

Find out more at www.qbssoftware.com

August 2020 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 The Global Lockdown of Locks
Lucian Radu Teodorescu shows us
how locks can be replaced by tasks.

10 C++20: A Simple Math Module
Rainer Grimm describes how to build a
mathematics module.

13 A Thorough Introduction to Apache Kafka
Stanislav Kozlovski takes a deep dive
into the system.

20An Example Confined User Shell
Alan Griffiths demonstrates Snap confinement
for a complete GUI environment using the
Mircade shell.

22 Agile Manchester 2020: Testers Edition
Jit Gosai reports on Agile Manchester
from a tester’s perspective.

16 Afterwood
Chris Oldwood recounts a Stack Overflow
comment that got him thinking.

OVERLOAD 158

August 2020

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 159 should be
submitted by 1st September 2020
and those for Overload 160 by
1st November 2020.

EDITORIAL FRANCES BUONTEMPO
RE:Purpose FWD:Thinking
The pandemic could be a ‘Once in a Lifetime’ opportunity to
stop and think. Frances Buontempo misses this chance and
muses on lyrics by Talking Heads instead.
Though I should write an editorial, I might take a break
this time, and think about the purpose of an Overload
editorial instead. As I muse, I am looking out of the
window watching rain dripping off trees, shoots and
leaves. Without a strong sense of purpose, a
compelling reason behind a chore, distractions creep

in. Not that an editorial is a chore – I’ve never written one, so wouldn’t
know. Even with a sense of purpose, fear can creep in if you suspect your
opinion may be in the minority, or controversial. I could write about
diversity and inclusion. I could call into question excuses as to why there
are fewer women in programming, and science or mathematics, in some
parts of the world. I could discuss why some people claim women don’t
enjoy mathematics or their brains aren’t wired up properly for it, or I could
consider racial prejudice, and its preconceptions about innate ‘racial’
ability. Such biases tend to become self-fulfilling prophecies and even
feedback loops. If most people in prison are black, police are more likely
to stop and search black people, so in all probability more black people
end up in prison, reinforcing the conception that ‘they are criminals’. I’ve
been reading geneticist Adam Rutherford’s How to argue with a racist
[Rutherford20], which shows why the idea of race is ill-formed to begin
with. Highly recommended.

One very striking point made by Rutherford is that race, either in terms
of genetics or other measures, is based on clustering. This is a statistical
technique, often also used in machine learning. Data points, say people,
are described by a tuple of features, say genes, skin colour, IQ, whatever.
The clustering algorithm is then run, and reports back who belongs in
which cluster. There are various ways to assign tuples to different groups,
though all rely on a distance measure and almost all need to know how
many groups you want. So, how many races are there? Two. Great you’ll
get the tuples of people split between two groups. Five. Ditto. What is the
point of clustering data? Well, sometimes you get a clear ‘decision
boundary’, helping you disambiguate between labels. If I plot the height
of a random collection of mice and elephants, against specimen number,
I can draw a straight line between the two groups. Above the line means
elephant; below means mouse. If I asked for three clusters, I’d get three.
The data would be labelled into one of three groups, but that wouldn’t help
spot elephants, in the room or otherwise. Why try clustering? To fish
around and see if you do have some ‘different’ potential labels going on.
If you do, you can then ask which features correlate best with the labels.
Even if you discover something via clustering, you still need to think about
what you have found out. If you discover AI can work out someone’s

‘criminality’ by their skin colour, you may
have discovered systemic racism. Just

saying. Statistics often forms a null
hypothesis; nothing to see here, and an

alternate hypothesis; that’s significant. The purpose of subsequence
analysis is to decide which hypothesis is more likely correct. Some
machine learning is applied without an up-front purpose. That’s ok. A data
pipeline producing visualisations for people to consider can be useful or
interesting. Data science often does this – it’s an initial step, but hasn’t
fully covered the ‘science’ part to my mind. It can be the start of some
science though.

That’s enough of controversial subjects. As I was saying, without a sense
of purpose, random distractions creep in. If you’ve ever worked on a
legacy code base, you may have found yourself deep in a call stack
wondering how you got there. ‘And you may ask yourself, “How do I work
this?”’ [Talking Heads]. Furthermore,

And you may ask yourself, ‘What is that beautiful house?’

And you may ask yourself, ‘Where does that highway go to?’

And you may ask yourself, ‘Am I right? Am I wrong?’

And you may say to yourself, ‘My God! What have I done?’

Actually, listening to music can help you concentrate and not get too
distracted by the highways in the code. If you get to the end of a playlist
or album and haven’t got anywhere, it’s time to get up and walk, grab a
drink, do something else for a bit to get your focus back. Legacy code can
be hard work. If you understand what part of it is trying to achieve, for
example if you have some kind of code test round a bit of it, you can
experiment with the code and try to refactor to something clearer. Without
tests, you’re probably trying to dig yourself out of a hole though:

Water dissolving and water removing

There is water at the bottom of the ocean

Under the water, carry the water

Remove the water at the bottom of the ocean

If you’re trying to bail out the ocean, you need to give up and learn to
swim. Don’t drown in a confusing code base. There are many resources
to help with such code, for example Working Effectively with Legacy code
by Mike Feathers, or The Legacy Programmer’s Toolbox By Jonathan
Boccara. Make sure you are using version control, then you won’t be
afraid to try changes to see what happens. Don’t trust the comments,
though they may show the original purpose of some code. Think about
what you need to achieve, and don’t get lost in a maze of twisty passages,
all alike. Use a heuristic – always go left, always delete the comments,
never change code without a test. Don’t get put off – keep your eyes on
the prize. Above all, don’t drown.

Our garden looks slightly drowned at the moment, which is a distraction.
Several of the bushes look a bit overgrown, and a few weeds are trying to
take over. Looking at it, I can see how it possibly was, a while ago. I can
sense what sort of shape might be trying to happen – where to prune, and

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | August 2020

EDITORIALFRANCES BUONTEMPO
cut back. However, I’ll get soaked if I go out there so these refactors will
have to wait. If you look at legacy code you can sometimes see an older,
simpler code base in the undergrowth and behind the weeds. I often see
branches spring up to bolt-on new behaviour. Rather than grafting new
growth on to established root-stocks, a cutting in a pot has been balanced
in a tree, fallen over, smashed and turned into some weird looking triffid.
OK, perhaps the analogy isn’t perfect, but you get the idea. Why does this
happen? Because the simplest ways to shoe-horn new features into code
is often by slapping an if/else in. If code has been designed with
potential future variations in mind, there may be a place to use a new
strategy, send in a lambda, or similar. The Open/Closed principle (OCP)
might be driving at this idea. Jon Skeet blogged about the OCP a while
ago [Skeet13]. He questions what ‘open’ and ‘closed’ mean here, and
quotes Wikipedia’s summary of Bertrand Meyer’s version:

The idea was that once completed, the implementation of a class
could only be modified to correct errors; new or changed features
would require that a different class be created. That class could
reuse coding from the original class through inheritance. The
derived subclass might or might not have the same interface as the
original class.

Kinda like repurposing the original, via inheritance, or as Jon puts it, “A
ghastly abuse of inheritance”. He is having more of a dig at Uncle Bob’s
annotation than Meyer’s original quote though. Jon talks about ‘Protected
variation’ as a clearer idea:

Identify points of predicted variation and create a stable interface
around them.

In order to achieve this, some forward thinking is required. On the face of
it, this seems to be in conflict with the YAGNI principle – ‘You aren’t
going to need it’ – a mantra from Extreme Programming. The words, ‘on
the face of it’ are important. There is a difference between building
something now, that you might need in the future, versus architecting your
code so that you can add new features in the future. Otherwise the twisty
maze of ifs/elses will happen. Martin Fowler talks about YAGNI in a
blog [Fowler15]. He asks devs to consider what refactoring would be
needed to introduce a new feature later on, and as a side effect, to:

…add something that’s easy to do now, adds minimal complexity,
yet significantly reduces the later cost. Using lookup tables for error
messages rather than inline literals are an example that are simple
yet make later translations easier to support.

A little bit of forward thinking and a sense of purpose can make your life
easier.

One advantage the pandemic has brought is many local Meetups now take
place online. You can therefore join people who are miles away, and
virtually attend talks you would otherwise have not been able to get to. A
case in point, for me, being the Norfolk developers [Nor(Dev)]. On the 2nd
July, Jez Higgins gave a talk entitled, ‘Journey into space’ [Higgins20].
He started by reminiscing about computers from the 1980s and how he
learnt to code. He talked about good code, agile, and how he ‘read an
article by one of the original signatories of the manifesto for agile software
development, and accidentally ended up writing a version of Asteroids for
[his] phone.’ The talk was excellent and is available on YouTube. By
talking about previous work on a long project, which had been designed
up front, Jez reminded us to ask why the agile manifesto had been written.
I suspect many scrum masters and agile managers haven’t worked on an
old-school Waterfall project, so don’t fully appreciate the context on this.
I’ve heard people talk about being ‘rigidly agile’, or insisting you need
specified meetings for prescribed lengths of time. Four-hour back-log
grooming meetings etc. The first of the four better ways of developing

software stated in the manifesto says, ‘Individuals and interactions over
processes and tools.’ [Agile]. Ron Jeffries, the signatory to whom Jez
referred, blogged about ‘Dark Scrum’ [Jeffries16]. He talks about how
Scrum can end up being a tool of oppression. If you understand why you’re
using scrum, and how to keep communication open things will improve.
If the goal is working software, then being able to show new features, no
matter how small/lean, that do something useful is a win for everyone.
Getting to that point can be hard work though.

Jefferies talks about testing quite a bit in the blog. Who doesn’t? Well, I
know I do, and it annoys some people. He also talks about continuous
integration. I notice build/test/deploy pipelines referred to frequently, for
example on Jenkins’ ‘Continuous Delivery’ articles [Jenkins]. Recently,
the UK prime minister announced, “We’re going to build, build, build, and
deploy jobs, jobs, jobs.” To build and deploy without testing is asking for
trouble. When we test, we check what effect our construction has, and ask
if it does what we expected. This inspired me to write a dreadful little ditty:

We’re going to build, build, build

And deliver jobs, jobs, jobs

sudo crontab -e e e

Gee

Didn’t work.

Didn’t test first. What a berk.

Apologies. I’ll stick to the day job. So, what’s the purpose of an Overload
editorial? I’ll go have a think about that for next time, while you read this
issues’ articles. Do feel free to contact our writers and encourage them. It
gives a sense of purpose, and might spark new ideas
to think about, and hopefully more articles in the
future.

References
[Agile] Manifesto for Agile Software Development at:

https://agilemanifesto.org/

[Fowler15] Martin Fowler (2015) ‘Yagni’ posted 26 May 2015 at:
https://www.martinfowler.com/bliki/Yagni.html

[Higgins20] Jez Higgins (2020) ‘Journey Into Space’, talk on 2 July 2020.
Abstract: https://www.meetup.com/Norfolk-Developers-NorDev/
events/271181133/
Recording: https://www.youtube.com/watch?v=8BOnppFZo6s

[Jeffries16] Ron Jeffries (2016) ‘Dark Scrum’, posted 8 September 2015
at https://ronjeffries.com/articles/016-09ff/defense/

[Jenkins] ‘Continuous Deliver Articles’ at
https://www.jenkins.io/solutions/pipeline/

[Nor(DEV)] Norfolk Developers meetups: https://www.meetup.com/
Norfolk-Developers-NorDev/

[Rutherford20] Adam Rutherford (2020) How to argue with a racist
Orion Publishing Co, Feb 2020, ISBN 978-1474611244

[Skeet13] Jon Skeet (2013) ‘The Open–Closed Principle, in Review’ on
Jon Skeet’s coding blog, posted 15 March 2013 at:
https://codeblog.jonskeet.uk/2013/03/15/the-open-closed-principle-
in-review/

[Talking Heads] Talking Heads: Lyrics from Once in a lifetime
August 2020 | Overload | 3

https://agilemanifesto.org/
https://www.martinfowler.com/bliki/Yagni.html
https://www.meetup.com/Norfolk-Developers-NorDev/events/271181133/
https://www.meetup.com/Norfolk-Developers-NorDev/events/271181133/
https://www.youtube.com/watch?v=8BOnppFZo6s
https://ronjeffries.com/articles/016-09ff/defense/
https://www.jenkins.io/solutions/pipeline/
https://www.meetup.com/Norfolk-Developers-NorDev/
https://www.meetup.com/Norfolk-Developers-NorDev/
https://codeblog.jonskeet.uk/2013/03/15/the-open-closed-principle-in-review/

FEATURE LUCIAN TEODORESCU
The Global Lockdown of Locks
Locks can be replaced with tasks.
Lucian Radu Teodorescu shows us how.
n the previous article [Teodorescu20], we showed how one can achieve
great speedups using tasks as the foundation for concurrent
programming instead of locks. The one thing that is not clear is whether

one can use tasks for all the concurrent algorithms1. Tasks may be
applicable to certain types of problem, but not to all problems. This article
tries to complete the picture by showing that all algorithms can use tasks
and there is no need for locks.

We prove that one can find a general algorithm for implementing all
concurrent algorithms just by using a task system, without the need for
locks or other synchronisation primitives in user code.

Hopefully, by the end of the article, the reader will be convinced that locks
should not be used in day-to-day problems but instead should be confined
to use by experts when building concurrent systems.

Task systems and task graphs
Let us recap from the previous article a few notions about what it means
to have a task system:

 The work of the algorithm is represented by tasks; a task is an
independent unit of work.

 We add constraints between tasks, modelling dependencies and
possible race conditions.

 There is an execution engine that can take tasks and execute them
dynamically on the various cores available on the running machine.
The execution engine is typically greedy, meaning that it executes
tasks as soon as it has hardware resources.

One key point here is that the tasks are independent. Two active tasks
should never block each other. (We’ll discuss the meaning of active tasks
below.) As shown below, all the constraints between tasks can be
implemented on top of such a task system. The task system framework may
provide facilities to ease this work, but this is not essential.

As examples of task systems, we have Concore [concore] or the more
popular Intel Threading Building Blocks [tbb]. The few examples in this
article will be written using Concore, as it is the library I’m developing
while trying to make sense of the concurrency world.

It is obvious that all algorithms can be expressed in terms of non-blocking
tasks, possibly with some threads that don’t have tasks to be executed (or
colloquially waiting for them to be unblocked). At the bare minimum, one
can wrap any non-blocking instruction in a task (very inefficient, but
possible); however, in general, a task will be a set of instructions that make
sense to be considered as one unit, both from the semantic point of view
and from the constraints point of view.

Tasks may have dependencies or restrictions between them. If two tasks
A and B can be safely run in parallel, then there is no dependency or
restriction between the two of them. If task A needs to finish before
executing B we say that there is a dependency from A to B; we denote that
by A→B. If the two tasks cannot be safely run in parallel, but the order in
which we run them is irrelevant, then we say that there is a restriction
between them; we denote that by A~B. A restriction between two tasks can
always be turned into dependency by arbitrarily choosing which task needs
to be executed first. For example, if two tasks write the same data, we
typically want to create a restriction between them; not doing so will
probably result in race condition bugs.

For efficiency reasons, we consider the tasks to be as small as possible,
with respect to the constraints between them. That is, if only a small part
of task A has constraints with other tasks, then we would break up task A
into smaller parts, to minimize the scope of the constraint.

The dependency is transitive, but the restriction relation is not. If we have
three tasks A, B and C, with A→B and B→C, then A→C; for a given task
we can always find the transitive closure for the dependency relation. On
the other hand, if A~B and B~C, it doesn’t imply that A~C: tasks A and
C could be run in parallel. Also, it’s important to note that the restriction
relation is commutative (while the dependency is not).

Let us denote by succ(A) the set of tasks given by the transitive closure of
the dependency relation. Also, let us denote by pred(A) the set of tasks X
for which Asucc(X) (i.e., all the predecessors of task A).

With these notions set, a task A can be executed in isolation if pred(A)=Ø.
Also, a set of tasks S can be executed in parallel, if for each task X in that
set pred(X)=Ø, and ∄X,YS such as X~Y; we call S to be a parallel set of
tasks. These are the conditions that we need for executing the tasks.

The reader should pause a bit and digest the information above. Basically,
we have expressed in algebraic form the safety conditions for executing
tasks. We defined the constraints in such a way to eliminate possible data
race bugs.

A more intuitive way is to represent all these with graphs of tasks. Figure
1 (overleaf) shows an example; most of the links between tasks are
dependencies, but we also have restrictions T9~T13 and T14~T15.

Representing the concurrent algorithm as a graph is highly encouraged.
Software developers tend to reason better on the algorithm if it is expressed
visually as a graph than if it’s expressed as a set of rules. Knowledge of
graphs is deeply rooted in the software engineering mindset. This can help
both at algorithm design and at understanding the performance
consequences of the algorithm.

For example, one can easily check what are the tasks that can be run in
parallel. In our case, task T6, T7, T8, T9, T10, T11 and T12 can safely be run
in parallel, and so are the set of tasks T2, T8, T14, T11 and T16.

I

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. As hobbies, he is working on his
own programming language and he is improving his Chuck Norris
debugging skills: staring at the code until all the bugs flee in horror. You
can contact him at lucteo@lucteo.ro

1. As in the previous article, we use the term algorithm to denote a general
problem that we need to solve; should not be mistaken for well-known
algorithms in computer science.
4 | Overload | August 2020

FEATURELUCIAN TEODORESCU

a task will be a set of instructions that make sense to
be considered as one unit, both from the semantic

point of view and from the constraints point of view
A general method for executing algorithms
concurrently
We need to distinguish some time-points relevant to the algorithm
execution:

 The point at which a task can be created (we have all the data
needed; we know about its constraints with existing tasks) – this is
typically different from the time the task can start executing

 The point at which the task can start executing

 The point at which the task finishes executing

We will construct a general method that will have logic at the creation of
the task and at the point at which the task finishes executing to determine
the point of execution start for all the tasks. We are building a scheduling
algorithm.

To do so, we need to divide the tasks into three groups: finished, active
and pending tasks. Finished tasks are, as the name implies, tasks that were
completely executed. Active tasks are either tasks that are in progress or
tasks that can be started at any given point. Because we have a limited
number of cores, we cannot guarantee that all the active tasks start
immediately; for example, on an 8-core machine, we will start executing
8 tasks, even if there are 1000 active tasks. Finally, pending tasks are tasks
that cannot be executed right away, as some constraints are not satisfied;
i.e., not all the predecessors are finished, or there is a restriction task with
some task that is currently active.

The key point of this division is that all the active tasks might be executed
in parallel given enough hardware resources. That is, all the predecessor
tasks for them are completed, and there is no restriction relation between
any two active tasks. That is, the set of active tasks at any given time is a
parallel set of tasks as described above.

A task can be in any of the three groups at different times. The valid
transitions are pending to active, and active to finished. No other transition
is allowed.

It is obvious that we transition an active task to finished after the task
execution is complete. Maybe less obvious, but still straightforward is the
transition between pending and active; we make this transition as soon as
possible, as soon as the constraints of the tasks disappear. The only caveat
here is that we need to have a holistic approach. It may be the case that
two tasks A and B can be both independently transitioned from pending to
active, but not together at the same time, as A~B. In this case, we can
choose one task and add it to the active group, while keeping the other to
the pending group. In other words, transitioning from pending to active
needs to be done one task at a time.

With this, we can finally describe the general method. It amounts to 4 steps:

1. Ensure we have at least one active task at the start of the algorithm
2. Keep track of the state of all the tasks and constraints between them
3. Add some special logic when a task needs to be created and when a

task finishes executing; this is presented in pseudo-code in Listing 1.
4. Whenever a task becomes active, add it to the task system so that it

can execute it.

At the end of the executeTask() function, we decide which of the
pending tasks can be moved to active. For simplicity, we consider here that
we will iterate over all the pending tasks. But that is overkill; in practice,
we should look only at the tasks that are either successor of the current task
or that have a restriction relation with it.

The key to this algorithm is the decision of whether the task can be active
or not. It needs to be done whenever a task can be created, and at the end
of running the tasks, when pending tasks can be made active. This is a
greedy algorithm as it tries to move to active as many tasks as possible,

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

Figure 1

Listing 1

void executeTask(task& t) {
 assert(isActive(t));
 // the body of the task 't'
 {
 …
 // at any point that a task 'new_task' can be
 // created
 if (canTaskBeActive(new_task))
 spawnActive(new_task);
 else
 spawnPending(new_task);
 …
 }
 moveTaskToFinished(t);
 for (auto t2: pendingTasks())
 if (canTaskBeActive(t2))
 moveTaskToActive(t2);
}

August 2020 | Overload | 5

FEATURE LUCIAN TEODORESCU

if two tasks can cause a race condition bug,
then there must be restriction between them
or a dependency chain
without considering that there may be combinations in which holding up
tasks may lead to better parallelism. In practice, this tends to work really
well due to the scheduling non-determinism.

A possible implementation of the test to check if a task can be active is
given in Listing 2.

Let us now prove that this scheduling algorithm can safely and efficiently
be used to implement any concurrent algorithm that is properly divided
into tasks.

Lemma 1 (termination). If the concurrent algorithm needs a finite set of
finite tasks that do not have dependency cycles, then the scheduling
algorithm will eventually execute all the tasks, leading to the completion
of the algorithm.

We start with at least one active task, and by the problem description, we
are always going to finish executing the current set of active tasks.

If there are pending tasks, by executing all the currently active tasks at least
one pending task will be transitioned to active (as seen above this transition
happens greedily, as soon as possible). By the fact that the tasks don’t have
dependency cycles, and as the number of tasks is finite, there must be at
least one task A in the pending group that doesn’t have dependent tasks in
the pending group. By construction, we put task A in the pending group
only if there is an active task B such as B→A or B~A. But B is guaranteed
to finish at some point; at that point, task A can become active. And, by
the construction of our scheduling algorithm, we always check what tasks
can be transitioned to active whenever a task completes. Therefore, A will
be transitioned to active whenever B completes. That shows that we are
always making progress.

As we start with a non-empty set of active tasks and we are always making
progress, we eventually will execute all the tasks in the algorithm
(remember, the algorithm has a finite set of tasks).

Q.E.D.

Lemma 2 (soundness). If the dependencies and restrictions between the
tasks are set correctly (i.e., if two tasks can cause a race condition bug, then
there must be restriction between them or a dependency chain), the
scheduling algorithm will never schedule two tasks at the same time that
can cause race condition bugs.

By the construction of the algorithm, we cannot execute in parallel tasks
that are not present in the active group at the same time.

We add to the active group one task at a time. Let’s say that A and B are
active tasks, with A added before B. Both tasks could not have non-finished
predecessors, as otherwise they would not have been added to the active
group; so there can’t be a dependency between them. Also, it can’t be that
A~B as B would not have been added to the active group. Thus, there can
be no incompatibility between the tasks in the active group. If there can’t
be any incompatibility between two active tasks, and we never have in
execution tasks that are not in the active group at that time, we can’t have
two incompatible tasks in execution at the same time.

Q.E.D.

Lemma 3 (efficiency). On a machine with infinite task parallelism, at any
given point in time (except points in which we are running the scheduling
logic) one cannot schedule for execution another task while maintaining
the soundness of the algorithm as expressed just by the constraints between
the tasks.

Please note that this aims for the efficiency of a greedy algorithm. In other
words, this scheduling algorithm ensures a local maximal capacity, and not
necessarily a global optimum. Again, due to timing non-determinism, a
greedy scheduling works well in practice.

A key point of this lemma is to ignore the time spent by the scheduling
algorithm. Of course, there is a small window of time, while we are
deciding which task to make active, in which that task can be active and
it isn’t yet. We are just focusing on the times in which all the queued tasks
are still executing.

Also, it’s important to note that as we are looking at the incompatibility
between tasks as expressed just by the constraints between the tasks, the
constraints between tasks apply for the whole duration of the tasks. In other
words, we cannot say that a constraint for a task vanishes after a task
executes half-way through. The tasks are atomic with respect to
constraints.

Let us assume that S is the current set of active tasks and that B is a task
still in pending state, but that can be run without being unsound. But, if B
can be safely run, it means that it can be an active task. So, if B could be
an active task and it isn’t, it means that there was a point in time at which
B could have been categorised as active (but the scheduling algorithm
didn’t). In other words, there must be a time when the active constraints
for task B change. As the tasks are atomic, these constraints can only
happen when B is created, or whenever a task A for which A→B or A~B
is completed. But the algorithm covers both cases: both when B is created
and whenever another task finishes, we re-evaluate whether B can be
moved to the active group. So, there cannot be another time in which B
could be scheduled, and B is added to the active group as soon as it possibly
can. This means that our scheduling algorithm always guarantees that the
set S of active tasks is always at its maximal capacity (assuming a greedy
strategy of creating this set).

Q.E.D.

Theorem. There is a scheduling algorithm that can be used to schedule
the execution of any concurrent algorithm properly expressed with tasks

Listing 2

bool canTaskBeActive(task& t) {
 for (auto t2: directPredecessorOf(t))
 if (!isFinished(t2))
 return false;
 for (auto t2: restrictionsOf(t))
 if (isActive(t2))
 return false;
 return true;
}

6 | Overload | August 2020

FEATURELUCIAN TEODORESCU

smaller scheduling algorithms that can be
used to solve various types of common

problems, and then we can easily compose
them to get an overall scheduling algorithm
and constraints between tasks; the scheduling algorithm has the maximum
efficiency it can have with greedy scheduling.

The proof follows immediately from Lemma 1, Lemma 2 and Lemma 3.

Q.E.D.

In this section we constructed a general scheduling algorithm that can be
used to solve any type of concurrent algorithms, we proved its viability
and that its theoretical efficiency is maximal. However, in practice, we
don’t necessarily need a general/global algorithm for scheduling. We can
instead have smaller scheduling algorithms that can be used to solve
various types of common problems, and then we can easily compose them
to get an overall scheduling algorithm. Let’s look at a few such particular
scheduling algorithms

Replacing locks
Most probably the reader is familiar with solving concurrency problems
by utilizing locks. Thus, probably it will be easier to just have a direct
translation of problems that can be solved with locks into problems that
can be solved with tasks. We will present three specialised schedulers to
cover the same effect as one would traditionally cover with mutexes,
semaphores and read-write mutexes.

The serializer
Let us attempt to model the behaviour of a mutex with tasks. A mutex
protects one of the multiple regions of code against access from multiple
threads. For simplicity, let us assume that the entire region covered by a
lock is atomic – there are no other locks in it, and the parallelisation
constraints with other regions do not change midway. This assumption is
an invitation to make that zone of code a task. We would actually have
tasks for all the invocations of the zones protected by the mutex.

If the mutex M protects zones/tasks A1, A2, …, An then the run-time effect
of the mutex would be similar to imposing restrictions between any of the
tasks: Ai ~ Aj,i,j.

Therefore, we can introduce the so-called serializer, as a local scheduler
that can accept tasks and ensure that there are restriction relations between
all the tasks enqueued in it. As any two tasks enqueued into it will have a
restriction between them, a serializer will only schedule one task at a time
for execution – therefore the name: serializer.

Figure 2 shows the restriction relationships between 4 tasks that can be
enqueued into a serializer, while Figure 3 shows a possible execution
order.

The implementation of a serializer can be easily made in the following
way:

 the abstraction should have a method of enqueueing a task into the
serializer

 keep a list of pending tasks that are enqueued in the serializer but are
not yet executed; also keep track of whether we are executing any
task or not (i.e., by using an atomic variable)

 whenever a new task is enqueued, if there is no other task in
execution, start executing the new task

 whenever a new task is enqueued, if there is another task in
execution, add it to the pending list

 whenever a task finishes executing, check if there are other tasks in
the pending list; if the answer is yes, start executing the first task in
the pending list

The serializer can be implemented relatively easily in about 100 lines of
C++ code. If the reader is curious, I would invite the reader to check the
implementation inside the Concore library.

Listing 3 shows an example of using a serializer in Concore. We assume
that the application needs to have backups of the main data at a certain
point, two backups cannot run in parallel, and the way the application is
constructed, one can trigger the backups from multiple threads/tasks,
possible in parallel.

Regardless of how many threads will call trigger_backup(), the
backup engine’s save() method will not be called in parallel from
multiple threads. Simple, right?

n_serializer
A semaphore is in one way a generalisation of a mutex. Instead of allowing
only one region of code to be executed in parallel, it allows N such regions,
based on how the semaphore is configured. Semaphores can be used in
different ways too (for example, as notification primitives), but let us focus
on protecting regions of code. From this perspective, if we translate this
in terms of tasks, we can say that the effect would be to allow N tasks to
run in parallel.T1 T3

T4T2

Figure 2

T1 T3 T4T2

Figure 3

Listing 3

concore::serializer my_ser;
backup_engine my_backup_engine;

void trigger_backup(app_data data) {
 my_ser([=]{ my_backup_engine.save(data); });
}

August 2020 | Overload | 7

FEATURE LUCIAN TEODORESCU
To provide such an abstraction, Concore implements the n_serializer
class. It is similar to serializer but it allows a configurable number of
tasks to be run in parallel. The implementation follows the same pattern
as for the serializer, so we won’t describe it here.

Let us also give an example of how to use an n_serializer with
Concore. To continue the previous example, let’s assume that saving a
backup can be an expensive operation, so that it can queue up in certain
cases, producing delays in saving the backups; for performance reasons,
we want to create multiple backup engines that save the backups at
different locations in parallel. Listing 4 shows how this can be
implemented with Concore.

The example shows a bit more than just the serializer; it also showcases
the use of a concurrent queue to operate on multiple data objects from
different tasks in parallel. Again, simple enough.

rw_serializer
Another generalisation of a mutex is a read-write mutex. This type of
mutex allows multiple “read” operations to execute in parallel but does not
allow any “write” operations to be executed in parallel with any other
operations.

Just like in the previous two cases, we can express read-write mutexes with
tasks. We create two types of tasks: read tasks and write tasks. The read
tasks can be executed in parallel, but write tasks cannot be executed in
parallel with read tasks or other write tasks. The runtime constraints
between them are relatively straight-forward: just create restriction
constraints between write tasks and everything else. Figure 4 shows an
example of how we can encode 5 read tasks and 2 write tasks.

The implementation of such an abstraction is slightly more involved than
the implementation of a serializer. For this, we need to have two queues
of tasks: one for read tasks and one for write tasks. Then we need to decide
which tasks take priority: write tasks or read tasks. An implementation that
favours write tasks will not execute any read tasks while there are write
tasks in the pending queue. Conversely, an implementation that favours
read tasks will not execute any write tasks while there are read tasks;
continuously adding read tasks may make the write tasks starve. After
deciding which type of task has priority, the implementation follows the
same pattern, with the caveat that it’s more difficult to ensure atomicity
for various operation in a multi-threaded environment. Slightly more
complex, but not necessarily hard.

Concore implements an abstraction for this type of problems called
rw_serializer. Its implementation favours write tasks over read tasks.

To exemplify this type of abstraction, let’s consider the case in which we
want to allow easy querying of information from the backup engine, but
doing a backup cannot run in parallel with any querying operation. As
opposed to our previous example for n_serializer, we consider that
the save operations are relatively easy to perform, and they occur less
frequently. Listing 5 shows how this can be implemented with Concore.

The above example also showcases how task continuations can be
implemented by hand, in the absence of more elaborate scheduler. Again,
simple.

Replacing locks, discussion
In this section, we showed that one can build local schedulers to replace
locks with tasks. They provide convenient ways to attack the problem and,
in terms of implementation, they are more efficient than a general
scheduling algorithm. If one’s application can be relatively easily
translated into tasks, using these serializers should be straight-forward.

However, there are a few complications. I cannot properly end this article
in a very positive manner without touching on the main problems that one
would face whenever one would try to put this into practice. So, here they
are:

 How can we add a section of code/task in two serializers at once
(i.e., like taking two locks for a region)?

 How can we break down the code to protect a zone of code in the
middle of a task?

The first question discusses the composability of two task schedulers.
Without entering in too many details we will just state that tasks are more
composable than locks. Locks are known for not being composable
[Lee06]. On the other hand, given two task schedulers, we can compose
them, even without knowing their inner structure. There are multiple ways
of doing this, but probably the most prominent method is the fork-join
model [McCool12, Robison14]; this is the default programming model for
both Cilk [cilk] and its successor CilkPlus [cilkplus]. The main idea is that,
while executing a task, one can fork (spawn) a new task, and later on wait
for that task to complete.

In our case, one would enqueue one task in a serializer that would enqueue-
and-wait another task in the second serializer, and this second task will
actually do the work. Listing 6 provides a quick example of composability.
It’s not complicated to do such a thing. The logic is a bit wired, but that’s
inherent to the problem that we are trying to solve; one if far better to avoid
mixing multiple scheduling systems for the same task (in terms of locks;
avoid using multiple locks to protect certain regions).

The second problem may not be apparent when looking from a theoretical
perspective, but it’s immediately visible when trying to change an existing
system that currently uses locks to use tasks instead. Let’s assume that one
has an application that can be broken down in tasks relatively easily. But,
at some point, deep down in the execution of a task one would need a lock.
Ideally one would break the task in 3 parts: everything that goes before
the lock, the protected zone, and everything that goes after. Still, easier said

Listing 4

concore::n_serializer my_ser{10};
concore::concurrent_queue<backup_engine>
 my_backup_engines; // at least 10

void trigger_backup(app_data data) {
 my_ser([=]{
 // acquire a free backup engine
 backup_engine engine;
 bool res = my_backup_engines.try_pop(engine);
 assert(res);
 // do the backup
 engine.save(data);
 // release the backup engine to the system
 my_backup_engines.push(std::move(engine));
 });
}

R1 R3 R4 R5R2

W1 W2

Figure 4

Listing 5

concore::rw_serializer my_ser;
backup_engine my_backup_engine;

void get_latest_backup_info(backup_info& dest,
 concore::task& next) {
 my_ser.reader()([&dest, &next] {
 // query backup data
 dest = std::move(my_backup_engine.get_info());
 // query is done; continue with a new task after
 // the data is ready
 concore::global_executor(std::move(next));
 });
}

8 | Overload | August 2020

FEATURELUCIAN TEODORESCU
than done; this can be hard if one is 20 layers of function-calls – it’s not
easy to break all these 20 layers of functions into 3 tasks and keep the data
dependencies correct.

If breaking the task into multiple parts is not easily doable, then one can
also use the fork-join model to easily get out of the mess. A sample code
is shown in Listing 7.

This technique is very useful not just for transforming locks into tasks. It
can be used also to break applications into tasks that are used in other ways
– for example, to model some asynchronous flows.

With that, we covered the two most prominent problems that people might
have. Oh, wait… we still need to have *that* discussion on performance.

Performance
The sceptic reader might argue that using serializers is no better than using
a mutex. After all, all the tasks are executed one after the other, without
exercising parallelism. And yes, the last statement is true.

The key point of the serializers is that they do not block any threads.
Threads can still be free to execute other tasks while certain tasks need
serial execution.

Let’s try an analogy. Mutexes are like intersections (Kevlin Henney has
nicely explained this in [Henney18]). While a car goes through an
intersection, all other cars from the adjacent roads are blocked. If a city
has a lot of crowded intersections, then traffic congestions can easily
spread across large parts of the city – severe losses in the performance of
the traffic system. Serializers are like (isolated) drive-throughs – the cars
are waiting in line for the cars in front of them to be served (n_serializers
can be associated with drive-ins). But the key point here is that these drive-

throughs have sufficiently lengthy lanes – the cars waiting at the drive-
through are not blocking the nearby intersections. In this case, the number
of cars that can circulate compensates for a few cars that are waiting in the
queue.

Hope that clears the performance worries for most of the readers. However,
some astute readers might still wonder about the performance of the fork-
join model, since we invoked it twice as a solution to common problems.
Of course, they would argue, the performance of the application is affected
when we are waiting for tasks to complete. But this is not the case. Most
libraries these days (and Concore is one of them) can implement busy-
waiting – that is, execute other tasks while waiting on a task to complete.
With such a strategy, we are not blocking the worker threads, so we are
still fully utilising the CPU to do real work.

Conclusions
The previous article [Teodorescu20] showed that if one can make a
concurrent algorithm with tasks, it can obtain good parallel speedups
(under certain conditions), especially when compared with using mutexes.
This article proves that any concurrent algorithm can be implemented
safely and efficiently with tasks and completely avoid mutexes. Thus, there
is no reason to use mutexes anymore in high-level code.

Besides the proof, the article showed that one can use simpler structures
(serializers) to move away from lock-based synchronisation primitives
towards tasks, and that it is not a complicated endeavour. Another
argument that we need to stop using mutexes.

So, please, please, please, unless you are building low-level concurrency
primitives, avoid using mutexes, just like you avoid gotos (which I hope
you are already avoiding).

The article also started to explore a few patterns that can be used for
concurrent programming. The point was not to showcase the most
important patterns, but to somehow exemplify the concepts discussed here
and show that it isn’t hard to put them in practice. However, these hints
oblige me to provide a follow-up article that explores patterns for
designing concurrent applications; after all, software engineering is about
design issues far more than it is about coding.

References
[cilk] MIT, The Cilk Project, http://supertech.csail.mit.edu/cilk/

[cilkplus] Intel, Cilk Plus, https://www.cilkplus.org

[concore] Lucian Radu Teodorescu, Concore library, https://github.com/
lucteo/concore

[Henney18] Kevlin Henney, Concurrency Versus Locking,
https://www.youtube.com/watch?v=mEtoXwB9HFk

[Lee06] Edward A. Lee, The Problem with Threads, Technical Report
UCB/EECS-2006-1, 2006, https://www2.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-1.pdf

[McCool12] Michael McCool, Arch D. Robison, James Reinders,
Structured Parallel Programming: Patterns for Efficient
Computation, Morgan Kaufmann, 2012

[Robison14] Arch Robison, A Primer on Scheduling Fork-Join
Parallelism with Work Stealing, Technical Report N3872, http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf

[tbb] Intel, Threading Building Blocks library, https://github.com/oneapi-
src/oneTBB

[Teodorescu20] Lucian Radu Teodorescu, ‘Refocusing Amdahl’s Law’,
Overload 157, June 2020

Listing 6

concore::serializer my_ser1, my_ser2;

void double_serialize(std::function<void()> work)
{
 my_ser1([work = std::move(work)]{
 concore::spawn_and_wait([work =
 std::move(work)]{
 my_ser2(work);
 });
 });
}

Listing 7

concore::serializer my_ser;

void deep_fun() {
 some_work();
 concore::spawn_and_wait([=]{
 my_ser([=]{ my_protected_work(); });
 });
 some_other_work();
}
void fun_with_depth(int level) {
 do_pre_work(level);
 if (level > 0) fun_with_depth(level-1);
 else deep_fun();
 do_post_work(level);
}

fun_with_depth(20);
August 2020 | Overload | 9

http://supertech.csail.mit.edu/cilk/
https://www.cilkplus.org
https://github.com/lucteo/concore
https://github.com/lucteo/concore
https://www.youtube.com/watch?v=mEtoXwB9HFk
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB

FEATURE RAINER GRIMM
C++20: A Simple Math Module
Modules are one big change introduced
by C++20. Rainer Grimm describes how
to build a mathematics module.
odules are one of the four prominent features of C++20. They
overcome the restrictions of header files and promise a lot: faster
build-times, fewer violations of the One-Definition-Rule, less

usage of the preprocessor.

The long history of modules in C++
Modules may be older than you think. My short historic detour should give
you an idea how long it takes to get something so valuable into the C++
standard.

In 2004, Daveed Vandevoorde wrote proposal N1736.pdf [N1736], which
described the idea of modules for the first time. It took until 2012 to get a
dedicated Study Group (SG2, Modules) for modules. In 2017, Clang 5.0
and MSVC 19.1 provided the first implementation. One year later, the
Modules TS (technical specification) was finalized. Around the same time,
Google proposed the so-called ATOM (Another Take On Modules)
proposal [P0947] for modules. In 2019, the Modules TS and the ATOM
proposal was merged into the C++20 committee draft [N4842], which is
the syntax I use when writing about modules.

The C++ standardization process is democratic. The section
Standardization [ISO] gives you more information about the standard and
the standardization process. Figure 1 shows the various study groups.

Explaining modules from a user’s perspective is quite easy, but this does
not hold true for the implementer’s perspective. My plan for this article is
to start with a simple modules math and add more features to it as we go.

The math module
First, here is my first module:

 // math.ixx
 export module math;
 export int add(int fir, int sec){
 return fir + sec;
 }

The expression export module math is the module declaration. By
putting export before the function add, add is exported and can,
therefore, be used by a consumer of my module.

 // client.cpp
 import math;
 int main() {
 add(2000, 20);
 }

import math imports the module math and makes the exported names
in the module visible to the client.cpp. Let me say a few words about
module declaration files before I build the module.

Module declaration files
Did you noticed the strange name of the module: math.ixx.

 cl.exe (Microsoft) uses the required extension ixx. The ixx
stands for a module interface source.

 Clang uses the extension cppm. cppm presumably stands for a cpp
module declaration. Wrong!!! The documentation to Clang is
misleading. Stop using the cppm extension until have you read my
post about my attempt [Rainer20]. Use the extension cpp. I assume
you don’t want to make the same Odyssey as me.

 I don’t know of a GCC extension.

Compile the module math
To compile the module, you have to use a very current Clang, GCC, or
cl.exe compiler. In this article, I’m using cl.exe on Windows. The
Microsoft blog provides two excellent introductions to modules: Overview
of modules in C++ [Microsoft-1] and C++ Modules conformance
improvements with MSVC in Visual Studio 2019 16.5 [Microsoft-2]. In
contrast, the lack of introductions to the Clang and GCC compilers makes
it quite difficult to use modules.

Figure 2 shows more details of the Microsoft compiler I used.

These are the steps to compile and use the module with the Microsoft
compiler. I only show the minimal command line. With an older Microsoft
compiler, you have to use at least /std:cpplatest.

 cl.exe /experimental:module /c math.ixx
 cl.exe /experimental:module client.cpp math.obj

M

Figure 1

Rainer Grimm Rainer has 20 years of experience as a software
developer and software architect, a good 10 years as a training
manager and seminar leader, and 3 years as a team leader in software.
He has published several books on C ++, 70 articles on C ++, Python
and Haskell for Linux-Magazin and iX Magazin and presents at
specialist conferences. He can be contacted through
https://www.modernescpp.net/
10 | Overload | August 2020

FEATURERAINER GRIMM

Explaining modules from a user’s
perspective is quite easy, but this does not

hold true for the implementer’s perspective.
 Creates an obj file math.obj and an IFC file math.ifc. The IFC file
contains the metadata description of the module interface. The binary
format of the IFC is modeled after the Internal Program Representation by
Gabriel Dos Reis and Bjarne Stroustrup (2004/2005).

 Creates the executable client.exe. Without the implicitly used
math.ifc file from the first step, the linker can not find the module (see
Figure 3).

For obvious reasons, I am not showing you the output of the program
execution. Let me change this.

Global module fragment
The global module fragment is meant to compose module interfaces. It’s
a place to use preprocessor directives such as #include so that the
module interface can compile. The code in the global module fragment is
not exported by the module interface.

The second version of the module math supports the two functions add
and getProduct (see Listing 1).

I included the necessary headers between the global module fragment (line
1) and the module declaration (line 2).

The client imports the module math and uses its functionality (see Listing
2 and Figure 4).

Maybe, you don’t like using a Standard Library Header anymore.
Microsoft supports modules for all STL headers. Here is what I found out
from the Microsoft C++ team blog [Microsoft-3]:

 std.regex provides the content of the header <regex> std.filesystem provides the content of the header
<experimental/filesystem>

 std.memory provides the content of the header <memory>

Figure 2

Figure 3

Listing 1

module; // global module fragment (1)

#include <numeric>
#include <vector>

export module math; // module declaration (2)

export int add(int fir, int sec)
{
 return fir + sec;
}
export int getProduct(const std::vector<int>& vec)
{
 return std::accumulate(vec.begin(), vec.end(),
 1, std::multiplies<int>());
}

Listing 2

#include <iostream>
#include <vector>

import math;

int main() {
 std::cout << std::endl;
 std::cout << "add(2000, 20): "
 << add(2000, 20) << std::endl;
 std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8,
 9, 10};
 std::cout << "getProduct(myVec): "
 << getProduct(myVec) << std::endl;
 std::cout << std::endl;
}

Figure 4
August 2020 | Overload | 11

FEATURE RAINER GRIMM

The global module fragment is meant to
compose module interfaces … The code in
the global module fragment is not
exported by the module interface
 std.threading provides the contents of headers:

 <atomic>

 <condition_variable>

 <future>

 <mutex>

 <shared_mutex>

 <thread>

 std.core provides everything else in the C++ Standard Library

To use the Microsoft Standard Library modules, you have to specify the
exception handling model (/EHsc) and the multithreading library (/MD).
Additionally, you have to use the flag /std:c++latest.

Listing 3 and Listing 4 are the modified versions of the interface file
math2.ixx and the source file client2.cpp respectively.

Both files use – in line (1) – the module std.core.

References
[ISO] ‘Standardization’: https://isocpp.org/std/

[Microsoft-1] ‘Overview of modules in C++’: https://
docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=vs-2019

[Microsoft-2] ‘C++ Modules conformance improvements with MSVC in
Visual Studio 2019 16.5’: https://devblogs.microsoft.com/cppblog/
c-modules-conformance-improvements-with-msvc-in-visual-studio-
2019-16-5/

[Microsoft-3] ‘Using C++ Modules in Visual Studio 2017’:
https://devblogs.microsoft.com/cppblog/cpp-modules-in-visual-
studio-2017/

[N1736] ‘Modules in C++’: http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2004/n1736.pdf

[N4842] ‘N4842 Post-Belfast 2019 C++ working draft’:
https://github.com/cplusplus/draft/releases/tag/n4842

[P0947] ‘Another take on Modules’: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2018/p0947r1.html

[Rainer20] ‘C++20: Module Interface Unit and Module Implementation
Unit’ posted 25 May 2020 at:
 https://www.modernescpp.com/index.php/c-20-module-interface-
unit-and-module-implementation-unit

Listing 3

module;

import std.core; // (1)

export module math;

export int add(int fir, int sec)
{
 return fir + sec;
}

export int getProduct(const std::vector<int>& vec)
{
 return std::accumulate(vec.begin(),
 vec.end(),
 1,
 std::multiplies<int>());
}

Listing 4

import std.core; // (1)

import math;

int main() {
 std::cout << std::endl;

 std::cout << "add(2000, 20): " << add(2000, 20)
 << std::endl;

 std::vector<int> myVec{1, 2, 3, 4, 5, 6, 7, 8,
 9, 10};

 std::cout << "getProduct(myVec): "
 << getProduct(myVec) << std::endl;

 std::cout << std::endl;
}

This article was first published on Rainer’s blog on 12 May 2020:
https://www.modernescpp.com/index.php/cpp20-a-first-module
12 | Overload | August 2020

https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
https://www.modernescpp.com/index.php/c-20-module-interface-unit-and-module-implementation-unit
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0947r1.html
https://github.com/cplusplus/draft/releases/tag/n4842
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1736.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1736.pdf
https://devblogs.microsoft.com/cppblog/cpp-modules-in-visual-studio-2017/
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://devblogs.microsoft.com/cppblog/c-modules-conformance-improvements-with-msvc-in-visual-studio-2019-16-5/
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/modules-cpp?view=vs-2019
https://isocpp.org/std/
https://www.modernescpp.com/index.php/cpp20-a-first-module

FEATURESTANISLAV KOZLOVSKI
A Thorough Introduction
to Apache Kafka
Kafka serves as the heart of many companies’ architecture.
Stanislav Kozlovski takes a deep dive into the system.
afka is a word that gets heard a lot nowadays. A lot of leading digital
companies seem to use it. But what is it actually?

Kafka was originally developed at LinkedIn in 2011 and has improved a
lot since then. Nowadays, it’s a whole platform, allowing you to
redundantly store absurd amounts of data, have a message bus with huge
throughput (millions/sec), and use real-time stream processing on the data
that goes through it all at once.

This is all well and great, but stripped down to its core, Kafka is a
distributed, horizontally scalable, fault-tolerant commit log.

Those were some fancy words – let’s go at them one by one and see what
they mean. Afterwards, we’ll dive deep into how it works.

Distributed
A distributed system is one which is split into multiple running machines,
all of which work together in a cluster to appear as one single node to the
end user. Kafka is distributed in the sense that it stores, receives, and sends
messages on different nodes (called brokers).

The benefits to this approach are high scalability and fault tolerance.

Horizontally scalable
Let’s define the term vertical scalability first. Say, for instance, you have
a traditional database server that’s starting to get overloaded. The way to
get this solved is to simply increase the resources (CPU, RAM, SSD) on
the server. This is called vertical scaling – where you add more resources
to the machine. There are two big disadvantages to scaling upwards:

 There are limits defined by the hardware. You cannot scale upwards
indefinitely.

 It usually requires downtime, something which big corporations
can’t afford.

Horizontal scalability is solving the same problem by throwing more
machines at it. Adding a new machine doesn’t require downtime, nor are
there any limits to the amount of machines you can have in your cluster.
The catch is not all systems support horizontal scalability, as they’re not
designed to work in a cluster, and those that are are usually more complex
to work with.

Figure 1 shows that horizontal scaling becomes much cheaper after a
certain threshold.

Fault-tolerant
Something that emerges in nondistributed systems is they have a single
point of failure (SPoF). If your single database server fails (as machines
do) for whatever reason, you’re screwed.

Distributed systems are designed in such a way to accommodate failures
in a configurable way. In a 5-node Kafka cluster, you can have it continue
working even if two of the nodes are down. It’s worth noting that fault

tolerance is at a direct trade-off with performance, as in the more fault-
tolerant your system is, the less performant it is.

Commit log
A commit log (also referred to as write-ahead log or a transaction log) is
a persistent-ordered data structure that only supports appends. You can’t
modify or delete records from it. It’s read from left to right and guarantees
item ordering. Figure 2 is an illustration of a commit log [Kreps13].

“Are you telling me that Kafka is such a simple data structure?”

K

Figure 1

Figure 2

Stanislav Kozlovski Stanislav began his programming career racing
through some coding academies and bootcamps, where he aced all of
his courses and began work at SumUp, a German fintech company
aiming to become the first global card acceptance brand. He was later
recruited into Confluent, a company offering a hosted solution and
enterprise products around Apache Kafka. Contact him on Twitter,
where he’s @BdKozlovski or at Stanislav_Kozlovski@outlook.com
August 2020 | Overload | 13

FEATURE STANISLAV KOZLOVSKI
In many ways, yes. This structure is at the heart of Kafka and is invaluable,
as it provides ordering, which in turn provides deterministic processing.
Both of which are nontrivial problems in distributed systems.

Kafka actually stores all of its messages to disk (more on that later), and
having them ordered in the structure lets it take advantage of sequential
disk reads.

 Reads and writes are a constant time O(1) (knowing the record ID),
which compared to other structure’s O(log N) operations on disk is
a huge advantage, as each disk seek is expensive

 Reads and writes don’t affect each other. Writing wouldn’t lock
reading and vice versa (as opposed to balanced trees).

These two points have huge performance benefits, since the data size is
completely decoupled from performance. Kafka has the same performance
whether you have 100 KB or 100 TB of data on your server.

How does it work?
Applications (producers) send messages (records) to a Kafka node
(broker), and said messages are processed by other applications called
consumers. Said messages get stored in a topic and consumers subscribe
to the topic to receive new messages (see Figure 3).

As topics can get quite big, they get split into partitions of a smaller size
for better performance and scalability. (For example, say you were storing
user login requests. You could split them by the first character of the user’s
username.)

Kafka guarantees that all messages inside a partition are ordered in the
sequence they came in. The way you distinct a specific message is through
its offset, which you could look at as a normal array index, a sequence
number which is incremented for each new message in a partition (see
Figure 4).

Kafka follows the principle of a dumb broker and smart consumer. This
means that Kafka doesn’t keep track of what records are read by the
consumer, then deleting them. Rather, it stores them for a set amount of

time (e.g., one day) or until some size threshold is met. Consumers,
themselves, poll Kafka for new messages and say what records they want
to read. This allows them to increment/decrement the offset they’re at as
they wish, thus being able to replay and reprocess events.

It’s worth noting consumers are actually consumer groups that have one
or more consumer processes inside. In order to avoid two processes reading
the same message twice, each partition is tied to only one consumer process
per group. See Figure 5 for a representation of the data flow.

Persistence to disk
As I mentioned earlier, Kafka actually stores all of its records to disk and
doesn’t keep anything in RAM. You might be wondering how this is in
the slightest way a sane choice. There are numerous optimizations behind
this that make it feasible:

 Kafka has a protocol that groups messages together. This allows
network requests to group messages together and reduce network
overhead; the server, in turn, persists chunk of messages in one go,
and consumers fetch large linear chunks at once.

 Linear reads/writes on a disk are fast. The concept that modern disks
are slow is because of numerous disk seeks, something that’s not an
issue in big linear operations.

 Said linear operations are heavily optimized by the OS, via read-
ahead (prefetch large block multiples) and write-behind (group
small logical writes into big physical writes) techniques.

 Modern OSes cache the disk in free RAM. This is called pagecache.

 Since Kafka stores messages in a standardized binary format
unmodified throughout the whole flow (producer broker
consumer), it can make use of the zero-copy optimization. That’s
when the OS copies data from the pagecache directly to a socket,
effectively bypassing the Kafka broker application entirely.

All of these optimizations allow Kafka to deliver messages at near network
speed.

Figure 3
Figure 4

Figure 5
14 | Overload | August 2020

FEATURESTANISLAV KOZLOVSKI
Data distribution and replication
Let’s talk about how Kafka achieves fault tolerance and how it distributes
data between nodes.

Data replication
Partition data is replicated across multiple brokers in order to preserve the
data in case one broker dies.

At all times, one broker owns a partition and is the node through which
applications write/read from the partition. This is called a partition leader.
It replicates the data it receives to n other brokers, called followers. They
store the data as well and are ready to be elected as leader in case the leader
node dies.

This helps you configure the guarantee that any successfully published
message won’t be lost. Having the option to change the replication factor
lets you trade performance for stronger durability guarantees, depending
on the criticality of the data. Figure 6 shows 4 Kafka brokers with a
replication factor of 3.

In this way, if one leader ever fails, a follower can take his place.

You may be asking, though:

“How does a producer/consumer know who the leader of a partition is?”

For a producer/consumer to write/read from a partition, they need to know
its leader, right? This information needs to be available from somewhere.

Kafka stores such metadata in a service called ZooKeeper.

What’s ZooKeeper?
ZooKeeper is a distributed key-value store. It’s highly optimized for reads,
but writes are slower. It’s most commonly used to store metadata and
handle the mechanics of clustering (heartbeats, distributing updates/
configurations, etc).

It allows clients of the service (the Kafka brokers) to subscribe and have
changes sent to them once they happen. This is how brokers know when
to switch partition leaders. ZooKeeper is also extremely fault tolerant, and
it ought to be, as Kafka heavily depends on it.

It’s used for storing all sort of metadata, to mention some:

 Consumer groups offset per partition (although modern clients store
offsets in a separate Kafka topic)

 Access control lists (ACLs) – used for limiting access/authorization

 Producer and consumer quotas –maximum message/sec boundaries

 Partition leaders and their health

How does a producer/consumer know who the leader of a
partition is?
Producers and consumers used to directly connect and talk to ZooKeeper
to get this (and other) information. Kafka has been moving away from this
coupling, and since versions 0.8 and 0.9 (released 5 years ago) clients have
been fetching metadata information from Kafka brokers directly, who
themselves talk to ZooKeeper.

Kafka needs no keeper
Recently, the Kafka community has started moving away from ZooKeeper
with a concrete proposal to use a self-managed metadata quorum based on
the Raft algorithm [Apache-2]. Figure 7 shows the metadata flow.

Streaming
In Kafka, a stream processor is anything that takes continual streams of
data from input topics, performs some processing on this input, and
produces a stream of data to output topics (or external services, databases,
the trash bin – wherever really).

It’s possible to do simple processing directly with the producer/consumer
APIs; however, for more complex transformations like joining streams
together, Kafka provides a integrated Streams API library [KafkaAPI].

This API is intended to be used within your own codebase – it’s not running
on a broker. It works similar to the consumer API and helps you scale out
the stream processing work over multiple applications (similar to
consumer groups).

Figure 6
August 2020 | Overload | 15

FEATURE STANISLAV KOZLOVSKI
Stateless processing
A stateless processing of a stream is deterministic processing that doesn’t
depend on anything external. You know that for any given data, you’ll
always produce the same output independent of anything else. An example
for that would be simple data transformation – appending something to a
string "Hello" "Hello, World!" (see Figure 8).

Stream-table duality
It’s important to recognize that streams and tables are essentially the same.
A stream can be interpreted as a table, and a table can be interpreted as a
stream.

Stream as a table
A stream can be interpreted as a series of updates for data, in which the
aggregate is the final result of the table. This technique is called event
sourcing [Fowler05].

If you look at how synchronous database replication is achieved, you’ll see
it’s through the so-called streaming replication, where each change in a
table is sent to a replica server. Another example of event sourcing are
blockchain ledgers – a ledger is a series of changes as well.

A Kafka stream can be interpreted in the same way – events which, when
accumulated, form the final state. Such stream aggregations get saved in
a local RocksDB [GitHub] (by default) and are called a KTable. Figure 9
illustrates that each record increments the aggregated count.

Table as a stream
A table can be looked at as a snapshot of the latest value for each key in a
stream. In the same way that stream records can produce a table, table
updates can produce a changelog stream (see Figure 10).

Figure 7
16 | Overload | August 2020

FEATURESTANISLAV KOZLOVSKI
Stateful processing
Some simple operations, like map() or filter(), are stateless and don’t
require you to keep any data regarding the processing. However, in real
life, most operations you’ll do will be stateful (e.g., count()), and as
such, will require you to store the currently accumulated state.

The problem with maintaining the state on stream processors is the stream
processors can fail! Where would you need to keep this state in order to
make it fault-tolerant?

A naive approach is to simply store all states in a remote database and join
over the network to that store. The problem with this is there’s no locality
of data and lots of network round trips, both of which will significantly
slow down your application.

A more subtle but important problem is your stream processing job’s
uptime would be tightly coupled to the remote database and the job won’t
be self-contained (a change in the database from another team might break
your processing).

So what’s a better approach?

Recall the duality of tables and streams. This allows us to convert streams
into tables that are colocated with our processing. It also provides us with
a mechanism for handling fault tolerance – by storing the streams in a
Kafka broker.

A stream processor can keep its state in a local table (e.g., RocksDB),
which will be updated from an input stream (after perhaps some arbitrary
transformation). When the process fails, it can restore its data by replaying
the stream.

You could even have a remote database be the producer of the stream,
effectively broadcasting a changelog with which you rebuild the table
locally. Figure 11 (overleaf) illustrates stateful processing – joining a
KStream with a KTable.

ksqlDB
Normally, you’d be forced to write your stream processing in a JVM
language, as that’s where the only official Kafka Streams API client is.
Figure 12 shows a sample ksqlDB setup.

Released in April 2018 [Confluent-1], ksqlDB [Apache-1] is a feature that
allows you to write your simple streaming jobs in a familiar SQL-like
language.

You set up a ksqlDB server and interactively query it through a CLI
[Wikipedia] to manage the processing. It works with the same abstractions
(KStream and KTable), guarantees the same benefits of the Streams API
(scalability, fault tolerance), and greatly simplifies work with streams.

This might not sound like a lot, but in practice, it’s way more useful for
testing out stuff and even allows people outside of development (e.g.,
product owners) to play around with stream processing. I encourage you
to take a look at the quick-start video and see how simple it is
[Confluent-2].

Streaming alternatives
Kafka streams are a perfect mix of power and simplicity. They arguably
have the best capabilities for stream jobs on the market, and they integrate
with Kafka way easier than other stream-processing alternatives (Storm,
Samza, Spark, Wallaroo).

Figure 8

Figure 9

Medium Article Claps KTable

Figure 10
August 2020 | Overload | 17

FEATURE STANISLAV KOZLOVSKI
The problem with most other stream-processing frameworks is they’re
complex to work with and deploy. A batch-processing framework like
Spark needs to:

 Control a large number of jobs over a pool of machines and
efficiently distribute them across the cluster

 To achieve this, it has to dynamically package up your code and
physically deploy it to the nodes that’ll execute it (along with the
configuration, libraries, etc.)

Unfortunately, tackling these problems makes the frameworks pretty
invasive. They want to control many aspects of how code is deployed,
configured, monitored, and packaged.

Kafka Streams let you roll out your own deployment strategy when you
need it, be it Kubernetes, Mesos, Nomad, Docker Swarm, or others.

The underlying motivation of Kafka Streams is to enable all your
applications to do stream processing without the operational complexity
of running and maintaining yet another cluster. The only potential
downside is that it’s tightly coupled with Kafka, but in the modern world,
where most if not all real-time processing is powered by Kafka, that may
not be a big disadvantage.

When would you use Kafka?
As we already covered, Kafka allows you to have a huge amount of
messages go through a centralized medium and to store them without
worrying about things like performance or data loss.

This means it’s perfect for use as the heart of your system’s architecture,
acting as a centralized medium that connects different applications. Kafka
can be the center piece of an event-driven architecture and allows you to
truly decouple applications from one another. See Figure 13.

Kafka allows you to easily decouple communication between different
(micro)services. With the Streams API, it’s now easier than ever to write
business logic that enriches Kafka topic data for service consumption. The
possibilities are huge, and I urge you to explore how companies are using
Kafka.

Why has it seen so much use?
High performance, availability, and scalability alone aren’t strong enough
reasons for a company to adopt a new technology. There are other systems
that boast similar properties, but none have become so widely used. Why
is that?

The reason Kafka has grown in popularity (and continues to do so) is
because of one key thing – businesses nowadays benefit greatly from
event-driven architecture. This is because the world has changed – an
enormous (and ever-growing) amount of data is being produced and

Figure 11

Figure 13Figure 12
18 | Overload | August 2020

FEATURESTANISLAV KOZLOVSKI
consumed by many different services (internet of things, machine learning,
mobile, microservices).

A single real-time event-broadcasting platform with durable storage is the
cleanest way to achieve such an architecture. Imagine what kind of a mess
it’d be if streaming data to/from each service used a different technology
specifically catered to it.

This, paired with the fact that Kafka provides the appropriate
characteristics for such a generalized system (durable storage, event
broadcast, table and stream primitives, abstraction via ksqlDB, open
source, actively developed) make it an obvious choice for companies.

Summary
Apache Kafka is a distributed streaming platform capable of handling
trillions of events a day. Kafka provides low-latency, high-throughput,
fault-tolerant publish and subscribe pipelines and is able to process streams
of events.

We went over its basic semantics (producer, broker, consumer, topic),
learned about some of its optimizations (pagecache), learned how it’s
fault-tolerant by replicating data, and were introduced to its ever-growing
powerful streaming abilities.

Kafka has seen large adoption at thousands of companies worldwide,
including a third of the Fortune 500. With the active development of Kafka
and the recently released first major version 1.0 [Confluent-3], there are
predictions that this streaming platform is going to be as big and central
of a data platform as relational databases are.

I hope this introduction helped familiarize you with Apache Kafka and its
potential.

Further reading, resources, references and things I
didn’t mention
The rabbit hole goes deeper than this article was able to cover. Here are
some features I didn’t get the chance to mention but are nevertheless
important to know:

 Controller broker, in-sync replicas: The way in which Kafka keeps
the cluster healthy and ensures adequate consistency and durability
[Kozlovski18]

 Connector API: API helping you connect various services to Kafka
as a source or sink (PostgreSQL, Redis, Elasticsearch)
[Confluent-4]

 Log compaction: An optimization which reduces log size.
Extremely useful in changelog streams [Cloudurable].

 Exactly once message semantics: Guarantee that messages are
received exactly once. This is a big deal, as it’s difficult to achieve
[Confluent-5].

Resources
‘Kafka Acks Explained’: A short article of mine explaining the commonly
confused acks and min.isr settings, at https://medium.com/better-
programming/kafka-acks-explained-c0515b3b707e

‘Kafka Needs No Keeper’: A great talk by Colin McCabe about how
Apache Kafka is implementing its own consensus algorithm for metadata
based on Raft at https://www.infoq.com/presentations/kafka-zookeeper/

Confluent blog: A wealth of information regarding Apache Kafka at
https://www.confluent.io/blog/

Kafka documentation: Great, extensive, high-quality documentation at
https://kafka.apache.org/documentation/

Kafka Summit 2017 videos at https://www.confluent.io/resources/kafka-
summit-san-francisco-2017/

References
[Apache-1] ksqlDB: https://ksqldb.io

[Apache-2] ‘KIP-500: Replace ZooKeeper with a Self-Managed
Metadata Quorum’: https://cwiki.apache.org/confluence/display/
KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-
Managed+Metadata+Quorum

[Cloudurable] ‘Kafka Architecture: Log Compaction’ posted 18 May
2017 at http://cloudurable.com/blog/kafka-architecture-log-
compaction/index.html

[Confluent-1] ‘Confluent Platform 4.1 with Production-Ready KSQL
Now Available’ posted 17 April 2018 at https://www.confluent.io/
blog/confluent-platform-4-1-with-production-ready-ksql-now-
available/

[Confluent-2] ‘Developer Preview: KSQL from Confluent’, uploaded
28 August 2017 at
https://www.confluent.io/blog/confluent-platform-4-1-with-
production-ready-ksql-now-available/

[Confluent-3] ‘Apache Kafka Goes 1.0’, uploaded 1 November 2017 at
https://www.confluent.io/blog/apache-kafka-goes-1-0/

[Confluent-4] ‘Announcing Kafka Connect: Building large-scale low-
latency data pipelines’ posted 18 February 2016 at
https://www.confluent.io/blog/announcing-kafka-connect-building-
large-scale-low-latency-data-pipelines/

[Confluent-5] ‘Exactly-Once Semantics Are Possible: Here’s How Kafka
Does It’, posted 30 June 2017 at
https://www.confluent.io/blog/exactly-once-semantics-are-possible-
heres-how-apache-kafka-does-it/

[Fowler05] Martin Fowler, ‘Event Sourcing’, posted 12 December 2005
at https://martinfowler.com/eaaDev/EventSourcing.html

[GitHub] ‘RocksDB Basics’ at https://github.com/facebook/rocksdb/
wiki/rocksdb-basics

[KafkaAPI] ‘Kafka Streams’ at https://kafka.apache.org/documentation/
streams/

[Kozlovski18] ‘Apache Kafka’s Distributed Systems Firefighter – the
Controller Broker’ (covers how coordination between the brokers
works and much more) at https://medium.com/@stanislavkozlovski/
apache-kafkas-distributed-system-firefighter-the-controller-broker-
1afca1eae302

[Wikipedia] ‘Command-line interface’ at https://en.wikipedia.org/wiki/
Command-line_interface

Acknowledgements
Some of the images in this article are from the Kafka blog.

Figure 13 is reproduced courtesy of Confluent.

This article was first published on Stanislav’s blog on 15 December 2017:
https://medium.com/better-programming/thorough-introduction-to-
apache-kafka-6fbf2989bbc1

It has been lightly edited to incorporate new advancements in this fast-
moving technology.
August 2020 | Overload | 19

http://cloudurable.com/blog/kafka-architecture-log-compaction/index.html
http://cloudurable.com/blog/kafka-architecture-log-compaction/index.html
https://www.confluent.io/blog/confluent-platform-4-1-with-production-ready-ksql-now-available/
https://www.confluent.io/blog/announcing-kafka-connect-building-large-scale-low-latency-data-pipelines/
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://martinfowler.com/eaaDev/EventSourcing.html
https://github.com/facebook/rocksdb/wiki/rocksdb-basics
https://github.com/facebook/rocksdb/wiki/rocksdb-basics
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://www.confluent.io/blog/confluent-platform-4-1-with-production-ready-ksql-now-available/
https://www.confluent.io/blog/confluent-platform-4-1-with-production-ready-ksql-now-available/
https://medium.com/@stanislavkozlovski/apache-kafkas-distributed-system-firefighter-the-controller-broker-1afca1eae302
https://medium.com/@stanislavkozlovski/apache-kafkas-distributed-system-firefighter-the-controller-broker-1afca1eae302
https://medium.com/better-programming/thorough-introduction-to-apache-kafka-6fbf2989bbc1
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://www.confluent.io/blog/apache-kafka-goes-1-0/
https://ksqldb.io

FEATURE ALAN GRIFFITHS
An Example Confined User Shell
Snap confinement is not just for individual apps but can
be applied to a complete GUI environment. Alan Griffiths
demonstrates with the Mircade shell.
n Overload #155 [Griffiths20], I wrote about snap confinement and why
confinement is important in the current computing landscape. Having
the operating system enforce limits on the things programs can do

allows them to be installed and used with confidence.

This time I’m going to describe another way of employing snaps that
provides a bespoke confined environment that can be deployed a range of
target platforms from embedded IoT devices to all the major Linux distros.

There are various scenarios and reasons for packaging a Snap confined
shell and a selection of applications together in a confined environment.
You might have applications that work well together for a particular task;
or, you may want to offer a number of alternative applications and have
them available on a wide range of target platforms. The Mircade snap
illustrates this approach.

Contents of the Mircade snap
The contents of the Mircade snap are determined by a snapcraft.yaml
packaging script. I won’t go into detail about how the packaging tools
work, as there’s plenty of online material that covers this well. But I will
show a few extracts that illustrate how things are put together.

The user shell
A user shell is a program that allows the user to interact with the computer.
It could be as simple as a command-line shell or as complex as a full
desktop environment.

For Mircade, I use a modified example Mir shell (egmde) I’ve presented
in my writing for C Vu [Griffiths]. This ‘mircade’ branch of egmde allows
the user to select one of a number of programs and run it all within the Snap
confined environment (see Listing 1).

If you’re emulating this approach you don’t have to use egmde, or even a
Mir based shell, but doing so ensures there are no unexpected issues to
resolve.

The applications
A successful ‘bundled’ snap is really down to choosing a compelling set
of applications.

I’ve taken a bunch of games from the Ubuntu archive and bundled them
into the snap. That choice is only an illustration, there’s no need to choose
games, or programs from the archive.

 neverball:
 plugin: nil
 stage-packages:
 - neverball

In this example, most of the applications use SDL2 and all use Wayland.

 sdl2:
 plugin: nil
 stage-packages:
 - libsdl2-2.0-0
 - libsdl2-image-2.0-0
 - libsdl2-mixer-2.0-0
 - libsdl2-net-2.0-0

I

Listing 1

egmde:
 source: https://github.com/AlanGriffiths/
egmde.git
 source-branch: mircade
 plugin: cmake-with-ppa
 ppa: mir-team/release
 build-packages:
 - pkg-config
 - libmiral-dev
 - libboost-filesystem-dev
 - libfreetype6-dev
 - libwayland-dev
 - libxkbcommon-dev
 - g++
 stage-packages:
 - try: [libmiral4]
 - else: [libmiral3]
 - mir-graphics-drivers-desktop
 - fonts-freefont-ttf
 stage:
 - -usr/share/wayland-sessions/egmde.desktop
 - -bin/egmde-launch

Alan Griffiths Alan has delivered working software and
development processes to a range of organizations, written for a
number of magazines, spoken at several conferences, and made
many friends. He can be contacted at alan@octopull.co.uk
20 | Overload | August 2020

FEATUREALAN GRIFFITHS

it is possible to take some applications, a user shell
and Snap technology and use them deliver a portable,

secure package to multiple Linux platforms
I’ve not covered other toolkits in the Mirade example. In spite of this,
applications based on GTK, Qt and X11 can also be packaged. (X11
support does require Mir 2.0 which had not been released at the time of
writing.)

The target platforms

Running on Ubuntu Core
There are a lot of advantages to running Ubuntu Core on IoT devices, and
Mircade shows how a bundle of applications can be delivered for this.
When installed on Ubuntu Core, Mircade connects to a Wayland server
(such as mir-kiosk).

Running on Classic Linux
On Ubuntu Classic, there are four ways that Mircade can run, the first three
are:

1. Connecting to an X11 compositor as a window on a traditional
desktop

2. Connecting to a Wayland compositor as a full-screen window on a
traditional desktop

3. Running directly on the hardware as a graphical login session

For each of these the corresponding interface needs to be connected:

 Connecting to an X11 compositor:
snap connect mircade:x11

 Connecting to a Wayland compositor:
snap connect mircade:wayland

 Running directly on the hardware:
snap connect mircade:login-session-control

The fourth option, typically on an Ubuntu Server installation, is to run in
the same way as on Ubuntu Core using a mir-kiosk daemon as to access
the hardware.

Conclusion
The Mircade snap confined shell demonstrates how it is possible to take
some applications, a user shell and Snap technology and use them deliver
a portable, secure package to multiple Linux platforms including Ubuntu
Core, Ubuntu Desktop and many other distros.

Targeting multiple platforms is important to the developers of snaps and
confinement is important as users of a snap can ensure that it has limited
access to their computer and what they are doing with it.

Do you have, or know of, a set of applications that would benefit from this
approach?

References
[Griffiths] Some of the relevant articles (available online to members) are:

 ‘Making a Linux Desktop’ in CVu 31.4, available at:
https://accu.org/index.php/journals/2696

 ‘Making a Linux Desktop: Painting Some Wallpaper’ in CVu 31.5,
available at: https://accu.org/index.php/journals/2714

 ‘Making a Linux Desktop – Launching Applications’ in CVu 32.1,
available at: https://accu.org/index.php/journals/2761

[Griffiths20] Alan Griffiths (2020) ‘What does ‘app confinement’ mean?’
in Overload 155, available at:
https://accu.org/index.php/journals/2747

Resources
Mircade on GitHub: https://github.com/MirServer/mircade

Egmde on GitHub: https://github.com/AlanGriffiths/egmde/

The Mir display server: https://mir-server.io/
August 2020 | Overload | 21

https://accu.org/index.php/journals/2696
https://accu.org/index.php/journals/2714
https://accu.org/index.php/journals/2761
https://accu.org/index.php/journals/2747
https://mir-server.io/
https://github.com/AlanGriffiths/egmde/
https://github.com/MirServer/mircade

FEATURE JIT GOSAI
Agile Manchester 2020:
Testers Edition
Many tech conferences are still going ahead online. Jit Gosai
reports on Agile Manchester from a tester’s perspective.
’ve always found tester representation at agile conferences to be lacking.
It’s a bit like it doesn’t have the word test in the titles, so it’s not for me.
Personally, I’ve always found a treasure trove of information from talks

that are directly or indirectly related to software testing. Remember, testing
doesn’t always look like testing: you sometimes need to change the frame
with which you look at things to get the best out of them.

Below are the talks that I attended with a brief summary of the talk and
what it could mean for testers. If you want the full unadulterated notes then
see my personal notes (follow the link on the original blog).

Fighting Code Rot with Continuous Improvement
by @garyfleming Slides http://bit.ly/fight-code-rot

Summary of the talk
Good talk covering all the basic with keeping your system update and why.
Well delivered and really useful for less experienced team members and
a good recap for ‘they should know better’ members.

For testers
For testers, understanding what needs to be updated when can help them
understand how that change could affect end users. Be proactive what do
the release notes say for X, how do we use system Y. Building this
knowledge takes time but can be really valuable in the long run. Start small
and work your way up. Developers can help you but try and help by having
specific questions for them.

Agile metrics for predicting the future
by Mattia Battiston Slides: https://www.slideshare.net/mattiabattiston/
agile-metrics-for-predicting-the-future

Summary of the talk
Forecasts will always beat estimates for non-deterministic projects (think
all software projects). As they help you understand what could happen with
a confidence rating. You’ve probably already got most of this data but
knowing your lead times and throughput can help with this and some
spreadsheets.

The key thing to remember is you need to talk to your stakeholders and
make sure they understand what the numbers mean and how it affects them.
Don’t just give them the spreadsheets and expect them to understand.

For testers
If quality means value to someone then value to people working in delivery
roles is greater predictability with delivering our software systems.
Understanding what these metrics are, how they are used and what affects
them will not only enable you to have more productive conversation with
delivery but also understand why they are important to that group. This
will help you articulate risk better within your teams as you will be able
to tailor the message to that specific audience. This will not only help you
help them understand risk better but increase your value from just being
the person that finds all the issues. This elevates you from being just a tester
towards a test analysts.

Crucial conversations in agile teams
How making it safe to talk about almost anything unlocks continuous
improvement by Chris Smith. Slides: https://www.slideshare.net/
chris_smith1976/crucial-conversations-for-agile-teams-agile-
manchester-virtual-may-2020

I

Jitesh Gosai (or Jit, as he’s better known) has over 15 years’ test
experience, working with a variety of companies from mobile
manufactures to OS builders and app developers. He currently
works with the BBC’s Mobile Platforms team. His career started in
development, and he moved towards Development in Test to
integrate both his passions. He can be contacted at
jiteshgosai@gmail.com and can be found on Twitter (@jitgo).
22 | Overload | August 2020

http://bit.ly/fight-code-rot
https://www.slideshare.net/chris_smith1976/crucial-conversations-for-agile-teams-agile-manchester-virtual-may-2020
https://www.slideshare.net/chris_smith1976/crucial-conversations-for-agile-teams-agile-manchester-virtual-may-2020
https://www.slideshare.net/mattiabattiston/agile-metrics-for-predicting-the-future
https://www.slideshare.net/mattiabattiston/agile-metrics-for-predicting-the-future

FEATUREJIT GOSAI
Summary of the talk
Really interesting talk by @cj_smithy at #agilemanc focusing around the
book Crucial Conversations but bringing in ideas from the Chimp
paradox, 5 dysfunctions of team, Radical Candor and generative cultures
by Ron Westrum. Conversations within agile software teams are
incredibly important (remember individuals and interactions over process
and tools) so being better skilled at them is a great thing.

For testers
We have conversation with team members all the time. Whether that is to
find out information or to inform others about what’s going on, its a core
part of our skill set. Getting better at communicating verbally should be
part of our personally development as testers. The resources mentioned in
this talk would go a long way to help you build up that skill and help keep
it sharp.

Leading an agile organisation through hyper growth
By Patrick Kua

Summary of the talk
The company Patrick was a CEO of went through some really fast growth
over a very short period. The model he used was simple and acknowledged
that it wouldn’t work forever, so they kept iterating and scaling the
organisation. Useful to benchmark your company against to see where you
are in the growth of your organisation.

For testers
Understanding how a company develops from startup to enterprise is really
helpful in seeing what types of problems you’re likely to face. This can
help you help your team understand how quality is likely to be affected
when scaling and what they can do to mitigate it.

Improve your agile coaching skills with Training from
the BACK of the Room
By Sabine Khan

Summary of the talk
Its called back of the room as you’re not using slide decks and presenting
but are getting the participants to stand and present instead. Hence
coaching from the back of the room.

Really interesting approach to learning and using coaching skills in
teaching others. The 6 learning principles are really quite easy to apply and
can make almost any session interactive. This combined with the 4C’s
gives you a framework to turn any learning topics into something more
than just sit and listen.

For testers
Need to help team members understand what exploratory testing is then
why not do something interactive instead of just another slide deck. Teach
them through doing and the key points might actually stick.

Culture + Code ≠ Delivery
By Vimla Appadoo @thatgirlvim

Summary of the talk
Vim makes a great point in that just delivering through code and a good
culture isn’t enough as this misses how that delivery affects users.
Especially if the system has biases built in unintentionally. She says we
need communications as well. Communication to be able to link together
all the parts of the culture of the organisation, systems, processes and
people + the code can help us deliver the right things.

For testers
Testers help raise the awareness of quality within systems, but for them to
be able to do that affectively they need to take into account the team, the
business and users as well. The key skill to be able to do this is
communication and helping to link together all the parts to understand the
other. This is not to say that testers are the key to culture but on a smaller
team scale they can have huge influence over what direction that culture
moves in. Do the teams care about how their systems affect users or wait
to see what happens?

This article was first published on Jit’s blog on 19 May 2020:
https://www.jitgo.uk/agile-manchester-2020-testers-edition/

For further resources for testers, see:
https://www.jitgo.uk/blog/

Agile Manchester is a practical, hands-on Agile software development
conference, usually held in the north of England. This year it was online.
More details are available at https://2020.agilemanchester.net/

Agile Manchester
August 2020 | Overload | 23

https://www.jitgo.uk/agile-manchester-2020-testers-edition/
https://www.jitgo.uk/blog/
https://2020.agilemanchester.net/

FEATURE CHRIS OLDWOOD
Afterwood
Mind your language! Chris Oldwood recounts a
Stack Overflow comment that got him thinking.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit micros.
These days it’s enterprise grade technology from the lounge below his bedroom. With no Godmanchester duck race to
commentate on this year, he’s been even more easily distracted by messages to gort@cix.co.uk or @chrisoldwood

hen Stack Overflow sprang up way back in mid-2008 it seemed
like a game changer for the industry. Even for someone like me
who had already earned a few stripes as a programmer by

struggling with the craft through the use of product documentation,
journals, books, web sites, CIS & CiX forums, etc. I found much to like
about the innovative format as it promised to raise the signal-to-noise ratio
to much higher levels. At that time I was also making the switch from a
career spent entirely in the native world to the managed one of .NET, so
felt I would be in a good position to provide help to those new to the place
I was leaving behind while drawing on the expertise of those already
ahead of me on the path to my new destination.

Of course, I didn’t reckon on the volume of people out there who also
appeared eager to help out but apparently didn’t need to either eat or
sleep! I was never expecting to reach the dizzying heights of ‘reputation’
achieved by the likes of Stack Overflow’s most famous respondent – Jon
Skeet – but I felt chalking up a few answers would at least give me
something else to raise my profile and give any potential future employers
one more reason to prefer me over someone else.

It’s funny how things work out. It’s now over 10 years since I joined and
yet I’m still to reach even the 1,000 mark. Consequently, it’s rare I visit
the site and get a notification saying I’ve earned some more points or
received a comment to one of my answers. Hence when I visited recently
and found a little badge on my inbox, I was expecting good news; I never
for a moment expected a comment from someone suggesting that one of
my answers was incredibly condescending and that I was blaming the
questioner for their own predicament.

Being a programmer with a bit of mileage, I probably don’t google things
much less frequently than anyone else but years of skim reading articles,
blog posts, and forum messages has meant that I’ve found it easy to skip
over the ‘noise’ and focus on whether or not the answer is likely to be of
interest. As a consequence, I’ve become ignorant of the kinds of problems
that have caused a number of people to suggest that Q&A sites like Stack
Overflow are not as welcoming or as helpful as they purport to be. Given
their reliance on contributions from the general public, such as myself,
that means some portion of the blame almost certainly lies with the
attitudes of us programmers who have chosen to offer our time and
expertise to help others out. In more recent years, I’ve made a conscious
effort to try and learn more about the subtle ways that people denigrate
others, so I was unprepared to discover that I might have ended up on the
wrong side of the tracks.

It’s all too easy when challenged to go on the defensive and find ways to
brush off the accuser as someone who’s clearly made no effort to
understand what you’ve said and just needs to ‘get over themselves’. The
somewhat passive-aggressive nature of the comment didn’t really
encourage me to immediately take the issue seriously whereas the
apparent ‘injustice’ did mean I felt the need to investigate further. I
followed the notification, which (curiously) had taken 9 months to
deliver, and re-read whatever it was I said back in 2010 that had caused
offence [Oldwood10]:

You don’t mention what language you’re using but there is no hidden
setting that hides errors per se, other than the compiler giving up

after it has encountered a gazillion issues (Visual C++). It has
decided that there is so much wrong with the code that it’s not going
to waste even more time telling you stuff that you’re just going to
ignore. Classic examples of this are caused by missing braces and
parenthesis, or botched #include guards etc.

My gut reaction was that ‘2010 me’ was probably trying to be light-
hearted or sarcastic but ‘2020 me’ was somewhat appalled that I had not
spotted the obvious potential for misunderstanding. But it was just a
misunderstanding, right? I want to believe there was no intention of
malice on my part – that I was suggesting the tool was at fault, not the
operator – but I also can’t deny that I haven’t overused sarcasm in the past
and stepped over the mark once or twice. My hope is that while ‘2010 me’
might have been better at judging the mood in person, I clearly still had a
lot to learn back then about the written word and personal responsibility.

Hemingway said that “the only kind of writing is rewriting” and ‘2020
me’ is beginning to understand that more and more. While my younger
self may have been satisfied to simply avoid spelling and grammatical
mistakes, my older self is slowly becoming more aware of the ways in
which language can be used by a writer to insult certain kinds of reader. I
realize it falls on my shoulders to be wise to this and ensure that if my
intent is not to be misinterpreted then I should steer clear of those devices.

I toyed briefly with deleting my answer as it turned out in the end to be
totally irrelevant to the question and I’m not entirely sure what I said was
even correct. Instead I decided not to hide my embarrassment and so I
rewrote the answer using ‘2020 me’ to keep the gist but hopefully place
the emphasis on the limitations of the tool rather than the programmer
using it. I also added a short apology too, to make it clear I was not hiding
anything by rewriting it after the fact. This, I hope, also ensures the
comment calling my answer out as inappropriate does not look out of
place either. And, while a tiny part of me feels their tone was somewhat
inappropriate too, ‘2020 me’ accepts that negativity is not best handled
with yet more negativity; instead I can thank them for giving me the
catalyst to review my past attempt and revise it so that no one else has to
feel uncomfortable in the future.

The question I now find myself asking is if this was an isolated moment of
naivety or do I need to go back and check what else I’ve written in public,
and if so, how far back? The answer, for me, I feel is ‘yes’, although I
know I’m lucky enough not to have that much to look over specifically in
Stack Overflow. I have since found a few of my earlier blog posts that use
terms which my current self would never consider appropriate, not
because they are in any way nasty, more that I think I’ve found better
terms that I hope has made my subsequent writing more accessible.

I’m in no doubt that feedback from both friends and reviewers at ACCU
over the last 10 years has had a significant impact in changing my view
on the importance of the written word and this incident continues to
confirm my suspicion that whether it be code or prose, it always suffers
when I’m left to my own devices.

Reference
[Oldwood10] https://stackoverflow.com/a/3000064/

106119

W

24 | Overload | August 2020

https://stackoverflow.com/a/3000064/106119
https://stackoverflow.com/a/3000064/106119

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

www.qbssoftware.com

	RE:Purpose FWD:Thinking
	The Global Lockdown of Locks
	C++20: A Simple Math Module
	A Thorough Introduction to Apache Kafka
	An Example Confined User Shell
	Agile Manchester 2020: Testers Edition
	Afterwood

