

June 2020 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Comment Only What The Code Cannot Say
Kevlin Henney assesses when to avoid
comments in code.

5 Refocusing Amdahl’s Law
Lucian Radu Teodorescu explores how to get
the most out of multi-threaded code.

11 Some Objects Are More Equal Than Others
Steve Love and Roger Orr consider different
language approaches to comparing objects.

16 Afterwood
Chris Oldwood considers whether there are any
benefits to omission statements.

OVERLOAD 157

June 2020

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Jon Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 158 should be
submitted by 1st July 2020 and
those for Overload 159 by
1st September 2020.

EDITORIAL FRANCES BUONTEMPO
Rainclouds and Olive Branches
Sometimes warning signs get missed or
ignored. Frances Buontempo considers
signs of trouble and seeds of hope.
 By now, you might have realized I am unlikely to
write an editorial, and you’re right. The warnings
signs have been there for years. Before I make my
excuses this time, let me apologise for the typos in the
previous edition of Overload. When I read through the
final draft my mind was on others things; telcos,

meetings, deadlines, global pandemics. I suspected I wasn’t paying 100%
attention. At that point, I should have stopped and asked for help, or at
least stepped away from the keyboard for a while. Many thanks to Daniel
and Bob for catching the mistakes and correcting the online version.

Do you ever have a nagging sense that you’re missing something? The
pressure of a deadline or needing to get something out of the way might
encourage you to ignore the sense of doubt, and press on anyway.
Sometimes that’s the right thing to do – a distraction can derail you.
However, sometimes you need to listen to your gut feelings. This
discernment takes practice. If you’re trying to hunt the cause of a bug,
experience can drive you to look for one kind of cause. This may or may
not be pertinent to the problem at hand. A rigorous approach, adding tests
round various possibilities and eliminating them one at a time might be
the best way. Or, it might be worth trying your first instinct to initiate
investigations. If you catch yourself with a sense of déjà vu some hours
later, with a dim recollection of having tried that already, you do need to
step away from the keyboard. Listen out for warning signs, then decide a
course of action. Going with an impending sense of doom or possible
looming disaster and forming action plans every time isn’t wise. Being
aware that something might not work, and forming an exit strategy or plan
B, or at least being prepared to, might be more sensible.

Some warnings are hidden in plain sight, for example compiler warnings.
Do you ignore these or #pragma disable specific warnings? I
deliberately turned off all warnings related to doxygen comments on a
codebase a while ago, thereby reducing the number from a couple of
thousand to about 40. Some may argue that turning off warnings is a crime
– the warning is often telling you something important. However, in this
case, the remaining problems were genuine issues, or rather ones that
could affect the outputs of the system, which we managed to fix. Since
we were used to the flood of warnings, we had ignored them, allowing
new problems to hide in the noise. Linters and other code analysis tools
can cause similar problems – a flood of issues makes it hard to know where
to start. It’s OK to hide some problems for a while, shielded by an umbrella
of some sort, as it were, and concentrate on what’s left.

It’s a shame you can’t turn off compiler errors at
will. A way to avoid a deluge of error
messages is to compile the code frequently

– small baby steps. I used to write code for

days before attempting to build it when I was a lot younger. When I finally
got round to trying to compile, usually on a Friday afternoon, I ended up
staying late, giving up in despair after several attempts to Ctrl-z my way
back to something that might work. First, undo and redo isn’t a good way
to do version control, and second, smaller changes means smaller,
incremental builds. Furthermore, you can commit your code to a proper
version control between steps, and get a proper weekend. I can’t face
working the way I used to ever again, partly because I can’t hold that much
state in my head any more, and partly because the smaller steps appear to
make progress quicker. Regardless of whether you are working on a
compiled or interpreted language, if you are walking in the shadow of the
valley of a worrying cloud of errors and warnings, find a sheltered spot
and fix one small thing at a time. Give yourself an olive branch of sorts –
a glimmer of hope that the flood will stop soon.

I touched earlier on getting older changing my perspective; however, it
can also cloud my judgement. If I see a problem that’s similar to something
I’ve encountered before, I may filter the evidence or discussion through
the eyes of my experience and miss subtle, or glaring differences.
Sometimes the newest or youngest person in a group asks the best
questions. You can suffer team-blindness or experience-blindness, rather
like Hans Christian Anderson’s story of the Emperor’s new clothes
[Wikipedia-1]. Two weavers are paid a fortune to make the Emperor new
clothes. They take the money and eventually hand over a magic invisible
outfit, which he duly parades around town wearing. His subjects are too
afraid to speak up but eventually a child cries out, “But he isn’t wearing
anything at all!” The older people are perhaps afraid of the consequences
of speaking up, or can’t understand why no one else is pointing out the
obvious, so wait and wonder. It takes a child to point out the situation. In
some kind of parallel, Greta Thunberg [Wikipedia-2] has spoken out on
climate change so many times. Her speeches elicit various reactions.
Some would claim she is too young to understand the economy and will
‘grow out of it’ when she has bills to pay. Others would say there is no
economy if everything is dead. I know which side I’m on. In both cases,
a brave young person calls out a situation.

Getting older means you have had more time to develop deeply ingrained
habits, some may be good, some may not. I’ve been trying to do at least
10k steps a day for a while now. I do wonder where the magic number
came from, but that’s another story. Wandering off to have a cigarette
outside might not do much for my health, but it does up my step count.
Standing up during our daily stand up and pacing on the other hand might
be a good thing. However, I need to remind myself that being a few
hundred steps away from my target isn’t a disaster – for any routine or
habit, you need to understand why a specific approach is being taken or
metric is being used. Cargo-cult style rumours or superstitious going on
[Buontempo14] are prevalent. “Have you tried turning it off and on

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | June 2020

EDITORIALFRANCES BUONTEMPO
again?” “You have to do this in the right order”. “You mustn’t write tests
for this – it’s just a script.” “It is written.” Such across-the-board statements
should be questioned. Sometimes ideas are recommendations written by
experts, perhaps giving best practice guidelines. They may not apply in all
circumstances across the board, but it’s worth listening to people who
know what they are talking about. It’s OK to have questions, for example
examining the source code used to model epidemiology data and
wondering if it’s thread-safe. That doesn’t make you a full-on Luddite.

If you are given general advice or guidelines, ask “Why? For what
purpose? For what reason?” I’ve mentioned the five whys before
[Wikipedia-3]. Do the same if you have a habit or ritual you stick to. Some
things are helpful for a while, but end up no longer applying. Some things
are hard to stick to, like exercise, but reminding yourself why can be
motivational. Other things are total nonsense and need calling out.
Sometimes, you really can’t tell what’s for the best, so need to sit tight and
see what happens.

When you question approaches, you may find nobody knows what will
happen if things change. In that case, you need a way to ask “What-if” type
questions. When I worked in finance, I worked on countless risk systems,
trying to measure how much money might be lost under various
circumstances, and insure against possible outcomes, I also came across
‘PnL attribution’ engines [Wikipedia-4]. These attempt to find root causes
of changes in value – the PnL, profit and loss of the name. Both types of
systems allow you to ask “what if” questions. What if interest rates go
negative? What if there’s a recession? Some questions may not be covered
in the model: negative interest rates caused problems, not just in real life,
negative prices of commodities may not be catered for, everybody staying
indoors for weeks and giving up shopping apart from buying bread flour
may also be somewhat specific and not covered. This doesn’t make the
models useless. They can’t deal with some situations, but they still allow
you to explore what might happen under a change of circumstances.

However good or bad such system are, they require some form of
mathematical model or rules (think finite state machine), which need
encoding. Many systems are incredibly complicated so it’s hard to know
where to start. Nonetheless, starting somewhere, with a simple model or
set of rules gives a starting point. A glimmer of hope. If you want to see
what happens if you change the interest rate, r, slap the interest rate in your
model and try what-if scenarios. See what happens. It may do flaky
unlikely things, so improve your model, after you have tested it thoroughly
and made sure you don’t have lots of bugs. Don’t panic. Currently, another
r, the r number, is making the news. Again, don’t panic. This r, the
reproduction number, works rather like an interest rate – it gives
exponential growth. If it’s less than 1, then things don’t grow/spread out
of hand. However, let’s ignore the pandemic elephant in the room for now.
It’s surprising to see how surprised people appear to be about exponential
growth, if the number of times it has been explained on the news is
anything to go by.

Without a numerical problem, you can still ask what-if questions. Try role-
playing a situation with someone, or running a discussion in your head,
like fixing a bug. I’ve mentioned rubber duck debugging before
[Buontempo20]. Believe it or not, you can build computer simulations to
explore possibilities rather than giving a repeatable output for a given set
of inputs. One claimed form of AI, chatbots, may help you role play to
decide how to proceed. Another, to my mind, canonical example, are
cellular automata, ‘Conway’s Game of Life’ being well known
[Wikipedia-5]. I am told John Conway recently died of the pandemic
[Guardian20]. As I saw tributes flow in, one reminded me of using the
game of life to build a simulated computer, which could run the game
Tetris [StackExchange13]. Over-engineered, but fun.

Let’s face the elephant in the room. The pandemic had warning signs. I
watched news of Wuhan going into lockdown and worried for people
living there. It never occurred to me this would spread. I suspect I’m not
alone. Back in 2015, Bill Gates gave a TED talk entitled ‘The next

outbreak? We’re not ready’ [Gates15]. It takes expertise and discernment
to know how to respond warning signs. During the pandemic, I notice
people misunderstanding information. When we are told over 60s with
underlying health conditions are more at risk, some people hear, “If you’re
under sixty or don’t have health problems, you won’t catch the virus.” As
we all know, trying to convey technical information is hard. Does making
code multi-threaded make it quicker? It depends. People want easy
answers but that’s not always possible. Andrew Peck wrote a short piece
for us [Peck14] a while ago, exploring technical communication,
describing us as prophets, scribes and high priests. Re-listening to Bill
Gate’s talk certainly makes him seem like some kind of prophet. But, as
they say, hindsight is 20/20. Mind you, that seems to mean average
eyesight [UrbanDictionary] – I’m not sure if that’s a good thing or not.

I’ve talked mainly about rain clouds so far. There are some olive branches,
or rays of hope on the way though. By looking at warnings, a few at a time,
you can overcome problems. I hope we can look back on what’s going on
across the globe now, and form our own rainbow of promises, figuring out
things that need to stop or change, and finding new ways of working and
even living. These two thoughts are well expressed by Schopenhauer,

All truth passes through three stages. First, it is
ridiculed. Second, it is violently opposed. Third, it is
accepted as being self-evident.

Mostly it is loss which teaches us about the worth
of things.

References
[Buontempo14] Frances Buontempo (2014) ‘Peer Reviewed’ (editorial),

Overload 123, October 2014, available at:
https://accu.org/index.php/journals/2017

[Buontempo20] Frances Buontempo (2020) ‘R.E.S.P.E.C.T.’ (editorial),
Overload 156, April 2020, available at: https://accu.org/index.php/
journals/2775

[Gates15] Bill Gates, March 2015, ‘The next outbreak? We’re not ready’
available at: https://www.ted.com/talks/
bill_gates_the_next_outbreak_we_re_not_ready?language=en

[Guardian20] ‘John Horton Conway obituary’, The Guardian, 23 April
2020, available at: https://www.theguardian.com/science/2020/apr/
23/john-horton-conway-obituary

[Peck14] Andrew Peck (2014) ‘People of the Doc’, Overload 124,
available at: https://accu.org/index.php/journals/2044

[StackExchange13] ‘Build a working game of Tetris in Conway’s Game
of Life’, available at: https://codegolf.stackexchange.com/questions/
11880/build-a-working-game-of-tetris-in-conways-game-of-life

[UrbanDictionary] ‘Hindsight is 20/20’:
https://www.urbandictionary.com/
define.php?term=Hindsight%20is%2020%2F20

[Wikipedia-1] ‘The Emperor’s New Clothes’, https://en.wikipedia.org/
wiki/The_Emperor%27s_New_Clothes

[Wikipedia-2] Greta Thunberg: https://en.wikipedia.org/wiki/
Greta_Thunberg

[Wikipedia-3] ‘Five whys’: https://en.wikipedia.org/wiki/Five_whys

[Wikipedia-4] ‘PnL Explained: https://en.wikipedia.org/wiki/
PnL_Explained

[Wikipedia-5] ‘Conway’s Game of Life’: https://en.wikipedia.org/wiki/
Conway%27s_Game_of_Life
June 2020 | Overload | 3

https://accu.org/index.php/journals/2017
https://accu.org/index.php/journals/2775
https://accu.org/index.php/journals/2775
https://www.ted.com/talks/bill_gates_the_next_outbreak_we_re_not_ready?language=en
https://www.ted.com/talks/bill_gates_the_next_outbreak_we_re_not_ready?language=en
https://www.theguardian.com/science/2020/apr/23/john-horton-conway-obituary
https://www.theguardian.com/science/2020/apr/23/john-horton-conway-obituary
https://accu.org/index.php/journals/2044
https://codegolf.stackexchange.com/questions/11880/build-a-working-game-of-tetris-in-conways-game-of-life
https://codegolf.stackexchange.com/questions/11880/build-a-working-game-of-tetris-in-conways-game-of-life
https://www.urbandictionary.com/define.php?term=Hindsight%20is%2020%2F20
https://en.wikipedia.org/wiki/The_Emperor%27s_New_Clothes
https://en.wikipedia.org/wiki/The_Emperor%27s_New_Clothes
https://en.wikipedia.org/wiki/Greta_Thunberg
https://en.wikipedia.org/wiki/Greta_Thunberg
https://en.wikipedia.org/wiki/Five_whys
https://en.wikipedia.org/wiki/PnL_Explained
https://en.wikipedia.org/wiki/PnL_Explained
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

FEATURE KEVLIN HENNEY
Comment Only What
The Code Cannot Say
Comments can help or hinder. Kevlin Henney
assesses when to avoid them.
s with any other form of writing, there is a skill to writing good
comments in code. And, as with any other form of writing, much of
the skill is in knowing what not to write.

It has been said that the difference between theory and practice is greater
in practice than it is in theory. This observation certainly applies to
comments. In theory, the general idea of commenting code sounds like a
worthwhile one: offer the reader detail, an explanation of what’s going on.
What could be more helpful than being helpful? In practice, however,
comments all too easily and all too often become a blight.

When code is ill-formed, compilers, interpreters, and other tools will be
sure to object. If the code is in some way functionally incorrect, reviews,
static analysis, tests, and day-to-day use in a production environment will
flush out many bugs. A known bug is a call to action.

But what about comments? In The Elements of Programming Style,
Kernighan and Plauger [Kernighan78] note that:

A comment is of zero (or negative) value if it is wrong.

Incorrect comments, however, do not seem to raise the same sense of alarm
as incorrect code. Such comments often litter and survive in a codebase in
a way that coding errors never could. They provide a constant source of
distraction and misinformation, a subtle but constant drag on a
programmer’s time and attention.

What of comments that are not technically wrong, but add no value to the
code? Such comments are noise. Comments that parrot the code offer
nothing extra to the reader – stating something once in code and again in
natural language does not make it any truer or more real. Although often
interpreted simply as a principle of avoiding code duplication, DRY (Don’t
Repeat Yourself) cautions more broadly against repeated expression of
knowledge within a system.

If repeating the workings of code in comments is noisy, retaining code in
comments is noisier. Commented-out code is not executable code, so it has
no useful effect for either reader or runtime. A common justification for
retaining commented-out code is that it might (in some indefinite future,
for reasons unknown) become useful. Commented-out code, however,
becomes stale very quickly. As time passes, it becomes increasingly less
likely that uncommenting such code will be meaningful or even
compilable – and be careful what you wish for: in the worst case, it will
compile. Version-related comments and commented-out code try to
address questions of versioning and history. These questions have already
been answered (far more effectively) by version control tools.

A prevalence of noisy comments and incorrect comments in a codebase
can instil a habit in programmers: a habit to ignore all comments, either
by skipping past them or by taking active measures to hide them.
Programmers are resourceful and will route around anything perceived to
be damage: folding comments up; switching syntax colouring so that the
comments and the background are the same colour; scripting to filter out
comments. To save a codebase from such misapplications of programmer
ingenuity – and to reduce the risk of overlooking any comments of genuine
value – comments should be treated as though they were code. Each
comment should add some value for the reader, otherwise it is waste that
should be removed or rewritten.

What then qualifies as value? Comments should say something code does
not and cannot say. Ask what problem the presence of a comment
addresses, and ask if there’s another way to solve it. A comment explaining
what a piece of code should already say is an invitation to change code
structure or coding conventions so the code speaks for itself.

Instead of compensating for poor variable, method, class, or test names,
rename them. Instead of commenting sections in long functions, extract
smaller functions whose names capture the former sections’ intent. Instead
of writing apologies and apologia, follow Kernighan and Plauger’s advice
from the 1970s:

Don’t comment bad code – rewrite it.

Try to express as much as possible through code that means something to
both the compiler and the programmer. Use language structure, identifiers,
and idioms to communicate to the reader what you mean. Any shortfall
between what you can express in code and what you would like to express
in total becomes a plausible candidate for a useful comment. Comment
what the code cannot say, not simply what it does not say.

Reference
[Henney13] Kevlin Henney’s tweet: https://twitter.com/KevlinHenney/

status/381021802941906944

[Kernighan78] B. Kernighan and P. J. Plauger (1978) Elements of
Programming Style (2nd Edition), McGraw-Hill Education.

A

Kevlin Henney is an independent consultant, speaker, writer and
trainer. His development interests include programming languages,
software architecture and programming practices, with a particular
emphasis on unit testing and reasoning about practices at the team
level. Kevlin loves to help and inspire others, share ideas and ask
questions. He is co-author of A Pattern Language for Distributed
Computing and On Patterns and Pattern Languages. He is also editor
of 97 Things Every Programmer Should Know and co-editor of 97
Things Every Java Programmer Should Know.

This article was previously published on Kevlin’s blog:
https://medium.com/@kevlinhenney/comment-only-what-
the-code-cannot-say-dfdb7b8595ac
4 | Overload | June 2020

https://twitter.com/KevlinHenney/status/381021802941906944
https://twitter.com/KevlinHenney/status/381021802941906944
https://medium.com/@kevlinhenney/comment-only-what-the-code-cannot-say-dfdb7b8595ac

FEATURELUCIAN RADU TEODORESCU
Refocusing Amdahl’s Law
Parallelising code can make it faster.
Lucian Radu Teodorescu explores how to
get the most out of multi-threaded code.
hrowing 10 cores at a serial algorithm doesn’t make it 10 times faster
– that’s a well-known fact. Oftentimes, the algorithm barely becomes
3 times faster. Such a waste of resources! And who is to blame? Of

course, it must be Gene Amdahl, with his stupid law [Amdahl67] – after
all, we spent several months fine-tuning our algorithm to perfection, so we
are not to blame.

Now seriously, Amdahl’s law seems to be a universal law that prevents us
taking advantage of increasing parallelism in our hardware. It’s similar to
how the speed of light constant is limiting progress in microprocessor
design.

But, similar to how the hardware industry learned to avoid the restrictions
imposed by physics by focusing on other aspects (like multithreading,
multicores, caching, etc), the software industry can improve parallelism
by changing the focus.

This article explores how we can change our focus in concurrent
applications to drastically reduce the negative effects of Amdahl’s law. It
mainly aims at moving the focus off lock-based programming.

Amdahl’s law and related formulas
Amdahl’s law [Amdahl67] gives an upper bound to the maximum amount
of speedup one algorithm1 can obtain by increasing the parallelism level:

where f is the fraction of the code that is parallelizable and P is the
parallelism level (number of cores). The formula assumes that the
parallelizable part is completely parallelizable.

Figure 1 shows the maximum speedup of an algorithm for parallelism
factors of 50%, 80%, 90%, 95%, 99%.

A parallelism factor of 90% – that is, 90% of the algorithm can be
parallelizable – sounds good at first glance. However, if we plug this value
into Amdahl’s formula, we obtain a maximum speedup of 5.26 for 10 cores
– roughly half of what we naively expect. If the parallelism factor is 80%,
then the speedup for 10 cores would be 3.57 – this doesn’t seem good at all.

If we had an infinite amount of cores, a 90% parallelizable code would
have a maximum speedup of 10. Similarly, an 80% parallelizable code
would have a maximum speedup of 5. The intuition behind this is simple:

no matter how many cores we throw at the problem we can’t improve the
serial part; for the 90% parallelizable factor we can’t improve 10% of the
code no matter what.

If Wser is the time needed to perform the work that cannot be parallelised
at all, and Wpar is the time needed for the parallelizable work, then the time
taken if we have P cores is bounded by TP ≥ Wser + Wpar/P. If P→∞, then
TP ≈ Wser.

The time needed in the absence of parallelism, T1, is called work. The time
needed to run the algorithm if we assume infinite parallelism, T∞, is called
span. Similar to Amdahl’s law, we can use work and span to calculate an
upper bound to the speedup, somehow simpler to compute:

In Amdahl’s law, Wser is work that cannot be parallelised at all, while Wpar
is work that can be parallelised to a certain degree. Thus, we obtain an
upper bound for speedup. Brent [Brent74] uses a slightly different division
to arrive at a lower bound formula. He assumes that T∞ is work that cannot
be perfectly parallelizable and, thus, T1-T∞ is perfect parallelizable work.
With this division he arrives at the following inequality:

1. I’m using the term algorithm here to denote the work that we consider
parallelism for. This may not be the full program/application, but, by
convention, we assume it’s a significant part of it. I wanted to distinguish
it from application, which contains one or multiple invocations of the
algorithm. Beside the invocation of the algorithm, the application may
have other parts that are not relevant for improving parallelism (e.g.,
startup, shutdown). Also, the use of the term algorithm should not be
confused with implementations of well-known algorithms (like the ones
found in standard libraries); we should use the general form (finite well-
defined set of steps).

T

S
f

f
p

p

1

1
1

()
()

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024

0,5 0,8 0,9 0,95 0,99 1

Figure 1

S
T

T

T

Tp
p

1 1 2()

T
T T

P
Tp

1 3()

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. As hobbies, he is working on his
own programming language and he is improving his Chuck Norris
debugging skills: staring at the code until all the bugs flee in horror. You
can contact him at lucteo@lucteo.ro
June 2020 | Overload | 5

FEATURE LUCIAN RADU TEODORESCU

the unfortunate reality is that using locks is
still mainstream – and these probably have the
biggest negative impact on Amdahl’s law
This puts a lower bound to the speedup we might have. All these formulas
can be used to estimate the parallelism level of an algorithm. See
[McCool12] for more theoretical details.

Let us take the example from Figure 2. It represents the work that an
algorithm needs to make, with the explicit dependencies between different
parts. The yellow (light) work units are on the critical path – they are the
span of the algorithm. Assuming all the work units take 1 second to
complete, T∞= 6, while T1= 18.

According to Amdahl’s view, T1 and T18 are not parallelizable, so it
overestimates the possible speedup. The inequality with work and span
gives an even tighter bound to speedup and Brent’s lemma gives a lower
bound to/for the speedup. They are all shown in Figure 3.

The classic multithreaded world
Let me be very clear on this one: in a multithreaded world, mutexes
provide exclusive access to evil.

By design, mutexes block threads from executing certain regions of code;
by design, they limit the throughput of the application; by design, they are
bottlenecks. The reader should excuse me for putting it as bluntly as I can:
after so much has been written on this topic, and after so many talks on
this topic (see for example [Henney18], [Henney17], [Parent17], [Lee06]),
if someone still believes that mutexes are not inefficiencies/bottlenecks
then that person must be very confused. And the same goes with other lock-
based primitives.

But the unfortunate reality is that using locks is still mainstream. And these
probably have the biggest negative impact on Amdahl’s law.

Whenever we distinguish between parallelizable and non-parallelizable
code in an algorithm, we must accept that the non-parallelizable code
comes from two main sources:

 Inherently serial code; i.e., sometimes we need to wait for the result
of a computation before we can start another computation

 Code serialised through locks.

Of course, the ratio between the two depends on the application, but, in
practice, we often find that locks are the main source of non-parallelizable
code. In my experience working on an application that should have a sub-
second reaction time, I’ve encountered (multiple times) cases in which
threads are waiting to acquire locks for more than two minutes, and also
cases in which lock chains have involved more than 10 locks (a lock waits
on a lock, which waits on another lock, and so on). Typically, as soon as
people add locks to a project, the performance quickly goes south.

We add locks to make our code thread-safe. This thread-safe terminology
gives us a sense that everything is ok, including performance – and, of
course, it’s not. Instead, we should be saying that we add locks to become
thread-adverse.

Let’s assume that we have a unit of work that takes 1 second to execute.
When there is no contention, the impact of adding the locks is minimal –
and probably most people just measure this scenario. But, in the presence
of contention, that unit of work can take 10%, 50%, or even 100% more
time to execute. In Figure 4, we have an example of running a unit of work
with locks in parallel; the example shows a performance degradation of
20% and 30%. And, what is worse, we may not be hitting all the non-
parallelisable code in the example. Thus the factor in Amdahl’s law can
be even less than 70%. This can be a big impediment to scaling.

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

Figure 2

Figure 3

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Amdahl’s law

work/span

Brent’s lemma
speedup range

1 thread

2 threads

Figure 4
6 | Overload | June 2020

FEATURELUCIAN RADU TEODORESCU

Two active tasks should never block each
other. If two tasks are conflicting, they

cannot be active at the same time
Another problem that we often encounter in the classical multithreaded
world is the static allocation of work per thread. Applications, from build
time, are configured with a fixed number of threads. Of course, if the
machine has more cores than the number of threads, the application cannot
properly scale. But also the opposite case can hurt performance: having
too many threads on a limited number of cores can make the performance
worse (i.e., because of thread switching and cache effects). Besides these
two extremes, the static allocation of work may cause periods of times with
not enough work.

So, in the classical multithreaded world, it’s very easy to reach cases in
which the ratio of parallelizable code is reduced, thus affecting the speedup
of the application.

A change of perspective
To obtain significant speedups, we need to combat the negative effects of
Amdahl’s law (which provides an upper bound) and to take more
advantage on Brent’s lemma (which guarantees us a lower bound). That
is, we need to reduce the amount of serial code, and increase the work/span
ratio.

We would want to ensure that there is no contention between two units of
work (tasks) that run in parallel, and moreover, at any given point in time,
we have enough (better: the right amount) such tasks to execute. This is
achievable by following a relatively simple set of rules:

 we break the algorithm into a set of tasks; a task is an independent
unit of work

 we add constraints between tasks, modelling dependencies and
possible race conditions

 we use a dynamic execution strategy for tasks; one worker thread
per core

 we ensure that the algorithm is decomposed in enough tasks at every
given point in time

The key here is the definition of tasks: the unit of work is independent. That
is, two active tasks should never block each other. If two tasks are
conflicting, they cannot be active at the same time. That is why we need
to add constraints between tasks (second bullet). And, as the constraints
between the tasks would have to be dynamically set (as we want our worker
threads to always work on the next available task), we need to have a
dynamic execution of our tasks. And, a simple greedy execution would
work well in practice, as it would maximise the amount of work being
executed.

And with that, we roughly solved the contention part between tasks. At this
point I would ask the reader to accept that it is feasible, in practice, to
implement such a system; I will not try to prove that we can always
restructure the algorithms this way – let’s leave this to a follow-up article.

The other part, ensuring that the work/span ratio is large enough, can be
done through proper decomposition of the problem. Unfortunately, there
is no general algorithm to solve this. There are a series of patterns that can
be applied to parallel programming (a good catalogue of patterns can be

found in [McCool12]), and experience so far tells us that this
decomposition is doable in practice for most problems.

If both of these conditions are met, and for most of the problems can be
met, we can count on a significant speedup. But let’s work out the details.

Deriving the new formula
First, let us consider a simplified case in which, for the whole duration of
the algorithm, we have running tasks, and we run them continually. This
is depicted in Figure 5. We code with yellow the actual duration of the task
and with red the time spent in the framework that executes tasks (overhead
compared to static allocation of work).

The tasks are, by design, fully parallelizable, but in the real world they
always have some indirect contention (i.e., caching effects, memory
allocation, OS calls, etc.). But, let’s assume for now that they can achieve
perfect parallelism. That is, in our figure, at any point in which we have
yellow bars we are achieving perfect parallelisation. After executing each
task, we need to add some logic in the execution framework to choose the
next task to execute and actually start executing it. Depending on the
implementation of the framework code, this can be more or less
parallelizable (a good implementation would have very low contention for
average use cases). Let us denote this time as Wfw=αWtasks, assuming that
it’s a fraction of the time spent executing tasks.

If f1 is the parallelisation ratio of the work associated with the tasks
(considering the indirect contention), and f2 is the parallelisation ratio for
the task framework code, then the fully parallelizable part would be
Wpar=Wtasks (f1 + αf2) / (1 + α), while the non-parallelizable part would be
Wser=Wtasks (1 - (f1+ αf2) / (1 + α)). Plugging this into Amdahl’s law, we
obtain:

To be able to make sense of this formula, let’s consider for the moment
that f1 = 1. Yes, this is not true in practice – but for this discussion, it is a
good convention. We can consider that this is an inherent limitation in
software construction, one that largely cannot be avoided. So, to assess the
limits of our task-based system, we should not consider factors that are not
controllable. It’s similar to ignoring speed of light for non-relativistic
mechanics.

Figure 5

S
f f f f

P

p

1

1
1 1

4
1 2 1 2

()

()
June 2020 | Overload | 7

FEATURE LUCIAN RADU TEODORESCU

even though that algorithm might have enough
tasks overall, there may be times in which the
algorithm doesn’t have enough tasks to execute
Moving forward, to give an example, we can consider f2 = 0.5, and α to be
1∕1000 (i.e., on my machine I have a task system that has an overhead of
the order of microseconds, per task). That would give us a general factor
in Amdahl’s law of 0.9995005. That is, for 1000 cores we would obtain a
maximum speedup of 667. For 10 cores, the speedup limit would be 9.955.
That is a great result! (deliberately ignoring indirect parallelism)

Ok, now it’s time to consider the second limiting factor: we don’t always
have tasks to run. When we start the algorithm, we typically have only one
task running; that task then creates and spawns the tasks that can be
executed in parallel. Also, there are problems that may not expose high
degrees of parallelism, so at various points in time, the number of available
tasks can be less than the number of cores (undersubscription).

We would introduce β to be the ratio between the time we have more tasks
than cores and the total time of the algorithm. With this, the global
Amdahl’s factor becomes:

and the new formula:

At this point, we can also argue that, for certain algorithms and
applications, we can make β be practically 1. If we care about the total
application throughput, then the fact that our algorithm does have enough
tasks at a given point may be irrelevant if there are other parts of the
application with tasks. So, if we succeed in scheduling enough tasks
around the algorithm, we can practically consider that β = 1.

Another argument for discounting the effect of the β factor relates to an
assumption in Amdahl’s law: we always assume that the total amount of
work is constant, thus we measure against a constant work. But, whenever
we discuss scalability and throughput, we oftentimes want to increase the
problem size. That is, we are not interested in how much faster we can
make one single computation of 1 second in complete isolation. We often
consider the throughput of making many such computations. This means
that we could have enough tasks at any time to fill the available cores.

That is, if we measure the speedup of the algorithm inside an application
that is designed to maximise throughput, we can theoretically obtain a
speedup of 667 for 1000 cores and 9.995 for 10 cores.

This is the upper limit as given by Amdahl’s law. If we can shoot for that
it’s very good… let’s shoot for that. But to do so, let us turn our attention
to the lower limit of speedup given by Brent’s lemma.

To simplify our calculation, let’s assume that our work is divided in N
equal tasks: Wtasks = NW0. The amount of task framework work that needs
to be done is also proportional to N, so the total work is T1 = N(W0+Wfw0).
If we need K tasks for our span, then T∞=K(W0+Wfw0). This means that

T1 = N/KT∞, and thus TP ≤ (W0+Wfw0)(1+(N/K - 1)/P). This would give
us a speedup of:

If we are targeting high-throughput, and we can hide the latency of the
computation among a multitude of other computations, we can practically
consider K = 1, and thus the formula becomes:

Again, this formula ignores some the fact that, in practice, it is hard to find
perfect parallelisation, so it must be used with care.

This formula is important, as it gives us a guaranteed speedup (under all
the assumptions we considered). For example, if N =1000, we have a
minimum speedup of 500.25 for 1000 cores, and a minimum speedup of
9.91 for 10 cores).

I believe that these numbers will make most readers want to drop lock-
based multithreaded programming and embrace task-based programming.
If that’s the case, I am personally very happy.

But before we directly jump on task-based programming, a
contextualisation is needed.

Discussion
Having enough tasks to run. A key assumption we’ve made when
deriving the above formula is that we have enough tasks to run at any given
time; to be more precise, more than the number of available cores. This is
known in the literature as overdecomposition [McCool12] – decomposing
the problem into more tasks than we need. In multithreaded contexts, we
should always aim for overdecomposition, but this is not always possible.

A major problem is that, even though that algorithm might have enough
tasks overall, there may be times in which the algorithm doesn’t have
enough tasks to execute. This is mainly induced by the constraints we need
to have on our tasks. If, for example, an algorithm has a long task that
would spawn other tasks just at the end, then the algorithm would have
times with undersubscription, which would hurt scalability.

Too much decomposition. From the point of view of this article,
overdecomposition is highly encouraged. However, in practice, there are
also costs associated with it. One cannot generate a near-infinite number
of tasks. Tasks may be bound to resources (i.e., they need memory or
special initialisation code) and we cannot afford to create too many of these
tasks. This heavily depends on the algorithm being solved. For example,
for an h264 video decoding a task, decoding a frame might need a context
to run into; creating such a context might not be very cheap. So,
applications may also want to limit the amount of decomposition.

f f1 2

1
5()

s
f f f f

P

p

1

1
1 1

6
1 2 1 2

()

()

S
N

K
N K

P

p

()7

S
N
N

P

p

1

1
8()
8 | Overload | June 2020

FEATURELUCIAN RADU TEODORESCU

If the average size of the task is similar to the overhead
of the task framework, then half of the running time of

the algorithm would be just on the task overhead
The size of the tasks matters. Our formula shows that the more tasks we
have, the better the speedup will be. One would be tempted just to break
the application down into very small tasks. But this may degrade the
overall performance. Smaller tasks mean a larger α factor, that increases
the overhead associated with managing the tasks. If, for example, the
average size of the task is similar to the overhead of the task framework,
then half of the running time of the algorithm would be just on the task
overhead. As a rule of thumb, for the types of applications I work in, I
would try to keep my tasks in the order of milliseconds: no less than 1ms,
but no greater than 1s.

High-throughput scenarios. The whole article focuses on maximising
throughput. But, as we well know, maximising throughput can lead to
increased latency of the application. So, the advice of this article may not
apply to low-latency applications.

Fixed work vs scalable work. Most of the formulas in this article revolve
around the total work that an algorithm needs to do, but they are not very
explicit. For example, Amdahl’s law assumes a fixed amount of work;
running the algorithm on more cores should not change the amount of work
done. But this is generally not true in practice. First, moving from a single-
threaded application to a multi-threaded application implies more work.
Secondly, the amount of work is typically determined at runtime based on
the actual execution trace. For the sake of simplicity, I left this discussion
outside the article.

Beware of indirect contention. If we remove locks from our
multithreading programming, indirect contention might become visible.
And the more parallelism we add to our programs, the more this will be a
problem. There are two parts on indirect contention: one inside our
software (I/O, memory allocator, OS calls, use of atomics2 etc.), and one
outside of our software (operating system, hardware, other equipment,
etc.). For example, the hyperthreading feature on a processor can limit the
processing power as two threads can be fighting on the resources of the
same core.

Conclusions and next steps
No matter what we do, we can’t completely eliminate the limitations
imposed by Amdahl’s law; there are always factors that would limit the
speedup of our code. But, we can shift our focus. Instead of focusing on
external limitations in our software, we can change the paradigm in which
we are writing multithreaded software. Changing this focus, we can
eliminate the heavy intrinsic limitations of Amdahl’s law.

If we focus on eliminating the locks from our software and we replace them
with tasks, then, provided that we have enough tasks to be run at any given
time and that the overhead of the task execution framework is small, we
can achieve very good speedups. We analyse the upper bound speedup

(starting from Amdahl’s law) and the lower bound of the speedup (starting
from Brent’s lemma). In both cases, we converge to speedups that are
bigger to what we typically see in current practice.

The one big question that the article doesn’t explore is whether we can
move to tasks for any type of problems. It only previews the main
principles that would make the system work, but doesn’t provide solid
arguments on how this can be done. I can only assume that the reader is
not fully convinced that such a system would be feasible for most
applications. And that just binds me to write another article on this topic.

Until that time, the reader should at least start to be suspicious of locks
found in the code. As a good tip, follow Kevlin Henney’s advice and call
all the mutexes ‘bottlenecks’ – after all it’s the truth.

Appendix. A small example
I cannot finish this article without giving a code sample, without putting
the theory into practice. Let us use a task-based system to compute the
Mandelbrot fractal. The concurrency of the algorithm is implemented with
the help of the Concore library [concore]. See Listing 1 overleaf. (I started
to write this library to help me understand how to better write concurrent
programs).

The problem is relatively simple: we have a matrix that needs to be filled
with the number of steps until the series diverges (well,
approximated) [Wikipedia]. The elements are completely independent of
each other. That allows us a straight-forward parallelisation. We chose to
(explicitly) create a task for each row of the matrix. The reader will pardon
my use of atomic here; it’s a source of indirect contention, but I just wanted
to keep this simple.

Running a simple benchmark on my MacBook Pro 16 2019, 2.6 GHz
6-Core Intel Core i7, I get the results shown in Figure 6. Considering all
the disclaimers we’ve made during this article (not a perfect throughput
test, indirect contention on memory, indirect contention with other
processes, hardware, etc.) the results are in line with our calculations for
up to 6 cores – which is also the number of non-hyperthreading cores I have
on my machine (this is a proof that hyperthreading is a big source of
indirect contention).

Speaking of indirect contention that cannot be controlled from software:
during the run of the tests the operating frequency of my CPU drops as the
number of worker threads go up. We just hit the limitations outside of
software. And that just shows that focusing on obtaining the perfect
Amdahl formula is a losing strategy.

References
[Amdahl67] Gene M. Amdahl (1967) Validity of the Single Processor

Approach to Achieving Large-Scale Computing Capabilities, AFIPS
Conference Proceedings (30): 483–485 (Proceedings of the 18–20
April 1967 joint computer conference.)

[Brent74] R.P. Brent, ‘The parallel evaluation of general arithmetic
expressions’, Journal of the Association for Computing Machinery,
21(2), 1974.

2. At the moment, I still use atomics in my day-to-day code while heavily
avoiding locks. But atomics have essentially the same downsides as
the locks do, just at a much finer scale. My hope is that after we are
good at removing locks from our code, the next step would be to find
systematic ways of removing the need for using atomics in high-level
code.

Z Z cn n 1
2

June 2020 | Overload | 9

FEATURE LUCIAN RADU TEODORESCU

No matter what we do, we can’t
completely eliminate the limitations
imposed by Amdahl’s law
[concore] Lucian Radu Teodorescu, Concore library: https://github.com/
lucteo/concore

[Henney17] Kevlin Henney, ‘Thinking Outside the Synchronisation
Quadrant’, ACCU 2017, available at: https://www.youtube.com/
watch?v=UJrmee7o68A

[Henney18] Kevlin Henney, ‘Concurrency Versus Locking’ 2 Minute
Tech Tip, available at:
https://www.youtube.com/watch?v=mEtoXwB9HFk

[Lee06] Edward A. Lee (2006) The Problem with Threads, Technical
Report UCB/EECS-2006-1, available at: https://
www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf

[McCool12] Michael McCool, Arch D. Robison, James Reinders,
Structured Parallel Programming: Patterns for Efficient
Computation, Morgan Kaufmann, 2012

[Parent17] Sean Parent, Better Code: Concurrency, NDC London 2017,
available at: https://www.youtube.com/watch?v=zULU6Hhp42w

[Wikipedia] Mandelbrot set: https://en.wikipedia.org/wiki/
Mandelbrot_set

Listing 1

int mandel_core(std::complex<double> c,
 int depth)
{
 int count = 0;
 std::complex<double> z = 0;

 for (int i = 0; i < depth; i++) {
 if (abs(z) >= 2.0)
 break;
 z = z * z + c;
 count++;
 }

 return count;
}

void serial_mandel(int* vals, int max_x,
 int max_y, int depth) {
 for (int y = 0; y < max_y; y++) {
 for (int x = 0; x < max_x; x++) {
 vals[y * max_x + x] =
 mandel_core(transform(x, y), depth);
 }
 }
}

void parallel_mandel(int* vals, int max_x,
 int max_y, int depth, concore::task& done) {
 std::atomic<int> remain{max_y};

 for (int y = 0; y < max_y; y++) {
 concore::global_executor([=, &remain,
 &done](){

 for (int x = 0; x < max_x; x++) {
 vals[y * max_x + x] =
 mandel_core(transform(x, y), depth);
 }

 if (remain-- == 1)
 concore::global_executor(done);
 });
 }
}

Figure 6

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Num cores Speedup

1111 2 3 4 5 6 7 8 9 10 11 12
10 | Overload | June 2020

https://github.com/lucteo/concore
https://github.com/lucteo/concore
https://www.youtube.com/watch?v=UJrmee7o68A
https://www.youtube.com/watch?v=UJrmee7o68A
https://www.youtube.com/watch?v=mEtoXwB9HFk
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www.youtube.com/watch?v=zULU6Hhp42w
https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Mandelbrot_set

FEATURESTEVE LOVE & ROGER ORR
Some Objects Are More
Equal Than Others
Comparing objects is a fundamental operation. Steve Love
and Roger Orr consider different language approaches.
esting for equality is an important concern in a lot of programming
tasks and is often used for control flow: equality is one of the
commonest expressions used in if, for and while statements.

However despite being something that is covered in almost any
introduction to a programming language the concept and implementation
of equality can be quite complicated.

Possible meanings of ‘equality’
There are a wide variety of meanings to the use of ‘equality’ in a
programming language. The list of possible meanings includes:

1. Refer to the same memory location
2. Have the same value
3. Behave the same way

This article explores some of the details and pitfalls with equality in terms
of just the first two items on this list. We found it was a harder task than
it appears at first glance to get it right (for some definition of right), even
ignoring the third item on our list or looking further afield for other
meanings.

The first item in the list is often described as ‘identity comparison’ and the
second one as ‘value comparison’, and we make use of these terms below.
Note that value comparison usually refers to the perceived value for users
of the object and fields that don’t affect this (for example internally cached
values) are usually not included in the comparison code.

We are further restricting the subject to focus primarily on only three
languages: C++, C# and Java. Despite their common heritage and obvious
similarities there are many differences in the sort of problems equality
raises in each language: even at the basic level of language syntax we see:

 In Java: a == b always does something for all variables a and b of
the same type (and compiles in some cases when they are of
different types) and you cannot change what it does.

 In Java & C#: anobject.[eE]quals(another) always does
something (we write [eE]quals because the method is spelled
equals in Java but Equals in C#)

 In C++ & C# you can overload the meaning of == and in C# & Java
you can override [eE]quals to customize behaviour.

Let’s start with the language construct form of equality ‘==’ on the grounds
that this must be a pretty fundamental definition to have been enshrined
in the syntax of the programming language, What does each language
provide for this operator ‘out of the box’?

In C++ ‘==’ is predefined (as a value comparison) for all built-ins and the
subset of the library types for which equality makes sense (e.g.
std::string), but is not automatically provided for custom types
defined in a program. However you can provide your own definitions of
operator== as long as at least one argument is a custom type: and you
can also specify your own return type for the operator (although returning
anything but bool is usually a bad decision.)

In Java ‘==’ is predefined for primitive built-ins and does a straightforward
value comparison. For object types ‘==’ performs identity comparison
between the two objects supplied. You cannot change this behaviour.

In C# ‘==’ is predefined, or overridden, for all built-ins and library types
(whether these types are reference [class] or value [struct] types). It
is not automatically provided for custom value types and performs identity
comparison for custom reference types. C# lets you define ‘==’ for any
custom type, but you must additionally provide an implementation of ‘!=’.

Object comparisons
For Java and C# the presence of a single root class for all object types
allows for a sensible definition of an equality method in this base class
which takes an argument of the base class. In both languages the default
implementation of this method, on custom types, performs identity
comparison.

Java overrides equals() for some of the predefined types, such as
Integer. However there is some confusing behaviour as Listing 1
demonstrates.

If you compile and run this simple program you might be surprised:

 Testing 10
 Equals
 ==
 Testing 1000
 Equals

T

Steve Love is a programmer who gets frustrated at having to
do things twice. He can be contacted at steve@arventech.com

Roger Orr has been programming for far too long but still
enjoys it far too much. Some of it is paid and some of it isn’t.
He can be contacted at rogero@howzatt.co.uk

Listing 1

public class IntegerEquals
{
 public static void main(String[] args)
 {
 test(10);
 test(1000);
 }
 public static void test(int value)
 {
 System.out.println("Testing " + value);
 Object obj = value;
 Object obj2 = value;
 if (obj.equals(obj2))
 System.out.println("Equals");
 if (obj == obj2)
 System.out.println ("==");
 }
}

June 2020 | Overload | 11

FEATURE STEVE LOVE & ROGER ORR

unit tests … will pass most tests whether you
use the equals method or the == operator;
but in actual use with runtime generated
strings, the behaviour is different
The two objects obj and obj2 compare the same using the equals
method (as the overridden method in Integer compares values not identity)
when executed with value set to 10 or 1000 as expected. However, on
most implementations of Java, obj compares the same as obj2 using ==
when value is set to 10 but they compare different when the value is set
to 1000. What is happening here?

This is a consequence of an optimisation in the Java code that boxes
primitive data into Integer objects. The compiler implements obj ==
value by calling Integer.valueOf(value) and this method caches
‘commonly used values’ such as 101. Hence in the first case the compiler
is performing identity comparison on two references to the same, cached,
Integer with value 10 and in the second case the compiler is performing
identity comparison on references to two separate temporary Integer
objects with value 1000.

There is a similar problem with intern’ed strings (strings held in a shared
pool of unique strings normally accessed using the String.intern()
method) as demonstrated in Listing 2.

This program prints match! when executed as the compiler ensures that
strings with the same compile time value generate references to a single
object. This is perfectly safe since strings in Java are immutable, but can
cause some confusion. In general checking strings for equality in Java with
== is unsafe and some tools provide a warning for attempts to do so. The
danger is that compile time strings, which are interned, are treated
differently from any runtime strings (which typically aren’t).

The classic case where this causes problems is that unit tests, which
typically use compile time strings, will pass most tests successfully
whether you use the equals method or the == operator; but in actual use
with runtime generated strings (such as those read from a file) the
behaviour is different.

C# implicitly provides some implementation assistance with the Equals
method for value types, but it’s more complicated than it might appear at
first sight. (Listing 3)

Both these structures will have an Equals method synthesised by the
compiler. The first class (Easy) only contains basic scalar members and

the Equals method will perform a bit-wise check on the two values (using
the total size of the object), which is often exactly the desired behaviour
(and is fast). In the case of the second class (Hard) the presence of the
custom type MyType means that the synthesised Equals method
performs reflection on the class at run time to identify the fields and then
does a member-wise comparison of all the members (including the basic
scalar int member X). While this produces the correct answer the
performance is likely to be significantly worse than an explicit
implementation of equality.

Finally in both C# and Java thought needs to be given to ensure the primary
object reference is non-null. The simple example in Listing 4 demonstrates
the problem and also a way (in C# only) to avoid it.

This program fails with a NullReferenceException as a is null in the
first call to Equals and you cannot call a method on a null object. The
second call, using the static method taking two arguments. does not throw
such an exception when supplied with null references (and returns false
if either a or b is null and true if they both are).

C++ does not have a single object root and so it doesn’t really make sense
to have an equals method, but it does have templates and to help with
programming the STL there is std::equal_to, which by default
performs ==. You can specialise it for your own type to pass your own

1. See http://download.oracle.com/javase/6/docs/api/java/lang/
Integer.html#valueOf%28int%29

Listing 3

struct Easy
{
 int X;
 int Y[100] ;
}

struct Hard
{
 int X;
 MyType Y;
}

Listing 2

public class Intern
{
 private static final String s1 = "Something";
 private static final String s2 = "Some";
 private static final String s3 = "thing";
 public static void main(String [] args)
 {
 if (s1 == s2 + s3)
 System.out.println("match!");
 }
}

Listing 4

public class NullEquals
{
 public static void Main()
 {
 object a = null;
 object b = new object();
 if (a.Equals(b))
 Console.WriteLine("Now there's a thing");
 if (object.Equals(a, b))
 Console.WriteLine(
 "This should be safe enough");
 }
}

12 | Overload | June 2020

FEATURESTEVE LOVE & ROGER ORR

The trouble is that the overloaded method is
called based on the compile time type of

both the primary object and the argument
types to methods and classes implemented in terms of equal_to such as
std::unordered_map (see Listing 5 for an example).

The full story for C# is even more complex as there is a long list of equality
measures, which have been added to as various new versions of the .Net
framework have been released. The list includes:

 object.Equals (we’ve already seen both flavours of this one)

 object.ReferenceEquals

 IEquatable<T>

 IEqualityComparer

 IEqualityComparer<T>

 EqualityComparer<T>

 IStructuralEquatable

 StringComparer

...and others we’ve probably missed...

The second element of this list, the ReferenceEquals method, is used
to perform the identity check: that two references refer to the same object.
The method is needed because ==, which performs this check by default,
can be overridden. (Since Java does not allow operator overloading it has
no need for such a method.)

However , when used in con junc t ion wi th ob jec t box ing ,
object.ReferenceEquals has some interesting behaviour (see
Listing 6).

This program prints False because the two temporary boxed integer
objects created to pass into the ReferenceEquals method are distinct,
and hence different, objects. This is a related problem to the one shown
above using the Java Integer class.

Overloading equality
Both Java and C# allow the programmer the freedom to overload the
[eE]quals method to take an argument of a different type. Listing 7 is
an example in Java that shows the problems of a naive implementation.

This program prints:

 oe1.equals(oe2): true
 oe1.equals(obj2): false
 obj1.equals(oe2): false
 obj1.equals(obj2): false

even though the same objects are being compared in each case. The trouble
is that the overloaded method is called based on the compile time type of
both the primary object and the argument. What you probably want in this
case is logic based on the runtime type.

Listing 5

#include <functional>
#include <iostream>
int main()
{
 std::cout << "std::equal_to<int>()(10,10): "
 << std::equal_to<int>()(10,10) << std::endl;
}

Listing 6

public class RefEqual
{
 public static void Main()
 {
 int ten = 10;
 System.Console.WriteLine(
 object.ReferenceEquals(ten, ten));
 }
}

Listing 7

public class OverloadingEquals
{
 private int value;

 public OverloadingEquals(int initValue)
 {
 value = initValue;
 }

 public boolean equals(OverloadingEquals oe)
 {
 return oe != null && oe.value == value;
 }

 public static void main(String[] args)
 {
 OverloadingEquals oe1
 = new OverloadingEquals(10);
 OverloadingEquals oe2
 = new OverloadingEquals(10);
 Object obj1 = oe1;
 Object obj2 = oe2;
 System.out.println("oe1.equals(oe2): "
 + oe1.equals(oe2));
 System.out.println("oe1.equals(obj2): "
 + oe1.equals(obj2));
 System.out.println("obj1.equals(oe2): "
 + obj1.equals(oe2));
 System.out.println("obj1.equals(obj2): "
 + obj1.equals(obj2));
 }
}

June 2020 | Overload | 13

FEATURE STEVE LOVE & ROGER ORR
There are some principles from the mathematics of ‘equivalence
relations’that, if adhered to, result in a consistent use of the concept of
equality. They are that equality is...

 Reflexive

a==a is always true

 Commutative

if a==b then b==a

 Transitive

if a==b and b==c then a==c

 Reliable

Never throws. (This means checking for null!)

These rules are listed out in fuller detail in the language references for both
C# [C# Equals] and Java [Java equals]. The wording from the C++
standard is short enough to quote in full: ‘(5.10p4) Each of the operators
shall yield true if the specified relationship is true and false if it is false.’ There
you have it: succinct at any rate!

Now let us try and apply these rules when considering polymorphic
equality. Consider a two-dimensional coordinate class in C# (Listing 8).

We might extend this class to support a three-dimensional coordinate
system (Listing 9).

How does this polymorphic equality fare when checked against our four
relationships for equality?

 var p1 = new Coordinate { X = 2.3, Y = 5.6 };
 var p2 = new Coordinate3d { X = 2.3, Y = 5.6,
 Z = 10.11 };

 p1.Equals(p2) is True
 p2.Equals(p1) is False

Oops. The equality relationship fails the commutative requirement. We
can improve our conformance to this requirement in C# by implementing
IEquatable<T> – which enforces implementation of an override of
Equals taking T – for both classes. This provides the symmetry for p1
and p2 but is still not a complete solution to the problem as this code
fragment shows:

 object o1 = p1;
 Console.WriteLine(
 "p1.Equals(o2) {0}, o2.Equals(p1) {1}",
 p1.Equals(o2), o2.Equals(p1));

However, even if we fix the commutative relation by making our equality
test more complex we still have a problem. Let’s add this variable:

 var p3 = new Coordinate3d {
 X = 2.3, Y = 5.6, Z = 1.22 };

Now p1 will be equal to p3 (for the same reason it is equal to p2), but p2
and p3 will not compare equal. We have broken the transitivity
requirement. How can we resolve this? Should we even try?

Let’s consider why we have the problems we see. Our problems are mostly
caused by attempting to define equality in a class hierarchy. What sense
is there to try and compare a two-dimensional and three-dimensional
object? They are not the same class. The first solution is to change our
design so that two and three dimensional classes are not related: we might
use composition in preference to inheritance if we do wish to use some of
the implementation of Coordinate2d in the implementation of
Coordinate3d.

When inheritance is needed a good solution to the problematic elements
of value equality is to allow comparison to succeed only if the actual run-
time class types are the same, which can be implemented simply enough
in C# by comparing the results of calling GetType() on each object.

Incidental and intentional equality
Avoid defining equality just so it can be used in conjunction with
something that requires it, e.g. hashed containers. While it may make the
initial implementation simpler to define ‘just enough’ equality to be able
to use the type in this way, such partial implementations of equality have
a nasty habit of causing more serious problems later on as the code evolves.

Suppose for example that you have a C# class and wish to create a
HashSet of objects from this class. It can be tempting to define an
equals() method on the class that fulfils just the checks necessary for
this usage. However the equality used for a comparison in this context
might be very different from one used elsewhere: perhaps only certain key
fields are relevant. In this case an alternative way of solving the problem
exists as the C# HashSet can use a pluggable equality comparer
(IEqualityComparer<T>) instead of using equals(). This also
provides a clearer way of stating the intent than implementing the equality
operator just for using in the hash set. In C++ the unordered_set can
be given its own equality comparer; however in the standard Java
collection classes HashSet can only use object.equals(), so you’re
stuck with it.

Within a single application, both meanings of equality might be required:
for example in an application for playing card games do you need the Ace
of Spaces or an Ace of Spades? In Java and C#, override [Ee]quals for
a value-check and leave == well alone to perform its default action of an
identity check. In C++, which allows access to the address of an object,
you can explicitly compare addresses (for identity) or contents (for value).
Unless of course someone has defined operator& for one of the types...

Hashcodes
There is a close relationship between equality and hashing. For example
the C# documentation states that ‘classes [..] must [...] guarantee that two
objects considered equal have the same hash code’. Java imposes a similar
rule for Object.hashCode().

Listing 9

class Coordinate3d : Coordinate
{
 public double Z { get; set; }
 public override int GetHashCode()
 {
 // ...
 }
 public override bool Equals(object other)
 {
 var right = other as Coordinate3d;
 if (right != null)
 return base.Equals(other) &&
 Z == right.Z;
 return false ;
 }
}

Listing 8

class Coordinate
{
 public double X { get; set; }
 public double Y { get; set; }
 public override int GetHashCode()
 {
 // ...
 }
 public override bool Equals(object other)
 {
 var right = other as Coordinate;
 if (right != null)
 return X == right.X && Y == right.Y;
 return false;
 }
}

14 | Overload | June 2020

FEATURESTEVE LOVE & ROGER ORR
The reason is simple: when hashing functions are used with collections of
objects the hash code is used first as a coarse filter to partition objects into
buckets with the same, or related, hash codes. If you implement a hash code
function that means two objects comparing equal have a different hash
code then the two objects may end up in different buckets and the code
won’t ever get to the point of testing for equality.

Hash codes for objects that can mutate are another problem. See Listing
10 for an example.

Consider what happens if Value changes after inserting into a hashed
container... if the object’s hash code changes after being added to a hashed
container, subsequent attempts to look for the object in the container will
be accessing the wrong bucket.

The default implementation of GetHashCode() in C# for a value type
is the hash code of the first field – this is rarely the best implementation
for most value types. While we were investigating hash code behaviour in
C# we found an interesting ‘feature’ of the Microsoft C# runtime: the hash
code for a boolean value is constant! The program in Listing 11
demonstrates both these behaviours by printing True both times when
compiled and run using Microsoft’s implementation.

Using Visual Studio this program prints:

 True
 True

Collections
Another set of issues is raised by considering equality on container types.
When are two collections of things equal? Is it enough that the two
containers have the same items or do they need to be in the same order?
(As a side note, we can add to the C# list of equality checks with
SequenceEqual, which insists on the same items, in the same order).

This is a question that has performance implications too: comparing two
sets are equal when permutations are allowed has a higher complexity
measure than the case when the ordering must match.

A further question that may need addressing with containers is whether you
want a value or reference comparison: do two containers match if they
contain the identical objects or if they contain objects with identical
values?

Note that this is a case where polymorphic equality makes a lot of sense:
two collections are equal when they contain the same objects. You are not
usually interested in whether they are from the same class (or even whether
the internal states are the same); the important thing for equality is the
objects they contain.

Conclusion
Equality is hard to define simply even for a single language. It is easy to
implement if you stick to a small set of common sense rules; more
complicated implementations are possible but not in general
recommended.

One key distinction is between values and references. You should know
the difference between (polymorphic) reference types and value types in
all languages and avoiding treating the two the same way! Equality for
references is a check for identity but equality for value types is a check for
equal values of all (significant) fields.

Making use of immutability for value types has many benefits, far beyond
equality. In the case of equality though it allows for the possibility of
caching of objects and/or values and it also removes the class of problems
exemplified by the example of modifying an object while it is held in a
collection.

Using value equality in a class hierarchy rarely makes sense and should
be avoided. It is often better to avoid inheritance in the sort of cases where
equality might make sense and use composition instead. Classes can also
be made final (or sealed) to prevent unwanted inheritance but this can
be an annoyance when a user of the class has a valid reason for wanting
to extend your class.

Further reading
C# in a Nutshell has a deep exploration of equality in C#. For more about
equality in Java see http://www.javapractices.com, and follow links
through Overriding Object methods to implementing equals.

Angelika Langer and Klaus Kreft wrote a pair of articles on the subject
[Langer]. While the target of their article is Java many of the points apply
to C# as well.

References
[C# Equals] http://msdn.microsoft.com/en-us/library/

bsc2ak47%28v=VS.100%29.aspx
[Java equals] http://download.oracle.com/javase/6/docs/api/java/lang/

Object.html#equals%28java.lang.Object%29
[Langer] http://www.angelikalanger.com/Articles/JavaSolutions/

SecretsOfEquals/Equals.html

Listing 10

public static class Bogus
{
 public String Value;
 @Override public int hashCode()
 {
 return Value.hashCode();
 }
 @Override public boolean equals(Object other)
 {
 return ((Bogus)other).Value.equals(Value);
 }
}

Listing 11

using System;
static class Program
{
 struct HashTest
 {
 public bool Enabled;
 public string Value;
 }

 public static void Main()
 {
 var h1 = new HashTest{
 Enabled = true, Value = "Great!"};
 var h2 = new HashTest{
 Enabled = false , Value = "Great!"};
 Console.WriteLine(
 h1.GetHashCode() == h2.GetHashCode());
 h1.Value = "Rubbish!";
 Console.WriteLine(
 h1.GetHashCode() == h2.GetHashCode());
 }
}

This article is a reprint. It was first published in Overload 103
(June 2011). Some topics are always relevant, even as
languages and practices change.
June 2020 | Overload | 15

http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html
http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://download.oracle.com/javase/6/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://msdn.microsoft.com/en-us/library/bsc2ak47%28v=VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/bsc2ak47%28v=VS.100%29.aspx
http://www.javapractices.com

FEATURE CHRIS OLDWOOD
Afterwood
Mission statements are all the rage. Chris
Oldwood considers whether there are any
benefits to omission statements.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

’m a big fan of quotes. Not the funny little marks we use to enclose
strings in source code and speech in prose, or use inappropriately when
distinguishing between plurals and possession, but those tiny

utterances which are either written or spoken and yet manage to convey
much more. One man who has provided so many of the latter and yet
equally suffered from the malaise of the complex rules of the apostrophe
is Fred Brooks. (I constructed that sentence very carefully to avoid that
particular trap and therefore save valuable time for the editor and
reviewers.) From his vast catalogue of memorable writing, I can easily
single out one quote which sums up a career in programming without
passing judgement on those who find themselves on the wrong side of the
tracks:

Good judgement comes from experience, and experience comes
from bad judgement.

Relayed in its entirety, it stands as a shining example of how even failure
can be seen in a good light – a continuous source of learning – so long as
the culture surrounding us provides us with the safety we need to
experiment.

Sadly, not all quotes have the structure that allows them to remain intact
or at least to withstand the continual need to compress and distil a concept
into as few words as possible. This reductionism works pretty well in the
Design Patterns community, where we have managed to reduce many
common solutions to repeating problems in software design down to just
a few words. In the case of the Gang of Four, they reached the holy grail
of just a single word for a number of fundamental concepts and gave us
the power to communicate volumes with a ubiquitous language. In time,
they even gave us the power to evoke a complex emotional response
simply by uttering the word ‘singleton’.

In one of her many (self-confessed) failed attempts to write an editorial,
the Overload editor reminded us of those immortal words from Strunk &
White, which no doubt play a significant role in the crusade to eliminate
the superfluous – ‘omit needless words’. Given the prevalence of soot in
the printing process (as an ingredient of ink) you could make an argument
that following this advice would lead you to a reduction in your carbon
footprint too. Fran amusingly points out that with undue care you can take
this too far and quickly lose the essence, creating a monster in its wake.
Needless to say that naively paraphrasing Strunk & White as ‘omit words’
is not a zero sum game.

I’m sure there are people who feel that that famous six-word story from
Ernest Hemingway about unworn baby shoes on eBay can be improved
upon, although that wasn’t it. I’ve definitely been in project meetings
where Kent Beck’s succinct expression of how late you can leave a
decision, namely the ‘last responsible moment’, has undoubtedly been
irresponsibly re-interpreted as the ‘last moment’, at which point a mad
scramble takes place to continue to hit the (no doubt artificial) deadline.
From the vitriol that appears regularly on the Internet, you could be
mistaken for believing that Beck was also responsible for suggesting that

we merely ‘do the simplest thing’ and forgo any thought or planning (the
consequences be damned). After all, what possible extra value does
‘...that could possibly work’ add to such a proposition – who would be
stupid enough to trade-off ‘simplicity’ over ‘working’? Maybe the very
same people that would prefer to just ‘Keep It Simple’ and kiss goodbye
to correctness.

Sir Tony Hoare is definitely no stranger to this phenomenon. I wonder if
our industry’s billion pound mistake is an inability to write quotes out in
full. The poster child for this whole affair is almost certainly the continued
debate around whether or not someone is ‘prematurely optimising’.
Delivered by itself, Hoare may as well have written: “we should forget
about full quotations, say about 97% of the time”. I guess some quotes
need to be made so simple they have no obvious deficiencies.

Sometimes it feels like there is a Newton’s Third Law of Truism – for
every quotation there is an equal and opposite (misguided) interpretation.
This makes some conversations seem like a game of Quote Trumps™
where you try to make a succinct point and then your colleague feels the
need to respond with a ‘superior’ quote in the hope of scoring more points.
For example, ‘the customer is always right’ is almost always ‘trumped’ by
that old classic (which is commonly attributed to Henry Ford) about the
customer really wanting ‘faster horses’. This quote is almost always used
to justify why developers know better than their customers and therefore
give themselves the right to explore some shiny new technology rather
than spend more time understanding what problem the customer is really
trying to solve. Sometimes the problem is to discover what the problem is.

I don’t believe it’s limited to our industry but maybe we’re just in more of
a rush than anyone else and are therefore more content to skip the research
and critical thinking phases and move straight on to the executive
summary. Mind you, that expression is now considered overly verbose
too and has been undercut by the new kid on the block, ‘TL;DR’. How
long before we capture this sentiment within a single emoji and continue
to prematurely optimise reading time over comprehension?

Quotations are written for people to read and only incidentally for
inclusion in motivational books (or for comedic effect). The moment we
start to paraphrase, we run the risk of subtly changing the meaning in such
a way that our audience will miss the point, with the catastrophic effect
that they may even take away the opposite view to what was intended by
the original author; in the wrong hands quotes could be considered
harmful.

For those less familiar with Strunk & White, they need look no further
than Hoare himself, as he was the one who suggested that inside every
large program is a small one struggling to get out. Reductionism is
therefore an essential process but how do we ensure
that we make things as simple as possible, but no
simpler? I fear there is no silver bullet...

I

16 | Overload | June 2020

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

www.qbssoftware.com

	Rainclouds and Olive Branches
	Comment Only What The Code Cannot Say
	Refocusing Amdahl’s Law
	Some Objects Are More Equal Than Others
	Afterwood

