acquisition is terminated, Source performs the
assignment current=filling protected by a mutex. If no
clients were holding the previous current, the pointed
Snapshot is automatically destroyed (by the shared pointer).

 When a client needs the most updated Snapshot, it calls
Source::GetLastSnapshot() that returns current.

Figure 3 (overleaf) shows the collaborations between a client, a source
and the snapshots it creates.

Consequences
 Flip Model decouples the producer from the readers: the

producer can go on with the update of the data (slow) and each
reader gets each time the most updated version.

 Synchronization: producer and readers can run in different
threads.

 Flip Model grants the coherence of all the data structures that
are read in a given instant from a reader, without locking them
for a long time.

 Memory consumption to the bare minimum to ensure that every
reader has a coherent access to the most recent snapshot.

Implementation
Here are 8 issues to consider when implementing the Flip Model
pattern:

1. A new acquisition can be started periodically (as proposed in
the example) or continuously (immediately after the previous
one is completed). In the first case, the scan period must be
longer than the scan duration. Should the scan take longer, it is
automatically discarded as soon as the timer shoots again.
December 2018 | Overload | 7

FEATURE DANIELE PALLASTRELLI
2. The pattern is described using C++, but it can be implemented as
well in languages with garbage collection. In C++,
std::shared_ptr is necessary to ensure that a Snapshot is
deleted when no client is using it and Source has a more updated
snapshot ready. In a language with garbage collection, the collector
will take care of deleting old snapshots when they’re no longer used
(unfortunately this happens at some unspecified time, so there can
be many unused snapshots in memory).

3. The std::shared_ptr (or garbage collection) mechanism will
work correctly (i.e., old snapshots are deleted) only if clients use
Source::GetLastSnapshot() every time they need a
snapshot.

4. Snapshot (and the application in general) can be synchronous or
asynchronous.

In the first case, the method Snapshot::Scan is a blocking
function and the caller (i.e., Source) must wait until the data
structure is completed before acquiring the mutex and assigning

current to filling. Within a
synchronous application, clients will run in
other threads.

In the second case, the method
Snapshot::Scan starts the acquisition
operation and returns right away. When the
data structure is completed, an event
notification mechanism (e.g., events,
callbacks, signals) takes care to announce the
end of the operation to Source, that can
finally acquire the mutex before assigning
current to filling. An asynchronous
application can be single-thread or multi-
thread.

5. The pattern supports every concurrency
model: from the single thread (in a fully
asynchronous application) to the maximum
parallelization possible (when the
acquisition has its own threads, as well as
each client).

When the acquisition and the usage of the
snapshots run in different threads, a
synchronization mechanism must be put in
place to protect the shared_ptr. While the
simplest solution is to add a mutex, starting
from C++11 you can use instead the
overload functions
std::atomic_...<std::shared_ptr
> (and maybe from C++20
std::atomic_shared_ptr). A point
worth noting here is that the implementation
of the atomic functions might not be lock-
free (as a matter of fact, my tests with the
latest gcc version show that they’re not): in
that case, the performances are likely worse
than the version using the mutex.

A better solution could be to use an atomic
int as a key to select the right shared_ptr
(see the ‘Sample code’ section for more
details).

6. The objects composing Snapshot (usually a
huge complex data structure) are (possibly)
deleted and recreated at every scan cycle. It’s
possible to use a pool of objects instead (in
this case shared_ptr must be replaced by
a reference counted pool object handler).

7. Please note that Snapshot (and the classes
it represents) is immutable. After its creation

and the scan is completed, the clients can only read it. When a new
snapshot is available, the old one is deleted, and the clients will read
the new one. This is a big advantage from the concurrency point of
view: multiple clients running in different threads can read the same
snapshot without locks.

8. Be aware of stupid classes! Snapshot (and the classes it
represents) should not be a passive container of data. Every class
should at least contribute to retrieve its own data, and one could also
consider whether to add methods and facilities to use the data.

Sample code
The C++ code shown in Listing 1 sketches the implementation of the Flip
Model classes described in the ‘Motivation’ section.

The code in Listing 1 uses a mutex for clarity. A lock free alternative is
shown in Listing 2.

Figure 3
8 | Overload | December 2018

FEATUREDANIELE PALLASTRELLI
Just in case you were wondering, you do need an atomic integer type here,
although only one thread is writing it (have a look at C++ memory model
[cppreference] to go down the rabbit hole).

Known uses
Flip Model is used to retrieve the periodic diagnosis of network objects in
several applications I worked on. Unfortunately, I cannot reveal the details
given the usual confidentiality constraints that apply to these projects.

Related patterns
 The pattern is somewhat similar to ‘Ping Pong Buffer’ (also known

as ‘Double Buffer’ [Nystrom14] in computer graphics), but Flip
Model allows multiple clients to read the state, each at its convenient
pace. Moreover, in Flip Model, there can be multiple data structures
simultaneously, while in ‘Ping Pong Buffer’/‘Double Buffer’ there
are always two buffers (one for writing and the other for reading).
Finally, in ‘Ping Pong Buffer’/‘Double Buffer’, buffers are
swapped, while in Flip Model the data structures are passed from the
writer to the readers and eventually deleted.

 Snapshot can/should be a ‘Façade’ [Gof 95] for a complex data
structure.

 Source can use a ‘Strategy’ [Gof 95] to change the policy of update
(e.g., periodic VS continuous).

References
[cppreference] http://en.cppreference.com/w/cpp/language/

memory_model

[Gof 95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
1995 Addison-Wesley.

[Nystrom14] Robert Nystrom (2014) ‘Double Buffer’ in Game
Programming Patterns, available from
http://gameprogrammingpatterns.com/double-buffer.html

[Wikipedia] ‘Software Design Pattern’, Documentation section:
http://en.wikipedia.org/wiki/
Software_design_pattern#Documentation

Listing 1

class SensorAcquisition
{
public:
 // interface for clients
 const SomeComplexDataStructure& Data() const
 {
 // ...
 }
 // interface for SensorNetwork
 template <typename Handler>
 void Scan(Handler h) { /* ... */ }
};
class SensorNetwork
{
public:
 SensorNetwork() :
 timer([this](){ OnTimerExpired(); })
 {
 timer.Start(10s);
 }
 shared_ptr<SensorAcquisition>
 GetLastMeasure() const
 {
 lock_guard<mutex> lock(mtx);
 return current;
 }
private:
 void OnTimerExpired()
 {
 filling = make_shared<SensorAcquisition>();
 // start an async operation
 filling->Scan([this](){ OnScanCompleted(); });
 }
 void OnScanCompleted()
 {
 lock_guard<mutex> lock(mtx);
 current = filling;
 }
 PeriodicTimer timer;
 shared_ptr<SensorAcquisition> filling;
 shared_ptr<SensorAcquisition> current;
 mutable mutex mtx; // protect "current"
};
class Client
{
public:
 Client(const SensorNetwork& sn) : sensors(sn) {}
 // possibly runs in another thread
 void DoSomeWork()
 {
 auto measure = sensors.GetLastMeasure();
 // do something with measure
 // ...
 }
private:
 const SensorNetwork& sensors;
};

Listing 2

class SensorNetwork
{
public:
 SensorNetwork() :
 timer([this](){ OnTimerExpired(); })
 {
 // just to be sure :-)
 static_assert(current.is_always_lock_free,
 "No lock free");
 timer.Start(10s);
 }
 shared_ptr<SensorAcquisition>
 GetLastMeasure() const
 {
 assert(current < 2);
 return measures[current];
 }
private:
 void OnTimerExpired()
 {
 auto sa = make_shared<SensorAcquisition>();
 // start an async operation
 sa->Scan([this](){ OnScanCompleted(); });
 // filling = 1-current
 assert(current < 2);
 measures[1-current] = sa;
 }
 void OnScanCompleted()
 {
 current.fetch_xor(1); // current = 1-current
 }
 PeriodicTimer timer;
 std::array< shared_ptr<SensorAcquisition>, 2>
measures;
 atomic_uint current = 0; // filling = 1-current
};
December 2018 | Overload | 9

http://en.wikipedia.org/wiki/Software_design_pattern#Documentation
http://gameprogrammingpatterns.com/double-buffer.html
http://en.cppreference.com/w/cpp/language/memory_model
http://en.cppreference.com/w/cpp/language/memory_model

FEATURE SERGEY IGNATCHENKO
Memory Management Patterns
in Business-Level Programs
There are many memory management patterns. Sergey
Ignatchenko considers these from an application level.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Hare, and do not necessarily coincide with the opinions of the
translators and Overload editors; also, please keep in mind that
translat ion diff icult ies from Lapine (l ike those described in
[Loganberry04]) might have prevented an exact translation. In addition,
the translator and Overload expressly disclaim all responsibility from
any action or inaction resulting from reading this article.

iscussions on ‘how we should manage memory in our programs’ are
ages old; the first discussion which puts together ‘memory
management’ and ‘design patterns’ (and which I was able to find) was

over 15 years ago, in [Douglass02] – and BTW is still very relevant.

On business-level programming
Still, in spite of the topic being rather ancient, even in [Douglass02] the
discussion is a bit cluttered with details which are not directly relevant for
an app-level/business-level programmer (sure, pooling is nice – but 99%
of the time it should be an implementation detail hidden from business-
level programmer).

In this article, I will try to concentrate on the way memory management
is seen by an app-level (more specifically, business-level) developer; this
means that I am excluding not only OS kernel programmers, but also
developers who are implementing stuff such as lower-level libraries (in
other words, if your library is directly calling poll(), this whole thing is
not really about you). FWIW, the developers I am trying to represent now
are those who are writing business-level logic – more or less similar to the
logic which is targeted by programming languages such as C# and Java
(while certainly not all Java/C# code qualifies as ‘business-level’, most of
it certainly does).

A few properties of a typical business-level code:

 It changes very often (more often than everything else in sight)

 More often than not, it is ‘glue’ code

 Development speed is of paramount importance (time to market
rulezzz)

 Making changes to existing code quickly (~=‘on a whim of some
guy in marketing department’) is even more important than
‘paramount’

 Raw performance of business-level code is usually not that
important (it is the way that it calls the pieces of code it glues
together which matters for overall performance)

Pattern: Zero Memory Management
With this in mind, we can start discussing different memory
management patterns which are applicable at the business level. As
business-level programming has its own stuff to deal with and memory
management is rarely a business requirement, more precisely, we’ll be
speaking about memory management which we cannot avoid using even
at a business level.

It may be difficult to believe, but there are (ok, ‘were’) programming
languages that didn’t need memory management at all (or, more precisely,
with memory management so rudimentary that we can ignore it for our
purposes); one example of such a language is FORTRAN77 (though it was
expanded with allocatable data in FORTRAN90). Let’s call it Zero
Memory Management.

The idea behind Zero Memory Management is simple: as long as we say
that all the variables in our program behave ‘as if’ they’re on-stack
variables (and any references to them can only go downstream, i.e. from
caller to callee), we can easily prove that we don’t need any additional
memory management at all, and the program is guaranteed to be correct
memory-wise without any additional efforts. In other words:

the best way to avoid problems with pointers is to prohibit
them outright.

BTW, Zero Memory Management doesn’t prevent us from using heap; the
only thing I, as a business-level developer, care about is that all the
variables behave ‘as if’ they’re on the stack. It means that things such as
std::string and std::unique_ptr<> in C++ (as well as any
implementation which uses heap behind the scenes in a similar manner)
still qualify as Zero Memory Management (sic!).

In a sense, if we could restrict business-level programming to Zero
Memory Management, it would be a Holy Grail™ from the memory
management point of view: there would be no need to think about anything
memory-related – our programs would ‘just work’ memory-wise.
Unfortunately, for real-world business programs with complicated data
structures, it is not that easy.

Traversing problem
One thing which cannot be expressed easily under the Zero Memory
Management model is the traversing of complicated data structures. For
example, let’s consider the following data structure:

 //PSEUDO-CODE
 class OrderItem {
 //some data here
 };
 class Order {
 vector<OrderItem> items;
 };

So far so good, and we’re still well within the Zero Memory Management
model, until we need, given an OrderItem, to find the Order to which
it belongs.

D

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience,
including being a co-architect of a stock exchange, and the sole
architect of a game with 400K simultaneous players. He currently
holds the position of Security Researcher. Sergey can be contacted at
sergey@ignatchenko.com
10 | Overload | December 2018

FEATURESERGEY IGNATCHENKO

We can say that Manual Memory Management
does allow us to support arbitrarily-complicated

data structures – and very efficiently too
Traditionally, this task is solved by adding a pointer/reference to Order
into OrderItem – but in Zero Memory Management there is no such thing
as a pointer, so we’re out of luck. Of course, we can always use a pair of
(OrderItem, index-in-vector-of-OrderItems) to express the
same thing, but with more complicated data structures with multiple levels
of indirections it will quickly (a) become really ugly and (b) start causing
significant performance hits.

Let’s call this issue of traversing our complicated data structure a
‘traversing problem’. In practice, it happens to be bad enough to prevent
us from using the otherwise very simple and straightforward Zero Memory
Management model .

Pattern: Manual Memory Management
The second memory management pattern on our list is the dreaded
manual memory management. We’re allocating something on the heap
– and obtaining a pointer to it, and then it is our obligation to delete this
allocated memory.

Manual memory management has been known at least for 50 years (IIRC,
C’s malloc()/free() was not the first such thing); and the problems
with it have been known for all those years too. With manual memory
management, it is very easy to make one of the following mistakes:

 Forget to delete allocated memory (causing memory leak)

 Dereference a pointer to already deleted memory (causing all kinds
of trouble, with the worst cases being crashes or data corruption).

 On the positive side, we can say that Manual Memory Management
does allow us to support arbitrarily-complicated data structures –
and very efficiently too. But its lack of protection from silly
mistakes is a serious drawback for business-level programming.

Pattern: Reference Counting
NB: I won’t engage in a discussion whether reference counting should be
considered a flavor of Garbage Collection or not. As with any debate about
terminology, it is outright silly; what really matters is how the things work,
not how we name them.

One very simple idea to avoid Manual Memory Management is to use
Reference Counting: each object has a reference counter in it, and
whenever the object is no longer referenced (because the last reference to
an object is dropped) – the object is deleted. Unfortunately, this approach
can easily cause loops of objects which are referenced only by each other,
causing syntactic memory leaks (also, the semantic memory leaks
discussed in the section ‘Pattern: (full-scale) Garbage Collection’ below,
still apply).

In C++, Reference Counting is represented by std::shared_ptr<>. To
help with addressing the loop problem, there is a std::weak_ptr<>
which allows us to avoid loops, but it is still the developer’s responsibility
to make sure loops don’t occur. In addition, there are certain problems with
the implementation of std::shared_ptr<> such as the need for the
developer to choose the lifetime of the tombstone (very briefly: if we’re

using make_shared(), we’re improving locality, but this is at the cost
of the memory for the whole object being kept until the last weak_ptr<>
to it is removed, which can take a while).

Overall, Reference Counting is not too popular in the industry (and
IMNSHO for a good reason too): on the one hand, it doesn’t provide firm
safety guarantees, and on the other one – for a vast majority of use cases
– it is not really necessary, with std::unique_ptr<> (and its ‘definite,
predictable lifespan’) generally preferred over reference counting most of
the time ([Stroustrup][Parent13][Weller14], and most importantly – my
personal experience; IIRC, in my career I have needed an equivalent to
shared_ptr<> only thrice – all the cases not at business-level – with
number of examples when unique_ptr<> was sufficient, going into
goodness knows how many thousands).

Pattern: (full-scale) Garbage Collection
After people have tried reference counting (which still failed to achieve
the Holy Grail™ of memory safety), the next thing which arose to deal with
memory management was (full-scale) Garbage Collection. The premise of
Garbage Collection is simple:

 Objects are allocated on the heap (but references can live on the
stack).

 An object is not deleted as long as it is reachable from the stack (or
from globals) via a chain of references. In other words, as long as
there is at least one way to reach the object, it stays alive.

Garbage Collection (a) does solve the Traversing Problem, and (b) does
avoid the mistakes which are typical with Manual Memory Management.
But does this mean that we’ve found a new Holy Grail of Memory
Management™ with Garbage Collection? Not really.

The Big Fat Problem™ with Garbage Collection is that if we forget to clean
a no-longer-needed reference, it leads to a so-called semantic memory
leak, which is a well-known plague of garbage-collected programming
languages. Moreover, as has been argued in [NoBugs18], for code to be
both safe and leak-free, the cleaning of such no-longer-needed references
should happen exactly at the same places where we’d call manual
free()/delete in Manually Managed languages.

More generally, keeping an object alive as long as there is ‘at least one way
to reach’ it (a concept central to garbage collection) means, effectively,
loss of control over object lifetimes (they become next-to-impossible to
track and control in a sizeable project where anybody can silently store a
reference causing all kinds of trouble); this, in turn, creates the potential
for Big Fat Memory Leaks™ – and these have to be avoided in quite a few
Big Fat Business-Level Programs™.

Note that these semantic leaks could be avoided (and control over object
life times can be claimed back without introducing the risk of a crash) by
using ‘weak references’ for all the references except those references
which do express ownership, but such approaches are uncommon for
garbage-collected languages (where traditionally ‘weak references’ are
seen as a way to implement caches rather than something to prevent
unwanted expansion of an object’s life time, and what’s more important
December 2018 | Overload | 11

FEATURE SERGEY IGNATCHENKO

I have to learn not only ‘how to write
correct programs’, but also ‘how to
write programs which the current Rust
compiler considers correct’
for practical purposes, ‘weak references’ have much bulkier syntax than
default references).

Pattern: Rust Memory Management
(~=‘proof engine for dumb pointers’)
A new kid on the memory management block is the Rust programming
language, which has its own approach to ensuring memory safety. Very,
very briefly: [within code which is not marked as ‘unsafe’] Rust tries to
prove that your program is memory-safe, and if it cannot prove safety –
your program fails to compile.

The problem with such an approach is that the reasoning becomes
convoluted, and what’s much worse is that this proof engine becomes
exposed to the developer. Moreover, this restriction is fundamental: Rust
cannot (and won’t be able to, ever) ensure that its proof engine accepts all
correct programs (while still rejecting all incorrect ones); in turn, it means
that as a Rust programmer, I have to learn not only ‘how to write correct
programs’ (which is inherent for any programming language), but also
‘how to write programs which the current Rust compiler considers
correct’. In practice, this last thing happens to be a Big Pain In The Ahem
Neck™. Personally, I’d compare the complexity and the amount of
jumping through hoops when programming in Rust with the complexity
of programming templates in C++ (~=‘manageable but really ugly
especially for business-level programming’) – but at least in C++, not all
the code is within templates (and using templates in C++ doesn’t suffer
from additional complexity).

And as an app-level developer I certainly do NOT want to spend time
thinking about Rust proof engine messages that are cryptic for anyone who
doesn’t know them. For example, you ‘cannot borrow foo as immutable
because it is also borrowed as mutable’. Furthermore, how I should explain
my intentions to the proof engine so it can prove that the program is correct.
In Rust, this corresponds to specifying explicit lifetimes.

Sure, it is possible to learn how the Rust proof engine works – but it
is yet another Big Fat Thing™ to remember, and with a cognitive
limitation of 7±2 entities we can deal with at any given time, it
becomes a Big Fat Burden™ on us (=‘poor defenseless app/
business-level programmers’)

This complexity IMNSHO stems from an original intention of Rust which
I’d describe as ‘let’s make an equivalent of the C language and try to prove
the correctness of such programs’; and as the C language is all about ‘dumb
pointers’, this means trying to prove the correctness of an arbitrary
program with dumb pointers (things don’t change if we rename ‘pointers’
to ‘references’). And this, as Rust experience IMNSHO demonstrates, is
an unsurmountable task without placing too much burden on app-level
developers (though IMHO Rust still may have its use at system level).

NB: currently, Rust is in the process of improving their proof engine with
‘Non-Lexical Lifetimes’ (NLL). This is supposed to improve Rust’s
ability to prove correctness. IMNSHO, while NLL will indeed allow Rust
to prove more cases, it won’t make the life of the developer significantly

simpler. First, there will still be correct programs for which Rust cannot
prove correctness, and second, when the Rust compiler fails to prove
correctness, understanding why it has failed will become even more
cryptic. As one of the NLL features is to analyze conditional control flow
across functions, this means that errors become essentially
non-local; by changing my function z() in a million-LoC project I can
cause a compile-time failure in a function a() which calls b() which
calls c() … which calls y() which calls my function z(). Under these
circumstances, figuring out which of the functions a()…z() has to be
fixed becomes a hugely non-trivial task (and with a huge potential for
fingerpointing between different people/teams about implied contracts
between different functions).

Pattern: Zero+ Memory Management
And last, but certainly not least, I want to describe a memory management
approach which is successfully used in quite a few projects (without this
fancy name, of course), ensuring very straightforward programming (and
without semantic memory leaks too).

In essence, it is a Zero Memory Management pattern with some kind of
{raw|safe|weak} pointers/references added to get around the Traversing
Problem. This allows to keep a Zero Memory Management pattern that is
very undemanding for the developer, adding only the very minimal fix
necessary to address the Traversing Problem.

In essence, this approach relies on expressing data structures via a
combination of (a) ‘owning’ pointers, and (b) ‘non-owning’ ones. It means
that our resulting data structure is a forest, with trees of the forest built from
‘owning’ pointers, and ‘non-owning’ pointers going pretty much
anywhere within this tree (in particular, in our example above adding a
non-owning pointer from OrderItem to Order won’t be a problem).

Formally, such a forest can express an arbitrary complex data structure.
An arbitrary data structure say, in Java, corresponds to a directed graph all
parts of which arbitrary data structure are reachable from certain entry
points of this directed graph. But then, we can remove those edges which
are not necessary for reachability (actually, replacing them with ‘non-
owning’ pointers) and we’ll get a forest which is built out of ‘owning’
pointers.

Less formally, in all my 20+ years of development, I can remember only
three times when I have seen a data structure which doesn’t naturally lend
itself to the Zero+ Memory Management model above. Just to illustrate
this observation, let’s take a look at the data structures we’re routinely
using to express things: structures, nested structures, lists, vectors, hash
tables, trees – all of them are naturally expressed via some kind of a tree
built from ‘owning pointers’ (with an occasional ‘non-owning pointer’
going in the direction opposite to the direction of ‘owning’ ones). Those
few cases when this model wasn’t enough in practice were the same cases
when shared_ptr<> was indeed necessary, but all such cases weren’t
at the business-level to start with.
12 | Overload | December 2018

FEATURESERGEY IGNATCHENKO

the so-called ‘generational hypothesis’ says that
young objects are more likely to die than old ones
Pattern: Zero+Something Memory Management
One more thing about Zero+ Memory Management is that we don’t
necessarily need to follow this model for all the objects which can arise
in our program. Rather, most of the time we can separate our objects into:

 long-term objects: for example, those representing the state of our
state machine – and

 temporary objects, which are going to be destroyed after we leave
our current function.

This separation is also consistent with the so-called ‘generational
hypothesis’ which says that young objects are more likely to die than old
ones. With this in mind, we can say that Zero+ Memory Management is
really important only for long-term objects; for temporary ones we can live
with pretty much any other model which works for us. In one example, we
may want to use Zero+ for long-term objects, and classical GC-based
Memory Management for temporary ones (as long as long-term objects are
properly structured, GC will indeed take care of all the temporary ones as
soon as temporary objects go out of scope).

Examples of how Zero+Something Memory Management can be used
with different programming languages:

 C++ with std::unique_ptr<> as ‘owning’ pointers, and naked
C-style pointers for ‘non-owning’ ones. This is not safe (there is a
risk of dangling pointers), but at least will protect against memory
leaks. This is actually an approach which was used for quite a few
serious C++ projects (including some of my own, including a G20
stock exchange and an MOG with 500K simultaneous players) – and
very successfully too.

 C++ which uses shared_ptr<> as an implementation of
owning_ptr<> (with copying prohibited for owning_ptr<>);
this also allows for safe pointers (implemented on top of
weak_ptr<>).

 ‘Safe C++’ along the lines described in [NoBugs18]. Essentially
replaces ‘non-owning’ pointers with their safe counterparts – being
able to provide safety guarantees (!). (NB: in [NoBugs18] there is
also a big chunk of logic aimed to make naked pointers safe for those
temporary objects.)

 Java with usual Java references as ‘owning’ pointers, and
WeakReference<> as ‘non-owning’ ones. This will allow us to
avoid memory leaks, including most existing semantic memory
leaks too (at the very least, it will be much easier to track semantic

memory leaks). Zero+Something approach allows us to use the
usual Java references for temporary objects (i.e. everywhere except
for long-term ones).

 C# with usual C# references as ‘owning’ pointers, and
WeakReference (a ‘short’ kind(!)) as ‘non-owning’ ones. Similar to
Java, this will allow us to avoid most existing semantic memory
leaks. And also same as with Java, Zero+Something approach
allows us to use usual C# references for temporary objects (i.e.
everywhere except for long-term ones).

Conclusion
We considered quite a wide range of existing memory management
patterns, ranging from Zero Memory Management to Rust Memory
Safety. And IMNSHO, at least for business-level programming (which
covers most of app-level programming), Zero+Something Memory
Management tends to work the best. This approach allows to (a) represent
pretty much everything we need, and (b) to avoid pitfalls which are typical
for other models. Moreover, it has quite a significant history at least in
serious C++ projects (my own ones included), with very good results.

References
[Douglass02] Bruce Powel Douglass (2002) Real-Time Design Patterns:

Robust Scalable Architecture for Real-Time Systems, Addison-
Wesley, https://www.amazon.com/Real-Time-Design-Patterns-
Scalable-Architecture/dp/0201699567

[Loganberry04] David ‘Loganberry’, Frithaes! – An Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

[NoBugs18] ‘No Bugs’ Hare, ‘Java vs C++: Trading UB for Semantic
Memory Leaks (Same Problem, Different Punishment for Failure)’,
http://ithare.com/java-vs-c-trading-ub-for-semantic-memory-leaks-
same-problem-different-punishment-for-failure

[Parent13] Sean Parent (2013) C++ Seasoning, GoingNative,
https://channel9.msdn.com/Events/GoingNative/2013/Cpp-
Seasoning

[Stroustrup] Bjarne Stroustrup, C++11 FAQ, http://www.stroustrup.com/
C++11FAQ.html#std-shared_ptr

[Weller14] Jens Weller, shared_ptr addiction,
https://www.meetingcpp.com/blog/items/shared_ptr-addiction.html
December 2018 | Overload | 13

http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://www.stroustrup.com/C++11FAQ.html#std-shared_ptr
http://www.stroustrup.com/C++11FAQ.html#std-shared_ptr
https://www.meetingcpp.com/blog/items/shared_ptr-addiction.html
https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning
https://www.amazon.com/Real-Time-Design-Patterns-Scalable-Architecture/dp/0201699567
https://www.amazon.com/Real-Time-Design-Patterns-Scalable-Architecture/dp/0201699567
http://ithare.com/java-vs-c-trading-ub-for-semantic-memory-leaks-same-problem-different-punishment-for-failure

FEATURE BRONEK KOZICKI
Compile-time Data Structures in
C++17: Part 3, Map of Values
A compile time map of values allows code to be
tested more easily. Bronek Kozicki demonstrates
how to avoid a central repository of values.
n the previous two parts of the series [Kozicki18a] [Kozicki18b] we
were introduced to a compile-time set of types and a map of types. In
both of these data structures, all operations were guaranteed to have

precisely zero runtime cost. This part is different, for two reasons:

 we are going to store actual values in the data structure. Since only
literal types [cppreference] support construction during the
compilation time, and we want to support the broadest possible
range of types, it follows that non-literal types will have to endure
run-time penalty (of construction and, possibly, copy)

 as far as the implementation is concerned, there is very little
difference between the map of types (presented previously) and the
map of values, shown in Listing 1. Hence, having introduced the
basic programming techniques in the preceding parts, the focus of
this part will be on the uses of such data structures in the modern
C++, rather than its implementation details.

There is also the elephant in the room which needs to be addressed first:
STL-style containers supporting compile-time operations. One such
container library is Frozen [Frozen], but there is also an ongoing effort to
make standard C++ containers compliant with the literal types
requirements [Dionne18] [P0980R0] [P1004R1]. Since the topic of the
series is ‘compile-time data structures’, there is an obvious overlap here.
For a start, we are dealing with collections which support compile-time
operations such as construction or lookup. The implementation of such
containers will necessarily rely on a similar set of meta-programming
techniques. Finally, we are talking about modern C++, and that’s about all
the similarities. The differences are less visible, but not less significant.
The STL-style containers are designed for imperative programming style,
and they are homogeneous (that is, only support single prescribed data
type). This homogeneity is inherent to imperative programming style
because, without it, it is somewhat tricky to populate a container, pass it
around as a function parameter or its return type, or write a simple for
loop, iterating over the container elements. The compile-time collections
presented so far in the series do not appear to support iteration at all, but
as the code excerpt in the Listing 2 demonstrates, this is quite achievable
(although not nice) with the help of generic lambdas.

Similarly, passing parameters and returning heterogeneous collections
imply the use of templates, which means a code similar to one in the code
excerpt in the Listing 3 (note unconstrained template <typename
Val> passed to foo). Templates such as this make it difficult to reason
about the code because of the very few constraints attached. Speaking of
which, we have seen ‘constraints’ used in our compile-time data structures
in the preceding parts of the series, and they present great means of

differentiation of the data structures as demonstrated in Listing 4. Since
overload resolution complements template matching, it is also possible to
overload based on ‘constraints’ set on the compile collection, like the code
sample also demonstrates. Our heterogeneous containers offer one more

I There is no such thing as ‘O(0)’ time complexity of a function (hence
quotes) because time complexity implies that some action will be actually
performed during the program execution. Here we are asking the
compiler to perform all the actions required by the function (or more
accurately, a meta-function) during the compilation itself, which allows
us to use the result as an input for further compilation.

A meta-function might be a function with a constexpr specifier, but
typically we will use either a template type (wrapped in a using type alias
if nested inside a template type) or a constexpr static variable
template (also nested inside a template type). In the former case, a result
of a meta-function is a type, and in the latter, it is a value.

A tag type is a type which is meant to be used as a name – it has no data
members and no useful member functions. The only purpose of objects
of such types is the deduction of their type. Examples in the C++ standard
library include std::nothrow_t or types defined for various
overloads of std::unique_lock constructor.

A pure function is a function which has no side effects and, for any valid
and identical set of inputs, always produces the same output. For
example, any deterministic mathematical function is also a pure function.
A function which takes no input, but always produces the same result and
has no side-effect is also a pure function. Mathematical functions in C++
standard library are not pure functions, but this is about to change
[P0533R3]. We can view many meta-functions as pure functions.

A limitation of meta-functions is that they do not have a stack in any
traditional sense (they have template instantiation depth instead), and
cannot manipulate variables. They can produce (immutable) variables or
types, which means that they can be used to implement recursive
algorithms. Such implementation will be typically a template type, where
at least one specialisation implements the general algorithm, while
another specialisation implements the recursion terminating condition.
The compiler selects the required ‘execution path’ of the recursive
algorithm utilising template specialisation matching.

A higher order function is a function which consumes (or produces, or
both) a function. Since in our case a (meta)function is a template, we can
implement a higher order (meta)function consuming a (meta)function, as
a template consuming template parameter (or in other words, a ‘template
template parameter’). Since template types can naturally output a
template type, any meta-function which is a type can trivially produce a
meta-function.

A selector is some entity mapped to another – in a C++ standard library,
a selector in std::map<int, std::string> is some value of type
int. One way to perform such mapping during compilation is to employ
overloading, which makes tag types an obvious choice of the selector.
Mapping result could be either a type (deduced with the help of
decltype keyword) or actual value, returned from an overloaded
function. To avoid instantiating arbitrary types, we are going to use a
small wrapper template when only a type is needed.

Overview of the previous parts

Bronek Kozicki developed his lifelong programming habit at the
age of 13, teaching himself Z80 assembler to create special effects
on his dad’s ZX Spectrum. BASIC, Pascal, Lisp and a few other
languages followed, before he settled on C++ as his career choice.
In 2005, he moved from Poland to London, and promptly joined the
BSI C++ panel with a secret agenda: to make C++ more like Lisp,
but with more angle brackets. Contact him at brok@incorrekt.com
14 | Overload | December 2018

FEATUREBRONEK KOZICKI

There is also the elephant in the room which
needs to be addressed first: STL-style containers

supporting compile-time operations
feature which is unattainable for traditional containers – overloading based
on content (as seen with Ver1 and Ver2, which imply one potential
application – admittedly, such code is likely to be very brittle).

Hopefully, the code demonstrated so far is enough to trigger the ‘this is
interesting’ response of the reader. But is it actually useful? Here is a 10
thousand feet view at such a container:

 a hardcoded ‘selector’ must be used to refer to an element (a value
or a lambda or a type), stored within the container;

 type of each element is derived from the ‘selector’;

 there is no central repository of ‘selectors’ and each can be defined
independently of others

The first two points are also available to any user-defined type in a C++
program. We use hardcoded names to refer to a field, member function,
or nested type, and there is nothing new here. The last one is what
makes the data structures presented here unusual. Let’s have a look at
the two popular design patterns where data members, or functions, are
typically used.

Listing 1 (cont’d)

private:
 check val_;
};
}
template <template <typename> typename CheckT,
 template <typename> typename CheckV,
 typename... L>
class val {
 template <template <typename> typename,
 template <typename> typename, typename...>
 friend class val;
 using impl = val_impl::impl<CheckT, CheckV,
 L...>;
 impl val_;
 constexpr explicit val(const impl& v) : val_(v)
 {}
public:
 constexpr val() = default;
 template <typename T, typename V> constexpr auto
 insert(const V& v) const noexcept
 {
 using result = val<CheckT, CheckV, T, V,
 L...>;
 using rimpl = typename result::impl;
 return result(rimpl(val_, v));
 }
 using set = typename impl::selectors;
 template <typename U> using type =
 typename decltype(impl::type
 (val_impl::wrap<U>()))::type;
 template <typename U> constexpr const
 auto& get() const noexcept
 {
 return val_.pair(val_impl::wrap<U>());
 }
 template <typename U, typename... A> constexpr
 auto run(A&&... a) const -> decltype(auto)
 {
 return get<U>()(std::forward<A>(a)...);
 }
};Listing 1

// copy the definition of set in Listing 6 from
// https://accu.org/index.php/journals/2531
// to here
namespace val_impl {
template <typename T> struct wrap {
 constexpr explicit wrap() = default;
 using type = T;
};

template <template <typename> typename CheckT,
 template <typename> typename CheckV,
 typename... L> struct impl;
template <template <typename> typename CheckT,
 template <typename> typename CheckV>
struct impl<CheckT, CheckV> {
 using selectors = set<CheckT>;
 constexpr explicit impl() = default;
 constexpr static void pair() noexcept;
 constexpr static void type() noexcept;
};
template <template <typename> typename CheckT,
 template <typename> typename CheckV, typename T,
 typename V, typename... L>
struct impl<CheckT, CheckV, T, V, L...>
 : impl<CheckT, CheckV, L...> {
 using check = typename CheckV<V>::type;
 using base = impl<CheckT, CheckV, L...>;
 using selectors =
 typename base::selectors::template insert<T>;
 static_assert
 (not base::selectors ::template test<T>);
 constexpr impl(const impl<CheckT, CheckV, L...>&
 b, const check& v) : base(b), val_(v) {}
 using base::pair;
 constexpr const auto& pair(wrap<T>) const
 noexcept { return val_; }
 using base::type;
 constexpr auto type(wrap<T>) const noexcept {
 return wrap<V>{}; }
December 2018 | Overload | 15

16 | Overload | December 2018

FEATURE BRONEK KOZICKI

Listing 2

namespace set_impl {

template <template <typename> typename Check,
 typename... L> struct unique;
template <template <typename> typename Check>
 struct unique<Check> {
// add this to set_impl::unique<Check> code :
 template <typename F> constexpr static bool
 apply(const F&) noexcept { return true; }
};

template <template <typename> typename Check,
 typename T, typename... L>
struct unique<Check, T, L...> {
// add this to set_impl::unique<Check, T, L...> :
template <typename F> constexpr static bool
 apply(const F& fn) noexcept
 {
 if constexpr (not std::is_void_v<T> && not
 contains_detail<Check, T, L...>::value) {
 if (not fn((T*)nullptr)) return false;
 }
 return unique<Check, L...>::apply(fn);
 }
};
} // namespace set_impl

template <template <typename> typename Check,
 typename... L> class set {
 using impl = set_impl::unique<Check, L...>;

public:
// add this to set<Check, L...> :
 template <typename F>
 constexpr static bool for_each(const F& fn)
 { return impl::apply(fn); }
};

int main()
{
 constexpr static auto s1 = set<PlainTypes>
 ::insert<int>::insert<Baz>::insert<Fuz>();
 decltype(s1)::for_each([](auto* d) -> bool {
 using type = decltype(*d);
 std::cout << typeid(type).name() << std::endl;
 return true;
 });
}

Our heterogeneous containers offer one more
feature which is unattainable for traditional
containers – overloading based on content
Abstract factory
Intent: Provide an interface for creating families of related or

dependent objects without specifying their concrete classes
~ Design Patterns [GoF95].

The ‘interface’, as referred to above is in the context of object-oriented
programming, which in C++ programs translates to a base class with
(pure) virtual functions. The use of this design pattern imposes runtime
polymorphism on our project since (by definition) there is no way for the
factory implementation to convey via the interface the dynamic type of
the objects being created. We can, however, take the factory pattern and

Listing 3

template <typename Val>
void foo(const Val& v)
{
 auto fuz = v.template run<Fuz>(
 v.template get<Baz>());
 // ...
}
int main()
{
 constexpr static auto m1 =
 val<PlainTypes, PlainNotVoid>{}
 .insert<Fuz>([](int v){ return Fuzzer(v); })
 .insert<Baz>(13);
 foo(m1);
};

Listing 4

template <typename T> void foo(T);

template <typename... L>
void foo(const val<PlainTypes, Plain, L...>& v)
{ /* ... */ }

template <typename... L>
void foo(const val<DataSel, Plain, L...>& v)
{ /* ... */ }

template <typename... L>
auto foo(const val<PlatformSel, Plain, L...>& v)
 -> std::enable_if_t<std::decay_t<decltype(v)>
 ::set::template test<Ver1>>
{ /* ... */ }

template <typename... L>
auto foo(const val<PlatformSel, Plain, L...>& v)
 -> std::enable_if_t<std::decay_t<decltype(v)>
 ::set::template test<Ver2>>
{ /* ... */ }

December 2018 | Overload | 17

FEATUREBRONEK KOZICKI

Listing 6

template <typename Context>
void baz(const Context& c)
{
 auto& a = c.logger; // ...
}
struct MyContext {
 Logger& logger;
};
int main()
{
 Logger logger;
 MyContext context {logger};
 baz(context);
}

Listing 7

struct CommandLine {
 CommandLine(int argv, char* const* argc);
};
enum ConfigurationSelector {};
struct Configuration {
 explicit Configuration(const CommandLine& cmd);
};
enum PlatformServicesSelector {};
struct PlatformServices {
 template <typename... L>
 explicit PlatformServices(const val<PlainTypes,
 PlainNotVoid, L...>& v)
 {
 const auto& conf =
 *v.template get<ConfigurationSelector>();
 // ...
 }
};
enum MarketPriceInputsSelector {};
struct MarketPriceInputs {
 template <typename... L>
 explicit MarketPriceInputs(const val<PlainTypes,
 PlainNotVoid, L...>& v)
 {
 const auto& conf =
 *v.template get<ConfigurationSelector>();
 const auto& plat =
 *v.template get<PlatformServicesSelector>();
 // ...
 }
};

Listing 7 (cont’d)

enum ClientPriceCalcSelector {};
struct ClientPriceCalc {
 template <typename... L>
 explicit ClientPriceCalc(const val<PlainTypes,
 PlainNotVoid, L...>& v)
 {
 const auto& conf =
 *v.template get<ConfigurationSelector>();
 const auto& mark =
 *v.template get<MarketPriceInputsSelector>();
 // ...
 }
};
enum NetworkOutputSelector {};
struct NetworkOutput {
 template <typename... L>
 explicit NetworkOutput(const val<PlainTypes,
 PlainNotVoid, L...>& v)
 {
 const auto& conf =
 *v.template get<ConfigurationSelector>();
 // ...
 }
};

struct ClientPriceOutput {
 template <typename... L>
 explicit ClientPriceOutput(const val<PlainTypes,
 PlainNotVoid, L...>& v)
 {
 const auto& conf =
 *v.template get<ConfigurationSelector>();
 const auto& price =
 *v.template get<ClientPriceCalcSelector>();
 auto& out =
 *v.template get<NetworkOutputSelector>();
 // ...
 }
};

int main(int argv, char** argc)
{
 const auto v0 = val<PlainTypes, PlainNotVoid>{};
 try {
 const auto cmdln = CommandLine(argv, argc);
 const auto config = Configuration(cmdln);
 const auto v1 =
 v0.insert<ConfigurationSelector>(&config);
 const auto plsrv = PlatformServices(v1);
 const auto v2 =
 v1.insert<PlatformServicesSelector>(&plsrv);
 const auto input = MarketPriceInputs(v2);
 const auto v3 =
 v2.insert<MarketPriceInputsSelector>(&input);
 const auto price = ClientPriceCalc(v3);
 auto output = NetworkOutput(v3);
 const auto v4 =
 v3.insert<ClientPriceCalcSelector>(&price)
 .insert<NetworkOutputSelector>(&output);
 const auto clout = ClientPriceOutput(v4);
 // ...
 }
 catch (...) {
 // ...
 }
 return 0;
}

Listing 5

template <typename Factory>
void baz(const Factory& f)
{
 auto a = f.logger(); // . . .
}
struct MyFactory {
 Logger logger() const;
};
int main()
{
 MyFactory factory;
 baz(factory);
}

FEATURE BRONEK KOZICKI
transform it to the implied interface in the context of generic
programming, as demonstrated in Listing 5. This approach enables us to
dispose of the dynamic polymorphism since the generic programming
style means that the dynamic type is available at the point of use.

Encapsulated context
Solution: Provide a Context container that collects data together

and encapsulates common data used throughout the system.
~Allan Kelly [Kelly]

Interestingly, the definition of this pattern also uses the word ‘container’.
The selector in the case of this pattern is accessor member function which
may imply the use of runtime polymorphism. However, this pattern works
also with data fields and generic programming, as demonstrated in
Listing 6.

Both design patterns impose a single, shared dependency on all the uses
of the context or factory class. A programmer has to choose between
dependency on the implementation indirectly via the generic interface (as
demonstrated in Listings 5 and 6), or directly on the interface class in the
OOP sense, hence imposing runtime polymorphism. The heterogeneous
containers presented in this part of the series offer an alternative solution:
since there is no concrete implementation class as such, the dependency
is on the containers (a utility class), selectors and optionally also
constraints. The constraints are considered to be optional because their
definition can be as loose or as tight as desired by the user. One end of the
spectrum was demonstrated in the preceding articles as generic
PlainTypes while on the opposite end we might enforce inheritance of
selectors from certain types or presence of specific markers (e.g. nested
type), or even expressly list them in the form of a ‘set of types’. The
selectors are not optional; however, they may be defined in the context of
their use, rather than some arbitrary central location (as opposed to fields
or member functions of a class). This distributed nature of selectors
removes the single shared dependency we have seen earlier. Additionally,
with the use of lambdas, we can define both a context and a factory, within
the same instance of the map of types (demonstrated in Listing 3).

The lack of central location comes with one more benefit. Imagine we have
hypothetical ‘real world’ financial software, with the following internal
dependencies:

 command line parser has no dependencies;

 configuration depends on the command line parser;

 platform services (logging, network RPC, monitoring etc.) depends
on the configuration;

 market price inputs depend on network RPC and configuration;

 client price calculation depends on market price inputs and
configuration

 network output depends on the configuration

 client price output depends on configuration, client price calculation
and network output (to send the price to)

Such dependencies imply that objects have to be instantiated in a specific
order. If we were to use a context pattern to carry the configuration,
platform services, market price inputs, network outputs etc. then our
choices are to either:

 create multiple Context classes with increasing number of
(reference) fields, or

 create a single Context class with optional fields and implement
runtime checks that the dependencies are set when required

Neither is of those is very appealing. The latter (as simpler) is likely to be
preferred, but it will cause brittleness of code and enable a whole category
of bugs. The value map, as presented here, allows a solution which
enforces the correct order of instantiation in the compile time – see
Listing 7. Admittedly, multiple copies of the map and the use of pointers
may seem like a ‘code smell’, but such code is also very readable. The more
refined version presented in Listing 8 makes use of lambdas instead One
point of note is that in this version, the bodies of constructors use
v.template run<...Selector>(v) instead of template

get<...Selector>(). We have also changed ClientPriceOutput
to a template to own the NetworkOutput subobject and made the class
NetworkOutput non-copyable, even though it is returned by value from
the lambda defined for NetworkOutputSelector. Such construction
by-value of non-copyable objects is guaranteed to work thanks to
obligatory copy elision in C++17 (users of Visual Studio 2017 version 15.8
will have to find a workaround or downgrade to 15.7 because of a
regression bug [VS]). The attentive reader will notice how this last code
excerpt mixes both context and factory pattern.

There is one more question remaining to answer ‘why bother?’ The answer
is the same as for any other kind of polymorphism ‘to make the code
testable’. The use of templates enables us to avoid the cost of dynamic
polymorphism (not only in the runtime but also boilerplate OOP interface
code), while the value map removes the need for a single central repository.
With its help, our unit tests will be able to easily pass mock objects to the
code being tested as demonstrated in Listing 9 (for objects created on the
stack) and Listing 10 (for objects returned by lambdas). Note that the static
object lifetime of MockConfiguration in Listing 10 will delay the
destruction of config object until unit tests termination. A good
workaround is to store our mock objects on the stack and then pass them
to l ambda a s a r e f e r ence , a s de mo ns t r a t ed w i th
MockPlatformServices. Readers will hopefully find other useful
applications of the compile-time polymorphism offered by the map of
values.

We started the series with the demonstration of the most useful meta-
programming techniques, in the context of functional programming where
the program is run by the compiler. The ‘set of types’ presented in the first
part, even though rather simple, enables some interesting uses – among
them a constraint to validate that certain template parameters are within a
predefined set of types (which is left as an exercise to the reader). Then
we moved to the, perhaps not very exciting, ‘map of types’ and finally, in
this part discussed what I like to call a ‘heterogenous compile-time
container’, demonstrating how such data structure can be used to solve real
problems. The work is not finished, but the code discussed here is usable
and available for readers to download from the Juno library [Juno]. The
library is in very early stages of development and open to significant
changes, but the similar solutions to presented here have found their use
in the ‘real world’ code already. The very liberal MIT license allows
anyone to ‘lift’ the parts of the source and use in their projects, which is
preferred over taking the dependency (due to library immaturity). Readers
are invited to the discussion on the future development, design and
interface, in the ‘issues’ section of the library or sending me email directly.
All inputs are welcome!

References
[cppreference] ‘C++ named requirements: LiteralType’ at

https://en.cppreference.com/w/cpp/named_req/LiteralType

[Dionne18] Louis Dionne ‘Compile-time programming and reflection in
C++20 and beyond’ from CppCon 2018, available at
https://youtu.be/CRDNPwXDVp0

[Frozen] ‘Frozen – zero cost initialization for immutable containers and
various algorithms’, https://blog.quarkslab.com/frozen-zero-cost-
initialization-for-immutable-containers-and-various-
algorithms.html

[GoF95] Design Patterns, Elements of Reusable Object-Oriented
Software, Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Addison-Wesley 1995

[Juno] The Juno library: https://github.com/Bronek/juno/releases

[Kelly] Allan Kelly (updated 2009) ‘Encapsulated Context’ (design
pattern), available from https://www.allankellyassociates.co.uk/
patterns/encapsulated-context/

[Kozicki18a] Bronek Kozicki (2018) ‘Compile-time Data Structures in
C++17: Part 1, Set of Types’ in Overload 146, available at
https://accu.org/index.php/journals/2531
18 | Overload | December 2018

https://accu.org/index.php/journals/2531
https://www.allankellyassociates.co.uk/patterns/encapsulated-context/
https://www.allankellyassociates.co.uk/patterns/encapsulated-context/
https://blog.quarkslab.com/frozen-zero-cost-initialization-for-immutable-containers-and-various-algorithms.html
https://blog.quarkslab.com/frozen-zero-cost-initialization-for-immutable-containers-and-various-algorithms.html
https://en.cppreference.com/w/cpp/named_req/LiteralType
https://youtu.be/CRDNPwXDVp0
https://github.com/Bronek/juno/releases

FEATUREBRONEK KOZICKI
[Kozicki18b] Bronek Kozicki (2018) ‘Compile-time Data Structures in
C++17: Part 2, Map of Types’ in Overload 147, available at
https://accu.org/index.php/journals/2562

[P0533R3] constexpr for <cmath> and <cstdlib>, 5 August 2018,
available at: https://wg21.link/p0533

[P0980R0] ‘Making std::string constexpr’ at
https://wg21.link/P0980

[P1004R1] ‘Making std::vector constexpr’ at
https://wg21.link/P1004

[VS] ‘MSVC 15.8 C++17 RVO regression for non-static data members:
https://developercommunity.visualstudio.com/content/problem/
318693/msvc-158-c17-rvo-regression.html

Listing 9

TEST("Test MarketPriceInputs")
{
 const auto config = MockConfiguration();
 auto plsrv = MockPlatformServices();
 const auto v1 = val<PlainTypes, PlainNotVoid>{}
 .insert<ConfigurationSelector>(&config)
 .insert<PlatformServicesSelector,
 const MockPlaformServices*>(&plsrv);
 auto input = MarketPriceInputs(v1);
 plsrv.push("Some test inputs");
 // ...
}

Listing 10

TEST("Test MarketPriceInputs")
{
 auto plsrv = MockPlatformServices();
 const auto v = val<PlainTypes, PlainNotVoid>{}
 .insert<ConfigurationSelector>([](auto&){
 static auto config = MockConfiguration();
 return config;
 }).insert<PlatformServicesSelector>([&plsrv]
 (auto&) -> const MockPlatformServices&
 { return plsrv; });
 auto input = MarketPriceInputs(v);
 plsrv.push("Some test inputs");
 // ...
}

Listing 8 (cont’d)

int main(int argv, char** argc)
{
 try {
 const auto cmdln = CommandLine(argv, argc);
 const auto v = val<PlainTypes, PlainNotVoid>{}
 .insert<ConfigurationSelector>([cmdln]
 (const auto& v) -> const Configuration& {
 static auto config = Configuration(
 v, cmdln);
 return config;
 }).insert<PlatformServicesSelector>([]
 (const auto& v) -> const PlatformServices& {
 static auto plsrv = PlatformServices(v);
 return plsrv;
 }).insert<MarketPriceInputsSelector>([]
 (const auto& v) -> const MarketPriceIputs& {
 static auto input = MarketPriceInputs(v);
 return input;
 }).insert<ClientPriceCalcSelector>([]
 (const auto& v) -> const ClientPriceCalc& {
 static auto price = ClientPriceCalc(v);
 return price;
 }).insert<NetworkOutputSelector>([]
 (const auto& v) -> NetworkOutput {
 return NetworkOutput(v);
 });
 const auto clout =
 ClientPriceOutput<NetworkOutput>(v);
 // ...
 }
 catch (...) {
 // ...
 }
 return 0;
}

Listing 8

enum ConfigurationSelector {};
struct Configuration {
 template <typename... L>
 explicit Configuration(const val<PlainTypes,
 PlainNotVoid, L...>& v,
 const CommandLine& cmdln)
 { /* ... */ }
 };
// use template run<...> as appropriate, e.g. :
enum NetworkOutputSelector {};
struct NetworkOutput {
 NetworkOutput(const NetworkOutput&) = delete;
 template <typename... L>
 explicit NetworkOutput(const val<PlainTypes,
 PlainNotVoid, L...>& v)
 {
 const auto& conf =
 v.template run<ConfigurationSelector>(v);
 const auto& plat =
 v.template run<PlatformServicesSelector>(v);
 // ...
 }
};
template <typename Out> struct ClientPriceOutput {
 Out out_;
 template <typename... L>
 explicit ClientPriceOutput(const val<PlainTypes,
 PlainNotVoid, L...>& v)
 : out_(v.template run<NetworkOutputSelector>(v))
 {
 const auto& conf =
 v.template run<ConfigurationSelector>(v);
 const auto& price =
 v.template run<ClientPriceCalcSelector>(v);
 // ...
 }
}

Users coming from other languages may have some difficulty with static
variables defined inside a lambda. Here is how Anthony Williams
explained this on the accu-general mailing list:

A lambda is an object of an unnamed type. The lambda body is the
operator() member function of this type. For any given lambda
expression there is only one such type and one such member
function, so there is only one copy of each static object declared
within the lambda body.

In practice, this means that the lambdas which make use of static variable
will ‘cache’ the once-created object, making them equivalent to
accessors of the context pattern with lazy evaluation. The afflictions of
static objects do apply (e.g. static object lifetime, the accidental coupling
of points of use if the object passed as a mutable reference) but are
moderated by the fact that each lambda is its own type.

Static variables inside lambdas
December 2018 | Overload | 19

https://developercommunity.visualstudio.com/content/problem/318693/msvc-158-c17-rvo-regression.html
https://wg21.link/P1004
https://wg21.link/P0980
https://wg21.link/p0533
https://accu.org/index.php/journals/2562

FEATURE DANIEL JAMES
Algol 68 – A Retrospective
Algol 68 has influenced programming
languages in many ways. Daniel James
reminds us just how many.
his month marks the 50th anniversary of the inception of the
Algorithmic Language Algol 68 – the first programming language I
ever learned, back in 1974 when I first encountered these things

called computers, as an undergraduate.

I wrote ‘inception’ … perhaps a little background overview is required.

Nowadays we have more programming languages than you can shake the
proverbial stick at, and computers that can shake the stick for you, but in
the early 1960s there were really only three major languages available:
COBOL for business programming, and FORTRAN and Algol for
scientific work (LISP was also around, and deserves an honourable
mention, but I’d hesitate to call it ‘major’). The latter two were designed
with slightly different goals in mind: FORTRAN (FORmula
TRANslation) was developed at IBM specifically for programming
computers, while Algol (ALGOrithmic Language), developed by a
European and American team at ETH Zurich, was designed also to enable
the expression of algorithms in a concise but human-readable form.

FORTRAN was the more widely used – in part because it had IBM behind
it, but also because it was seen as the more portable language. The
designers of Algol decided not to specify standard input and output
operations as they felt that language implementers were better placed to
define these facilities for the platform on which they were working.
This meant that each new implementation of Algol had its own non-
portable i/o functions, and this lack of portability had an impact on the
acceptance of Algol.

As the 1960s progressed, a number of new languages appeared and the
existing languages were further developed. The IFIP Algol Working
Group 2.1 [Wikipedia-1] was formed in 1962 to design a replacement for
Algol 60 that was then code-named Algol X. Many ideas were discussed,
some in the light of experience of similar features in other languages, but
no complete implementation of any proposed candidate for Algol X was
produced before the language was formally accepted. This acceptance
came when the WG 2.1 members met in December 1968 and voted to
accept the language specification [Original] as it then stood, without ever
seeing a working prototype. This is the language that became known as
Algol 68.

Their decision was by no means unanimous, with some of the committee
saying that the language had become over-complex and had lost the
simplicity of Algol 60. Some of these famously went on to publish their
dissent as the ‘Minority Report’ [Minority], in which they claimed that the
language was a failure.

The style of the language reports deserves a mention. The reports are
written using a two-level grammar in which the first level defines a meta-

language, and the second defines Algol 68 in that meta-language. This
style is known as a Van Wijngaarden grammar, after Adriaan van
Wijngaarden who invented it and was also instrumental in bringing about
the final design of Algol 68. The style of the reports also accounts for their
legendary impenetrability to the casual reader.

In July 1970 a conference to discuss Algol 68 implementation [Peck70]
took place. While many of the delegates presented papers that discussed
the difficulty of implementation of the new language, the small team from
the Royal Radar Establishment presented their working compiler for a
substantially complete subset of the language that they called Algol 68-R
[Wikipedia-2]. Algol68-R was already in daily use for production code on
the ICL 1907F computer at RRE, where it had replaced Algol 60 for new
development. The Algol 68-R compiler was later distributed without
charge by ICL to other users of 1900-series hardware, and it was this
compiler that I first used when I went to University.

Development of Algol 68 continued into the 1970s and a revised edition
of the Algol 68 Report [Revised] was published in 1975. The team at RRE
(by then known as the Royal Signals and Radar Establishment) produced
a new version of their compiler called Algol 68-RS, which ran on, among
other things, the newer ICL 2900-series mainframes and Dec VAX
minicomputers.

A brief overview
So, what sort of language is Algol 68? I’m going to talk mostly about the
language of the Revised Report because it is a little more complete than
the original language and has fewer idiosyncrasies, but the differences are
slight and mainly cosmetic.

An expression-oriented, block-structured,
procedural language
Algol 68 is an ‘expression-oriented’ language in that almost every
statement – what the Revised Report calls a unit (the original report used
the term ‘unitary clause’) – delivers a value, and so can be treated as an
expression. Every expression can also legally be used as a statement. If a
unit has no value to deliver, it returns the special type VOID. If an
expression that yields a value but doesn’t do anything with it, such as

 41+1

appears as a statement on its own, the compiler is likely to offer a warning
that the result is to be discarded, but the code is legal.

Declarations aren’t classed as units, and aren’t expressions. A sequence
consisting of units or declarations and units separated by semicolons is
called a series (originally ‘serial clause’) and has the value of its last unit.
Note that the semicolon is a separator, not a terminator: there shouldn’t be
one after the last unit in a series.

Algol 68 is a block-structured language in that a program is composed from
nested lexical blocks. Each new block introduces a lexical scope that limits
the lifetime and visibility of constructs declared within that scope. Each
new scope inherits from any containing scope. A block – and everything

T

Daniel James Daniel has carried on programming in a variety of
languages ever since that first brush with Algol 68 in 1974, and the
sparkle has never quite worn off. He sometimes wonders how his
life would have turned out if the friend who introduced him to
computing had been a FORTRAN user, as all good scientists were
supposed to be. He can be contacted at djames@sonadata.co.uk
20 | Overload | December 2018

FEATUREDANIEL JAMES

 Each new block introduces a lexical scope
that limits the lifetime and visibility of
constructs declared within that scope
it contains – is syntactically a unit whose value is the value of the last
statement in the block.

A block may simply be one or more statements enclosed between BEGIN
and END, or may be a conditional such as IF or CASE, or a loop.

Algol 68 is a procedural language in that its programs are built-up from
procedures. A procedure in Algol 68 may be a function that returns a result,
or may be a pure procedure that returns no result, in which case its return
type is specified as VOID. The body of a procedure is a unit.

As is the case in Algol 60 and some other languages (such as Pascal), but
not C or C++ (at least until lambda functions were introduced in C++11)
procedures in Algol 68 do not have to be declared at the outermost lexical
scope but can be declared within a program block, even a block of another
procedure.

Algol 68 also supports user-defined operators, which are defined
identically to procedures except that operators can have only one or two
arguments. The user can set the priority (from 1 to 9) of an operator symbol,
and can define new operator symbols. Operators can be overloaded,
however, while procedures cannot.

Basic types
Data types in Algol 68 are called MODEs. The MODEs provided as standard
are mostly unsurprising (see Table 1).

Additional MODEs are defined in terms of these simple types. A MODE
declaration associates an identifier with a MODE as an alias for the full
definition.

Derived types

References
Algol 68 supports reference types using the REF keyword, so a reference
to an INT type would be written REF INT. Syntactically Algol 68

references are more like C pointers than Java references, and they can be
set to a null value which is written NIL.

Algol 68 uses the term ‘name’ when talking about anything that has a
reference type. This term is equivalent to ‘lvalue’ in C, and means that a
value can be assigned to it. The term ‘identifier’ is used to refer to symbolic
names used in source code.

References can be compared for equality using the built-in IS and ISNT
operations.

Arrays
Algol 68 supports single- and multi-dimensional arrays. Subscripts are
written between square brackets.

 MODE MATRIX = [1:5,1:5] REAL

The lower bound of an array defaults to 1, but may be any value less than
the upper bound – even negative. An array ‘knows’ its bounds, and these
can be queried at runtime using LWB and UPB. Like Algol 60 and C (but
unlike FORTRAN) Algol 68 stores arrays in row major order.

Arrays can be flexible. The built-in STRING datatype is defined as a
flexible array of character values:

 MODE STRING = FLEX [1:0] CHAR

Arrays can be sliced. If r is a [1:10]INT then r[3:7] is a [1:5]INT.

The use of flexible arrays implies the use of dynamic (heap) allocation.
No explicit deallocation is necessary as this is managed using garbage
collection.

Structures
Data structures are defined with the keyword STRUCT. For example the
standard type COMPL is defined as:

 MODE COMPL = STRUCT(REAL re, im)

Fields of a structure are selected using the OF keyword (not an operator):

 re OF complexvalue

A structure type may not contain members of that type, but may contain
references to that type, so it is possible to write linked lists, binary trees,
etc. Listing 1 shows how this may be used to implement linked list
functionality.

The identifiers given to the fields of a structure are part of its type, so two
structures containing the same types of fields but with different field names
would not be the same type.

Unions
Unions are defined with the keyword UNION.

 MODE STRINT = UNION(STRING, INT)

An Algol 68 union ‘knows’ the type of its current value, and this may be
queried at runtime.

Table 1

INT Signed Integer. Single machine word.

REAL Single-precision floating point number.

COMPL Complex number.

BITS Binary value, packed Booleans.

BYTES Packed characters (provided for efficiency on
architectures that are not byte-addressable, such as the
ICL1900)

All of the above modes may be prefixed with LONG or LONG LONG
to get double or higher precision, depending on the
implementation.

CHAR Character. Implementation defined representation.

BOOL Boolean value
December 2018 | Overload | 21

FEATURE DANIEL JAMES

The identifiers given to the fields of a structure
are part of its type, so two structures containing
the same types of fields but with different field
names would not be the same type.
Declaration and assignment
A declaration associates an identifier with some value, and uses the
‘equals’ symbol =. The following introduces a new identifier called
ultimate answer that represents the integer value 42:

 INT ultimate answer = 42

Note that white space is not significant within an identifier, so this could
equally well be written ultimateanswer or ulti mate answ er.

A variable can be created simply by naming it and its type:

 REAL half pi

The example above introduces a new identifier half pi and associates
it with the storage for a variable in the current scope. This is shorthand for:

 REF REAL half pi = LOC REAL

which says that half pi is a constant identifier that represents a reference
to a REAL and is initialized to some location allocated on the stack.
Although this long form is used by a lot of the early Algol 68 literature, it
isn’t really necessary. It is a bit like saying that the declaration of a float
variable in C++ is equivalent to:

 float & half_pi =
 (float)alloca(sizeof(float));

It does, however introduce the concept of a generator. In the example
above, LOC REAL is a generator that allocates local (stack-based)
storage for a REAL variable. Whilst it is never necessary to use this long
form with the explicit LOC generator to create storage for a local
variable, the use of a HEAP generator is the only way to allocate variables
on the heap.

A value can be assigned to a variable using the ‘becomes’ symbol := in
what Algol 68 calls an ‘assignation statement’.

 half pi := pi/2

Declaration and initialization can be combined into a single statement:

 REAL half pi := pi/2

Note that pi is a built-in constant of type REAL (higher precision versions
– long pi, etc. – also exist).

The difference between the constant declaration (using the ‘equals’
symbol, =) and the declaration and initialization of a variable (using the
‘becomes’ symbol, :=) is slight, and they are easy to confuse.

Listing 1

(Unordered) Linked List example
Demonstrates using HEAP storage
MODE ELEMENT = STRING;
MODE NODE =
 STRUCT (ELEMENT value, REF NODE next);
MODE LIST = REF NODE;
LIST empty = NIL;

Add an element to the end of the list
PROC append = (REF LIST list, ELEMENT val) VOID:
BEGIN
 IF list IS empty
 THEN
 list := HEAP NODE := (val, empty)
 ELSE
 REF LIST tail := list;
 WHILE next OF tail ISNT empty
 DO
 tail := next OF tail
 OD;
 next OF tail := HEAP NODE := (val, empty)
 FI
END;

Add an element to the beginning of the list
PROC prepend =
 (REF LIST list, ELEMENT val) VOID:
 list := HEAP NODE := (val, list)

Listing 1 (cont’d)

Print the list out - using a loop
PROC print list = (LIST start) VOID:
BEGIN
 IF start ISNT empty
 THEN
 REF NODE ptr := start;
 WHILE
 print(("-- ", value OF ptr, newline));
 next OF ptr ISNT empty
 DO
 ptr := next OF ptr
 OD
 FI;
 print(("End of list", newline))
END;

Print the list out - using recursion
PROC print list recursively = (LIST start) VOID:
BEGIN
 IF start IS empty
 THEN
 print(("End of list", newline))
 ELSE
 print(("-- ", value OF start, newline));
 print list recursively(next OF start)
 FI
END;
22 | Overload | December 2018

FEATUREDANIEL JAMES

Spelling IF and CASE backwards to indicate the
end of the block that they introduce is a device

that Algol 68 uses in a number of places
Algol 68 also provides ‘updating’ operators like PLUSAB (‘PLUS And
Becomes’) which can be abbreviated +:=. This syntax has been adopted
by many other languages since.

Control flow
Conditions are supported by the choice statements, IF and CASE. These
are identical in structure but the IF statement bases its selection on a BOOL
value, while the CASE bases its on an INT value:

 IF boolvalue THEN some expression ELSE other
 expression FI

 CASE intvalue IN expr1, expr2, …, exprN OUT
 another expr ESAC

IN and OUT are CASE’s equivalents of THEN and ELSE. ELIF and OUSE
are provided as shorthand forms of ELSE IF and OUT CASE.

That these really are equivalent constructions becomes more apparent
when we learn that a BOOL value can be converted to an INT using the ABS
operation, and that ABS TRUE has the value 1, while ABS FALSE is 0.

As with all statements in Algol 68, a choice statement may return a value,
the value returned is the value of whatever expression is chosen (so long
as all the expressions return the same MODE). While C and some other
languages have a ‘ternary operator’ that allows one of two values to be used
depending on some boolean condition. Algol 68 has no need of such a
construction because the structure of the language allows an ordinary IF
statement to be used.

This allows for constructions like:

days in month :=
 CASE month OF date IN
 31,
 IF is leap year(year OF date) THEN 29 ELSE 28
 FI,
 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 ESAC

IF and CASE introduce lexical scopes, just as BEGIN does. The scope ends
with the closing FI or ESAC statement.

Spelling IF and CASE backwards to indicate the end of the block that they
introduce is a device that Algol 68 uses in a number of places. The use of
FI and ESAC has been adopted in some other languages, notably in the
Bourne shell, while still more have taken up the idea but opted for
keywords such as ENDIF – perhaps we should be grateful that END is not
spelt NIGEB in Algol 68!

It’s interesting that C++17 introduces new ‘if with initializer’ [P0305R0]
and ‘switch with initializer’ features that let one declare variables in the
condition part of an if or switch statement that have the scope of the
whole statement. This enables one to write things like:

 if(int val = get_value(); is_valid(val))
 {
 do_stuff_with(val);
 }

which is directly equivalent to the Algol 68 code

 IF INT val := get value(); is valid (val)
 THEN
 do stuff with(val)
 FI

except that the Algol 68 form is more general.

Note that with the Algol 68 CASE statement there is no possibility that one
case can run on into the next (even should you want it to) so there is need
for any break-type statement, as in C (nor does the language support one).

Loops are supported by the very versatile Algol 68 DO loop, which has the
general form:

 FOR counter FROM start BY step TO stop WHILE
 condition
 DO something OD

Everything here is optional, apart from the DO something OD part,
which is the loop itself, the other parts just provide conditions that control
the termination of the loop.

The counter, if present, is an integer whose scope is limited to the loop;
by default it counts from 1 in increments of 1 but that can be changed using
the FROM and BY parts. The loop terminates when the variable reaches the
stop value, if specified, or when the condition becomes true … otherwise
it will run for ever. The counter cannot be assigned to within the loop – it
is not a variable but an INT constant that is re-created with a new value
each time around the loop.

The condition of a loop including a WHILE part is syntactically a series of
declarations and statements. This syntax caters for cases in which all or
part of the body of the loop is to be executed before the WHILE condition
is evaluated.

 WHILE INT n; read(n); is valid input(n)
 DO process(n) OD

If the whole of the loop is to be executed before the test (as with a do ...
while loop in C, for example) the do-nothing operation SKIP can be used
to satisfy the syntactic requirement for one or more statements between
DO and OD. The Algol 68 DO loop offers all the varieties of loop control
that are provided by the for, while, and do ... while constructions
in C but with greater flexibility.

Unlike most other constructions in Algol 68, a loop does not return a result.

Here are some examples. These also show three forms of COMMENT, and
a call to the built-in print function. Note that the call to print uses two
sets of parentheses because multiple values are being printed; the inner pair
belong to the representation of the single argument, which is in effect an
array of UNIONs of various types.

 # Zero all elements of ar from lower to upper
 bound #
 FOR index FROM LWB ar TO UPB ar DO
 ar[index] := 0
 OD
December 2018 | Overload | 23

FEATURE DANIEL JAMES

No special syntax is needed for lambda,
the functionality is a natural consequence
of the design of the language
 CO enhance a until it is greater than some
 threshhold CO
 FOR i WHILE a < threshhold DO
 print(("After ", i, " iterations a is ", a,
 newline));
 a := enhance(a)
 OD

 COMMENT sound an alarm 10 times COMMENT
 TO 10 DO sound alarm OD

For completeness, and to annoy purists, Algol 68 also supports GOTO.

Procedures
Algol 68 procedures take a number of parameters, possibly zero, and return
a result or VOID. A procedure is defined like so:

 PROC twice as much = (INT i) INT: i+i

This defines a procedure named twice as much which takes a single
integer parameter by value, and returns an integer result. The body of this
procedure is a single statement and so doesn’t need to be enclosed in a
block, but most procedures do.

In this definition, the procedure denotation (INT i) INT: i+1 is
assigned to the identifier twice as much, which therefore has the mode
PROC (INT) INT. As with data quantities, though, the procedure body
could be assigned to a procedure variable identifier

 PROC operation := (INT i) INT: i+i

We could then, elsewhere in the program, change the value of that
procedure:

 operation := (INT foo) INT: 3*foo+7

Listing 2 shows another example of a function denotation being used as a
lambda.

The procedure body that we assign in this way is effectively a lambda
function. No special syntax is needed for lambda, the functionality is a
natural consequence of the design of the language.

Transput
Transput is the word used in the Algol 68 reports to refer to both input and
output.

One of the big shortcomings that was recognized in Algol 60 was its lack
of any standardized i/o system. The designers of Algol 68 addressed this
lack by introducing a standard system for both formatted and formatless
output. We have already seen the procedure print, which accepts any
simple argument and outputs it in a standard way. This tends not to be very
pretty as, for example, numbers are output in their maximum width and
precision. This output can be tamed somewhat using built-in functions
whole, fixed, and float that convert numbers to strings with specified
width and precision.

There is also a system for formatted output that gives the programmer
complete control over the format of the output by means of a format
designator. This is similar to the format string of C’s printf, but is a
special Algol68 FORMAT type, delimited by $ characters, and can be
evaluated at compile-time for efficiency. A FORMAT consists of one or
more ‘pictures’, separated by commas, each of which describes the layout
of a single item.

Formatless input and output are achieved using the functions put and get.
We have already seen the print function, which is equivalent to put but
always uses the default standard output channel called stand out

Listing 2

Print a table of values

print a table of values of f(angle)
for angle from start to stop (degrees)

PROC print trig =
 (REAL start, REAL stop,
 PROC (REAL) REAL f) VOID:
BEGIN
 REAL val := start;

 printf($" Deg |"$);
 FOR i FROM 0 TO 9 DO printf(($z-d.dx,b(l,x)$,
 i/10, i=9)) OD;
 printf($5"-" "+" 71"-"l$);

 FOR col FROM 0 WHILE val < stop
 DO
 IF col MOD 10 = 0
 THEN
 printf(($zd.d" | "$, val))
 FI;

 printf(($+d.3d,b(l,x)$, f((val*pi)/180),
 col MOD 10 = 9));
 val +:= 1
 OD
END;

Print a table of sin(x) using the built-in
 sin function #
print((newline, "Printing sin x", newline));
print trig(0, 90, sin);

Print a table of sin^2(x)+cos^2(x) using a lambda
#
print((newline, "Printing sin^2 x + cos x",
 newline));
print trig(0, 90, (REAL n) REAL: sin(n)^2+cos(n))
24 | Overload | December 2018

FEATUREDANIEL JAMES

the language I was always told would never catch
on because it was too big for any but the largest of
computers runs nicely on a Raspberry Pi Zero, on

battery power, sitting on the palm of my hand
(similar to cout in C), there is also a read function that is equivalent to
get using stand in. Formatted i/o uses putf and getf (and printf
and readf).

These three produce identical output on stand out:

 put(stand out, (i, blank, r, newline));
 print((i, blank, r, newline));
 printf((gx,gl, i, r))

If i is an integer with the value 42 and r is a REAL with the value 22/7
then this would produce three identical lines of:

 +42 +3.14285714285714e +0

In the put and print cases, the list of items to be printed are enclosed in
brackets because they are conceptually an array of values to be output.
These include blank and newline, which are PROC(REF FILE) VOID
functions that are called to manipulate the output stream.

In the printf case, the argument list begins with a FORMAT containing
two pictures using g tags meaning that the values should be printed in the
same default format as is used for formatless output, and x and l tags that
supply the blank and newline.

Printing values without formatting is not the point of formatted output, of
course, and one might more typically see something like

 printf(($4z-dx,+3d.5dl$, i, r))

The format string contains two pictures. The first depicts an integer with
4 digits that will be printed as blanks if they are all leading zeros (four z
tags) followed by one digit that will always be visible (a d tag) and a space
(x tag), with a sign character that will be a blank if the value is positive
immediately to the left of the first non-zero digit (- tag) and then a blank
(x tag). The second picture depicts a real number with a sign always shown
(+ tag), and with three digits (three d tags) before and five digits after (five
d tags) a decimal point (. tag), and then a newline (l tag).

With the values of i and r above, this would produce:

 42 +003.14286

Listing 2 shows some examples of formatted output.

Notation
In the Revised Report, Algol 68 is written in lower-case letters, with
keywords emphasized in bold. Text files holding program source to be read
by compilers don’t provide a mechanism for the representation of bold text,
so keywords are typically written in upper-case, as I have done here. The
original Algol 68-R compiler ran on ICL 1900 computers, which had a
basic character set of only 64 characters. Lower-case characters were
available only through a complicated system of shift prefixes, and weren’t
used in programming. In Algol 68-R, keywords were distinguished from
identifiers by enclosing them in single quotes, which was called ‘quote
stropping’.

 'BEGIN'
 'INT' I := 42;
 PRINT((I, NEWLINE))
 'END'

Other upper-case systems used ‘dot stropping’, in which a keyword was
prefixed with a dot character.

I’ve deliberately chosen a rather ‘wordy’ notation for the examples in most
places in this article, but it is worth noting that Algol68 provides symbolic
short forms for many operations. For example the pseudo-operators IS and
ISNT can be written :=: and :/=: and the MOD operator can be written
%*.

Algol 68 also allows round brackets to be used for BEGIN and END … or
to look at it another way, Algol 68 treats any expression in round brackets
as a BEGIN/END block.

Round brackets can also be used for IF, FI, CASE, and ESAC; vertical bar
characters for THEN, ELSE, IN, and OUT, and vertical bar followed by a
colon for ELIF and OUSE. It is usually clearer to spell things out, but the
short forms can be useful when writing a one-liner.

Implementations
Algol 68 has been implemented on quite a variety of hardware platforms.
There’s a good summary in the Wikipedia article [Wikipedia-3] and a lot
of detail on the Software Preservation Society’s Algol 68 page [SPS]. In
its heyday there were several implementations written in different
countries – including the UK, the US, the Netherlands, and Russia – and
supporting a wide range of hardware architectures. It was never as widely
used as FORTRAN or COBOL, but it had a significant following.

Algol 68 was also the basis for a number of other languages, including the
S3 job-control language of the VME/B operating system of ICL 2900
series mainframes, and influenced a good many more.

Most implementations of Algol 68 are no longer in use, as they were
developed for computer architectures that are now obsolete. Some are still
accessible in one form or another, for example the Algol-68R compiler can
still be run under a GEORGE 3 emulator [GEORGE], part of the Algol
68RS compiler survives as the front end of the Algol 68 to C translator
[A68TOC] from the ELLA project developed at RSRE and has been Open-
Sourced, one of the two implementations named Algol 68S has been ported
to a number of more modern platforms and Open-Sourced. A more recent
implementation from 2001, Algol 68 Genie [van der Meer16], runs on
Windows, Linux, and Mac systems and is Open Source; if you run a
Debian-derived Linux distro such as Ubuntu or Raspbian you will find it
in the standard repository.

Algol 68 has always had the undeserved reputation of being a large,
complex, language for mainframe computers only. The language is
actually smaller than C [Henney18], and certainly much smaller than many
modern languages. I find it pleasingly ironic that the language I was always
told would never catch on because it was too big for any but the largest of
computers runs nicely on a Raspberry Pi Zero, on battery power, sitting
on the palm of my hand – but perhaps that says more about developments
in hardware in the last 50 years than it does about software.
December 2018 | Overload | 25

FEATURE DANIEL JAMES

Algol 68 has influenced many other languages,
many of which are still in widespread use today
Legacy
Algol 68 has influenced many other languages, many of which are still in
widespread use today.

The influence of Algol 68 on C is clear, and Algol 68 is referred to many
times by Bjarne Stroustrup when describing the development of C++
[Stroustrup94]. Indeed, Stroustrup notes [Stroustrup13] that “… my ideal
when I started on C++ was ‘Algol 68 with Classes’ rather than ‘C with
Classes’.”

Finally, no discussion of programming languages would be complete
without an implementation of FizzBuzz, so I present a modest example in
Listing 3. Note here that in Algol 68 the AND operator between two BOOL
values does not short-circuit – that is, both BOOL terms are fully evaluated
even if the first is found to yield FALSE. Many implementations provide
an alternative short-circuiting form usually called ANDF or ANDTH (for
‘and false’ or ‘and then’).

References
[A68TOC] The ELLA and A68toC source is available from:

https://cs.nyu.edu/courses/spring02/G22.3130-001/ella/

[GEORGE] Algol 68-R included with the GEORGE 3 Emulator on the
BCS Software Preservation and Machine Emulation pages.
http://sw.ccs.bcs.org/CCs/g3/index.html

[Henney18] Kevlin Henney. Procedural Programming: It’s Back? It
Never Went Away. From the 2018 ACCU Conference.
https://www.youtube.com/watch?v=mrY6xrWp3Gs This talk has a
good 10-minute account of Algol 68 from about 12 minutes in.

[Minority] Published in the Algol Bulletin, archived online at:
http://archive.computerhistory.org/resources/text/algol/
algol_bulletin/A31/P111.HTM

[Original] The original report can be found here, scanned to PDF (without
OCR): http://web.eah-jena.de/~kleine/history/languages/Algol68-
Report.pdf

[P0305R0] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/
p0305r0.html

[Peck70] Peck, J.E.L., ed. (1970), Proceedings of the IFIP working
conference on ALGOL 68 Implementation, Munich: North-Holland,
ISBN 0-7204-2045-8. Available online at:
http://www.softwarepreservation.org/projects/ALGOL/paper/
ALGOL_68-Implementation.pdf

[Revised] Revised Report on the Algorithmic Language Algol 68. Edited
by van Wijngaarden, et al. Springer-Verlag (1976). An HTML
version is available at: https://jmvdveer.home.xs4all.nl/
en.post.algol-68-revised-report.html

[SPS] The Software Preservation Society pages on Algol 68
http://www.softwarepreservation.org/projects/ALGOL/algol68impl/

[Stroustrup94] Bjarne Stroustrup. The Design and Evolution of C++.
Addison Wesley (1994).

[Stroustrup13] Bjarne Stroustrup. The C++ Programming Language, 4th
Edition. Addison Wesley (2013). Sec. 1.2.2.

[van der Meer16] Algol 68 Genie. Marcel van der Veer.
https://jmvdveer.home.xs4all.nl/en.algol-68-genie.html

[Wikipedia-1] IFIP Working Group 2.1: https://en.wikipedia.org/wiki/
IFIP_Working_Group_2.1

[Wikipedia-2] ALGOL 68-R:
https://en.wikipedia.org/wiki/ALGOL_68-R

[Wikipedia-3]AlLGOL 68: https://en.wikipedia.org/wiki/ALGOL_68
Listing 3

Fizzbuzz in Algol68

print(("Fizzbuzz from 1 to 100", newline));

PROC fizz = (INT n) BOOL:
 IF n MOD 3 = 0 THEN print("fizz"); TRUE ELSE
FALSE FI;

PROC buzz = (INT n) BOOL:
 IF n MOD 5 = 0 THEN print("buzz"); TRUE ELSE
FALSE FI;

FOR i TO 100
DO

 IF NOT fizz(i) AND NOT buzz(i)
 THEN
 print(whole(i, 0))
 FI;
 newline(standout)

OD
26 | Overload | December 2018

https://cs.nyu.edu/courses/spring02/G22.3130-001/ella/
http://sw.ccs.bcs.org/CCs/g3/index.html
https://www.youtube.com/watch?v=mrY6xrWp3Gs
http://archive.computerhistory.org/resources/text/algol/algol_bulletin/A31/P111.HTM
http://web.eah-jena.de/~kleine/history/languages/Algol68-Report.pdf
http://web.eah-jena.de/~kleine/history/languages/Algol68-Report.pdf
https://jmvdveer.home.xs4all.nl/en.post.algol-68-revised-report.html
https://jmvdveer.home.xs4all.nl/en.post.algol-68-revised-report.html
http://www.softwarepreservation.org/projects/ALGOL/algol68impl/
https://jmvdveer.home.xs4all.nl/en.algol-68-genie.html
https://en.wikipedia.org/wiki/IFIP_Working_Group_2.1
https://en.wikipedia.org/wiki/IFIP_Working_Group_2.1
https://en.wikipedia.org/wiki/ALGOL_68-R
https://en.wikipedia.org/wiki/ALGOL_68
http://www.softwarepreservation.org/projects/ALGOL/paper/ALGOL_68-Implementation.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0305r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0305r0.html

FEATURERICHARD REICH & WESLEY MANESS
Measuring Throughput and the
Impact of Cache-line Awareness
How do you measure throughput? Richard Reich
and Wesley Maness investigate suitable metrics.
Richard Reich has 25 years of experience in software engineering
ranging from digital image processing/image recognition in the 90s
to low latency protocol development over CAN bus in early 2000s.
Beginning in 2006, he entered the financial industry and since has
developed seven low latency trading platforms and related
systems. He can be reached at richard@rdrtech.com

Wesley Maness has been programming C++ for over 15 years,
beginning with missile defense in Washington, D.C. and most
recently for various hedge funds in New York City. He has been a
member of the C++ Standards Committee and SG14 since 2015.
He enjoys golf, table tennis, and writing in his spare time and can
be reached at wesley.maness@aya.yale.edu.

n our previous article [Maness18] we collected measurements of latency
which was later used in our analysis of the impact of cache-line aware
data structures. In this paper, which can be thought of as a follow-up to

our previous paper, we instead focus on throughput as a quantifiable
metric. We will also be using newer hardware and the Centos 7.2 tool chain
with a custom gcc 7.1. We will refer to some code examples, not shown
here, that may require the reader to reference the code in the previous
article, but we will attempt to minimize the need to reference, focusing as
we investigate many ways to measure throughput and their observed
behavioral changes. These changes will be measured in multiple ways to
demonstrate the different aspects of throughput detailed below. We will
also follow the same approach, which is to say we will first introduce our
definitions, then take measurements, introduce aligned data structures (the
same queue as before), and measure those observations. Keeping things
simple for now so we can pin down the observations and the impact of
cache-line aware data structures.

Before we get into the analysis of throughput, why does it matter? What
does throughput tell us and what are the various scenarios in which we
require a firm understanding of throughput and its implications?
Throughput simply tells us how much work/data we can send or
distribute given some constraints such as a network cable, pipe, or
wireless signal. If we have an idea of how much work or data we can
send to one location to another, we can have a better understanding of
the upper limits of our network.

If we can postulate some upper bound limits of our throughput, we can
better model how much work can be performed, given the flow of input
into our received end points. Once we have a theoretical ceiling of the
received data, we can then start to see where these questions become
quite interesting in many domains. For example, within a defined time
window: how many frames per second can we render on screen, how
many updates can we compute, how much market data can we distribute,
how many orders can we route to an algorithm or broker, how many
messages can we send out to subscribers. These examples all require
some basic understanding of throughput, how to measure it, and
implications on data load.

Taking it one step further, once a firm understanding of the expected
throughput is established the new insights will lend to more effective
design, or even deployment of various components in a technical domain.
If this is abstracted even further – we can start to explore networks and
control flow problems using throughput as a weight on each node in a
graph, thinking of routing traffic in real time, and other interesting areas
to explore, but not here.

Definitions
For us to have some way of comparing results we need to provide clear
definitions of throughput and discuss some issues surrounding
measurement taking.

We offer two types of throughput for our analysis. The first one can be
thought of as the classical definition of throughput. This is simply a

measure of data of some period. The data can be structured in any form
and we can slice and dice the time to any unit we deem necessary. Going
forward in the paper we refer to this point of observation and or operations
over time as spatial throughput(ST). Often the analogy that comes to mind
for ST is network bandwidth. Our formal definition for ST will be defined
as the number of work units (WU) over time t. We will measure a single
WU as the number of cycles observed in the TSC register. All the code
found for measuring ST is shown in Listing 1.

Note: to scale to a time quantum, divide ST by the desired time quantum
and multiply by the CPU clock speed.

A second type of throughput we intend to observe in the paper is how much
work can we do given new work to be done. This can be thought of as
temporal throughput (TT). Often this is another way of looking at how
frequently I am polling versus how frequently I am pulling data and
processing that data. This can be thought of as saturation and often quoted
as a percentage.

We will measure TT as two distinct types of value. TT ratio (TTR) will be
defined as the number of WU divided by poll count and quoted as a
percentage. A value of 1 would be full saturation. All the code found for
measuring TTR is shown in Listing 2.

The second type of TT we will measure will be TT cycles (TTC). TTC will
be defined as the total time of work divided by the total time of work plus
the overhead. All the code found for measuring TTC is shown in Listing 3.

I

Listing 1

// one billion is once per second
// works_ is the number of work units
// executed this observation period.
uint32_t bandwidth(uint32_t per = 1'000'000'000)
{
 // CPU is CPU speed in GHz
 // per is observation time scale units
 // end_ - start_ is the observation window.
 return (static_cast<float>((works_)*CPU*per) /
 (end_ - start_));
}

December 2018 | Overload | 27

FEATURE RICHARD REICH & WESLEY MANESS

We intentionally introduced false sharing into
the simulated work as there are many cases, in a
production system, that this is unavoidable.
There are some observational complexities that surround TT data
gathering especially compared to ST. In the TT case, we should really
focus on using RDTSC as an instruction and not RDTSCP, as RDTSCP
basically creates a code fence and can in many ways hamper or prevent
hardware optimizations such as out of order execution and execution
pipelining that would affect our cycles count. Due to the aggregate nature
of measuring many WU in a particular time window the inaccuracies of
RDTSC do not affect our measurements in a significant way. In our
previous paper each WU was measured and recorded, necessary for the
purpose of statistical analysis. When many WU are recorded as an
aggregate quantification the inaccuracies are tiny compared to the impact
of the serialized RDTSCP instruction.

Setup

ST setup
In our first experiment, we will focus only on measuring ST with and
without cache-line awareness scaling from 1, 4, 8, and 16 threads, each
thread will be pinned to a different core and producing work which will
be in the simplified form of a 4-byte atomic increment. Shown on the right
is the section of code (Listing 4) that performs this first setup.

In Figure 1, we have captured average ST numbers for incrementing a
single 4-byte atomic int. In those tests, we use thread numberings from
1 to 16 in powers of 2. In the split NUMA the threads are evenly distributed
across two NUMA nodes. Each thread is pinned to a single core and no
more than one thread per core.

TTR, TTC, and ST Setup
In our second experiment, we will measure TTR, TTC and ST. We will
focus on non-cache-line awareness and cache-line awareness for various
combinations of producers and consumers. The code we present below
is in the same order in which they would be executed at the functional
level. The first is the simpleTest method driven from main shown in
Listing 5. The second unit of execution is the run method shown in
Listing 6. Heavily utilized during the run method is our consumer method
shown in Listing 7. Other code was deliberately left out but for anyone
interested please contact the authors and we can provide access to a
complete package. After everything has run and executed we have
collected our results into two tables. Table 1 is a simple bandwidth
analysis of the Boost MPMC queue for cache-line awareness and non-
cache-line awareness. Table 2 is where we provide a simulated work load
of 3000 cycles and 10 iterations per cycle.Listing 3

// saturation_ is number of cycles spent working
// overhead_ is number of cycles spent polling
// for work
uint16_t saturationCycles()
{
 if (saturation_)
 return static_cast<uint16_t>(
 (static_cast<float>(saturation_) /
(saturation_
 + overhead_)));
 else
 return 0;
}

Figure 1

Listing 2

// polls_ is the amount of time taken to poll for
work
uint16_t saturationRatio()
{
 if (polls_)
 return static_cast<uint16_t>(
(static_cast<float>(works_) / polls_));
 else
 return 0;
}

28 | Overload | December 2018

FEATURERICHARD REICH & WESLEY MANESS
We intentionally introduced false sharing into the simulated work as there
are many cases, in a production system, that this is unavoidable. Without
false sharing, the results would have shown much more sensational
numbers but, in our opinion, would have misrepresented a significant
amount of real world application. In the event a system is fortunate enough
to eliminate all false sharing, a greater boost in performance will be
realized due to cache-line awareness. If the reader is curious, they canListing 4

template <int X>
struct DataTest
{
 alignas (X) std::atomic<uint32_t> d{0};
};

void CLTest (std::atomic<uint32_t>& d)
{
 for (;;)
 {
 ++d;
 }
}

template <int Align>
int simpleTest (const std::string& pc)
{
 using DataType_t = DataTest<Align>;
 DataType_t data[128];
 std::vector<std::unique_ptr<std::thread>>
 threads;
 threads.reserve(pc.length());

 int32_t core{0};
 int32_t idx{0};
 for(auto i : pc)
 {
 if (i == 'p')
 {

threads.push_back(std::make_unique<std::thread>
 (CLTest, std::ref(data[idx].d)));
 setAffinity(*threads.rbegin(), core);
 ++idx;
 }
 ++core;
 }

 auto counters =
std::make_unique<uint32_t[]>(idx);

 for (;;)
 {
 sleep(1);
 int32_t i{0};
 for (i = 0; i < idx; ++i)
 {
 counters[i] = data[i].d.load();
 data[i].d.store(0);
 }

 uint64_t total{0};
 for (int i = 0; i < idx; ++i)
 {
 std::cout << "d" << i << " = " <<
 counters[i] << ", ";
 total+= counters[i];
 }
 std::cout << ", total = " << total
 << ", avg = " << static_cast<float>
 (total) / idx << std::endl;
 total = 0;
 }
 return 0;
}

Listing 5

template <int Align>
int simpleTest (const std::string& pc)
{
 using DataType_t = DataTest<Align>;
 DataType_t data[128];

 std::cout << "Sizeof data = " << sizeof(data)
 << std::endl;

 std::vector<std::unique_ptr<std::thread>>
 threads;

 threads.reserve(pc.length());

 int32_t core{0};
 int32_t idx{0};
 for(auto i : pc)
 {
 if (i == 'p')
 {
 threads.push_back(std::make_unique
 <std::thread>(CLTest,
 std::ref(data[idx].d)));

 setAffinity(*threads.rbegin(), core);
 ++idx;
 }
 ++core;
 }

 auto counters =
 std::make_unique<uint32_t[]>(idx);

 for (;;)
 {
 sleep(1);
 int32_t i{0};
 for (i = 0; i < idx; ++i)
 {
 counters[i] = data[i].d.load();
 data[i].d.store(0);
 }

 uint64_t total{0};
 for (int i = 0; i < idx; ++i)
 {
 std::cout << "d" << i << " = "
 << counters[i] << ", ";
 total+= counters[i];
 }
 std::cout << ", total = " << total
 << ", avg = "
 << static_cast<float>(total) /
 idx
 << std::endl;
 total = 0;
 }
 return 0;
}

December 2018 | Overload | 29

FEATURE RICHARD REICH & WESLEY MANESS
Listing 6

template<typename T,template<class...>typename Q>
void run (const std::string& pc, uint64_t
workCycles, uint32_t workIterations)
{
 using WD_t = WorkData<alignof(T)>;
 // shared data amongst producers
 WD_t wd;

 std::cout<< "Alignment of T "
 << alignof(T)
 << std::endl;

 std::cout << "Size of CycleTracker "
 << sizeof(CycleTracker)
 << std::endl;

 std::cout << "Size of ResultsSync "
 << sizeof(ResultsSync)
 << std::endl;

 std::vector<std::unique_ptr<std::thread>>
 threads;

 threads.reserve(pc.length());
 // reserve enough of each for total number
 // possible threads
 // They will be packed together causing false
 // sharing unless aligned to the cache-line.
 auto rs =
 std::make_unique<Alignment<ResultsSync,
 alignof(T)>[]>(pc.length());
 auto ct =
 std::make_unique<Alignment<CycleTracker,
 alignof(T)>[]>(pc.length());

 Q<T> q(128);

 // need to make this a command line option
 // and do proper balancing between
 // consumers and producers
 uint32_t iterations = 1000000000;

 uint32_t core{0};
 uint32_t index{0};
 for (auto i : pc)
 {
 if (i == 'p')
 {
 threads.push_back(
 std::make_unique<std::thread>
 (producer<T,Q<T>>
 , &q
 , iterations
 , workCycles
 , workIterations));
 setAffinity(*threads.rbegin(), core);
 }
 else if (i == 'c')
 {
 threads.push_back(
 std::make_unique<std::thread>
 (consumer<T,Q<T>,WD_t>
 , &q
 , iterations
 , std::ref(rs[index].get())
 , std::ref(ct[index].get())
 , std::ref(wd)));
 ++index;

Listing 6 (cont’d)

 // adjust for physical cpu/core layout
 setAffinity(*threads.rbegin(), core);
 }
 else if (i == 'w')
 {
 threads.push_back(
 std::make_unique<std::thread>
 (worker<WD_t>,
 std::ref(wd)));

 // adjust for physical cpu/core layout
 setAffinity(*threads.rbegin(), core);
 }

 ++core;
 }

 Thread::g_cstart.store(true);
 usleep(500000);
 Thread::g_pstart.store(true);

 auto results =
 std::make_unique<Results[]>(index);

 for (;;)
 {
 sleep(1);
 for (uint32_t i = 0; i < index; ++i)
 results[i] =
 ct[i].get().getResults(rs[i].get(), true);

 uint64_t totalBandwidth{0};
 std::cout << "----" << std::endl;
 std::cout << "workCycles = " << workCycles
 << std::endl;
 std::cout << "workIterations = "
 << workIterations
 << std::endl;

 for (uint32_t i = 0; i < index; ++i)
 {
 // T1 Begin
 std::cout << "Temporal: saturation [Cycles]"
 "= " << results[i].saturationCycles()
 << std::endl;
 std::cout << "Temporal: saturation [Ratio]"
 " = " << results[i].saturationRatio()
 << std::endl;
 std::cout << "Spatial: Bandwidth [work/sec]"
 " = " << results[i].bandwidth()
 << std::endl;
 totalBandwidth += results[i].bandwidth();
 // T1 End
 }
 std::cout << "Total Bandwidth = "
 << totalBandwidth << std::endl;
 std::cout << "----\n" << std::endl;
 }

 for (auto& i : threads)
 {
 i->join();
 }
}

30 | Overload | December 2018

FEATURERICHARD REICH & WESLEY MANESS
obtain a copy of the code and experiment by removing the false sharing
in the consumer thread.

Analysis
The results of the bandwidth test are shown in Table 1. Here we can see
the approximate savings/gains moving from a non-cache-line aware to
cache-line aware queue are around 2.48% for TTC, 10.29% TTR, and
3.76% ST respectively. The results of the simulated workload are shown
in Table 2. The approximate savings/gains from non-cache-line aware to
cache-line aware are around 7.52% for TTC, 0% for TTR, and 123.86%
ST respectively. The largest overall improvement we noticed was when
workload decreased the savings for ST improved the greatest when
adjusting for cache-line awareness. [the more work load there is per WU,
i.e. more cycles, the less of an impact cache line alignment has on
throughput.] The other measurements of TTC and TTR generally had
overall improvements but the savings or gains in this case were not as great
as they were for ST.

Conclusion and future direction
Based on our limited observations, we can clearly see that the gains
achieved for cache-line awareness in our queues were greatest for ST data
points under simulated workload. This suggests that there could be some
interesting relationships between workload scaling and ST for cache-line
aware MPMC queues. These relationships could be explored further to
attempt to understand the savings gained given the workload and attempt
to better identify potential bottlenecks in the utilized MPMC queue.

Notes
GCC 7.1 was used with the flags -std+c++17 -Wall -O3. Boost 1.64 was
used on a dual socket 18 core (36 total) Intel (R) Gold 6154 CPU @ 3GHZ.
Hyper-threading was not enabled. CPU isolation is in place. Special thanks
to Frances Butontempo for her early feedback and suggestions for
improvement. Complete source code packages utilized in this article can
be made available by contacting the authors directly.

References
[Mannes18] Wesley Maness and Richard Reich (2018) ‘Cache-Line

Aware Data Structures’ in Overload 146, published August 2018,
available online at: https://accu.org/index.php/journals/2535

Listing 7

template <typename T, typename Q, typename WD>
void consumer(Q* q, int32_t iterations,
 ResultsSync& rs, CycleTracker& ct, WD& wd)
{
 while (Thread::g_cstart.load() == false) {}

 T d;
 uint64_t start;
 bool work = false;

 ct.start();
 for (;;)
 {

 CycleTracker::CheckPoint cp(ct, rs);
 // roll into CheckPoint constructor?
 cp.markOne();

 start = getcc_ns();
 work = q->pop(d);
 if (!work)
 {
 cp.markTwo();
 __builtin_ia32_pause();
 continue;
 }
 cp.markTwo();

 // simulate work:
 // When cache aligned WD occupies 2
 // cache lines
 // removing the false sharing from the read
 for (uint32_t k = 0;
 k < d.get().workIterations; k++)
 {
 // get a local copy of data
 WD local_wd(wd);
 // simulate work on data
 while (getcc_ns() - start <
 d.get().workCycles){}

 for (uint32_t it = 0;
 it < WriteWorkData::Elem; ++it)
 {
 // simulate writing results
 // This is false sharing, which
 // cannot be avoided at times
 // The intent is to show the separation of
 // the read and write data
 wd.wwd.data[it]++;
 }
 }
 cp.markThree();
 }
}

Table 1

]

 ST TTC TTR

Cache-line aware 1350832.5 0.0098 0.63525

Non cache-line aware 1301837.5 0.01005 0.7081

Table 2

ST TTC TTR

Cache-line aware 615981 0.80315 1

Non cache-line aware 275164 0.8685 1
December 2018 | Overload | 31

https://accu.org/index.php/journals/2535

FEATURE CHRIS OLDWOOD
Afterwood
Renovation or redecorating throws up
decisions. Chris Oldwood reminds us to
make sympathetic changes.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

tarting work on a mature codebase is always an interesting prospect.
In some ways it’s like moving into a fully furnished home. As you
wander around your new abode you’ll wince at the choice of

wallpaper, soft furnishings, carpets and cabinets. As time passes those
more superficial distractions will fade away and be replaced by the more
niggly issues which actually affect your day-to-day life like the
temperamental door lock, the broken light over the sink, and the low
ceiling in the cellar. While it’s somewhat disingenuous to liken all mature
codebases to the derelict house renovated by Mary Bailey (Donna Reed)
in It’s a Wonderful Life, the scenes of frustration where George Bailey
(James Stewart) accidentally pulls the finial off the top of the newel post
every time he goes upstairs has a familiar ring to it.

It is all too easy when we come across some code we don’t like to be
highly dismissive and even vocalise our displeasure. I don’t know about
builders, plumbers and electricians in other countries but here in the UK
they are renowned for looking at somebody else’s handiwork, shaking
their head and then telling you they wouldn’t have done it like that. I guess
that somehow that’s meant to make you feel more confident in their
abilities because they can spot bad workmanship in others and by logical
deduction theirs must be better?

The late, great Jerry Weinberg has some advice that’s worth bearing in
mind when approaching a codebase that’s been around the block:
“everything got the way it is one logical step at a time”. The evolution of
the system happened under many constraints that we will not be aware of
and it behoves us to be respectful of the choices that were made even if
we don’t personally agree with them. Similarly ‘The Prime Directive’
which is commonly read out before a retrospective reminds us that we
consider that people make choices which are a product of the environment
they work in rather than through any personal weaknesses – the
environment should not set you up to fail.

It’s easy for us when attempting to reshape a system towards new ends to
become frustrated with the code as it stands and to lash out at the
misgivings of our predecessors, even if that person is us. This negativity,
which perhaps feels justified, does little to help the situation and if left
unchecked begins to affect those around us. That famous poster from the
Second World War tells us “careless talk costs lives” and badmouthing
other people’s work when those involved may easily be in earshot or in
the social network of those around us does little to make them feel any
better about the choices they may have had to take. It always starts very
innocently, often just a bit of ‘banter’, but slowly that negativity can
become the norm. Sarcasm is a dangerous tool to wield in an open plan
office where information disseminates by osmosis pieced together from
fragments of other conversations within earshot.

But it’s our house, right? Surely that gives us permission to shape it as we
see fit? Yes, but only insofar as we shape what’s necessary to allow us to
overcome any hurdles placed in our way as a consequence of earlier
choices. You do not automatically gain permission to simply remove the

woodchip wallpaper because your personal preference is for painted
walls. Aside from the waste of time and money it is disrespectful and does
little to engender respect for yourself and your choices as your successors
reflect on your actions in the future. Collaboration is not simply about
communication with those present in the here-and-now but also with
those who went before us and will be there to take over once we have
moved on. Entropy always wins and therefore we need to be aware that
those who come after us will likely be dealing with more complexity than
we ever had to so let’s not make it any harder by throwing unrelated noise
into the mix when it’s not an impediment to our current progress.

When a spot of refactoring is beneficial it can be a struggle to remain
focused when we see paint starting to peel off the walls, the tap in the
bathroom dripping and know the kitchen door needs a few drops of oil to
stop it squeaking. None of these imperfections significantly hinder our
day-to-day living but are just symptoms of age, and codebases accrete
similar blemishes over time as the people, tools, and practices change –
unsightly does not imply a liability.

Lucius Cary (2nd Viscount Falkland, according to Wikipedia) once said
“Where it is not necessary to change, it is necessary not to change.” Taken
too literally you might not even bother to consider the practice of
refactoring or cleaning up code at all, let alone use it as a guide to reign in
any overzealous changes that appear to involve tidying up every piece of
unrelated code you passed through when debugging. The problem is that
change is occurring all around us and therefore it may become necessary
to change, despite not changing ourselves. While software doesn’t rot in
the physical sense it could be said to deteriorate when inconsistencies in
the idioms, layout, domain language, design, etc. begin to affect
comprehension, at which point that may well become an impediment.
Sometimes change is so slow that it is imperceptible at first, like an
unused house decaying. Then, as the Broken Windows theory posits, a
tipping point is reached where upon that dwelling rapidly deteriorates into
the dilapidated form where Mary and George Bailey spend their
honeymoon and eventually set up home.

Both refactoring and the (Boy) Scout Rule can, and often are, held up as
a cause under which it’s okay to make sweeping changes in a codebase
because they are ‘best practice’ and it makes the code ‘better’. Like many
programmers I have my own personal crusades such as the banishment of
‘get’ in favour of more expressive verbs such as make, format or derive,
and wider acceptance of domain types instead of an obsession with
primitives. But they are just that – personal preferences – it is entirely
possible to write a correctly functioning system without them.

Making changes in sympathy with how a system has already evolved, and
will continue to evolve is hard. The temptation to ‘fix’
everything is very real but first we need to get
straight in our heads what is actually broken or
untenable and what is simply unappealing.

S

32 | Overload | December 2018

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

CODE
MAXIMIZED

Develop high performance parallel applications from
enterprise to cloud, and HPC to AI using Intel® Parallel
Studio XE. Deliver fast, scalable and reliable, parallel code.

#HighPerformance

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.
© Intel Corporation

from
£510

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner

To find out more about Intel products please contact us:

020 8733 7101 | sales@qbs.co.uk | www.qbssoftware.com/parallelstudio

QBS A4-Intel-PSXE-Code-Maximized.pdf 1 24/09/2018 17:31

	Revolution, Restoration and Revival
	Diseconomies of Scale
	Best Articles 2018
	Flip Model: A Design Pattern
	Memory Management Patterns in Business-Level Programs
	Compile-time Data Structures in C++17: Part 3, Map of Values
	Algol 68 – A Retrospective
	Measuring Throughput and the Impact of Cache-line Awareness
	Afterwood

