

Find out more at www.qbssoftware.com

October 2020 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 poly::vector – A Vector for Polymorphic
Objects
Janky Ferenc introduces a sequential container for
storing polymorphic objects in C++.

8 Kafka Acks Explained
Stanislav Kozlovski helps us visualise this most
misunderstood configuration setting.

13 Concurency Design Patterns
Lucian Radu Teodorescu investigates design
patterns that help unlock concurrent performance.

20 C++ Modules: A Brief Tour
Nathan Sidwell presents a tourist’s guide to the
long-awaited C++ module system.

25 The Edge of C++
Deák Ferenc explores the bounds of various
C++ constructs.

35 Afterwood
Chris Oldwood considers various fail cases.

OVERLOAD 159

October 2020

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 160 should be
submitted by 1st November 2020
and those for Overload 161 by
1st January 2021.

EDITORIAL FRANCES BUONTEMPO
Virtual/Reality
Do we know what reality is? Frances
Buontempo is no longer sure and now
wonders if she’s a fictional character.
Since becoming Overload editor, I have failed to write
an editorial. In my defence, I have managed to fill the
first two pages with musings, somewhat like a meta-
or virtual editorial. Having attended a live stream of
various noisy bands instead of making our annual
pilgrimage to a metal festival in a field in England

during August, I have again failed to find time to write an editorial. The
online festival was tremendous; I discovered a couple of new bands and
interacted with others across the world on social media while they played.
Nonetheless, this is not the same as being in a circle pit or somewhere near
the front bouncing off other audience members. Live music is a real
visceral experience that is impossible to capture virtually. I tried to
imagine a haptic feedback mosh-pit suit, but didn’t get very far. I’ll need
to read some decent SciFi to plug the gaps in my imagination. Fictional
accounts of possibilities frequently pave the way for changes in
technology, or more broadly society in general. Fictional, or virtual,
imaginings cause a shift in the fabric of reality. Star Trek has arguably
brought about mobile phones, tablets and automatic doors. I’m hanging
on for the replicators and transporters, as I have said many times before.
I am given to believe that the film Predator [IMDb-1] caused someone in
the military to ask if the mimetic camouflage suit were possible in reality,
securing funding to research this. ‘Now the nightmare vision of an
invisible murderer from space could come true on Earth, thanks to
University of Bristol scientists.’ [Waugh15]. Cheerful stuff.

Over time, many people have bashed ‘virtual’ interactions. I have been
asked, “Have you actually talked to them?” when I say I’ve been
discussing a technical issue. Some people can’t understand how to
communicate by writing only, and believe a ‘proper’ conversation is
always better. This general statement misses many nuances, and the best
way to communicate almost always depends. For example, a colleague did
‘phone’ me, or make a Slack call rather, to talk me through running a
script. As with many step-up scripts, it asked probing question, like ‘Wipe
all this out and replace it? [y/N]’. The technical among you will realise
pressing enter will select the upper case option ‘N’, which is a shorthand
for ‘No’. As you can imagine, the actual words on the call went like:

Fran: No?
Him: Yes.
Fran: What? Yes.
Him: No, No.
Fran: Tell you what, I’ll just accept the defaults and call you back.

Whoever insists that phone calls are better than
typing or scripts inhabits a different reality
to a large amount of my life. Did I tell you

about the guy who tried to read a barcode

down the phone to a customer once? “Thick, thick, thin…” I kid you not.
Talking to people is not always the best way to communicate.
Furthermore, I wonder if a Slack call is even a real telephone call?

A telephone is a sound at a distance. Anything starting ‘tele’ captures the
idea of something happening at a distance, so I guess a Google Hangout,
Zoom, or Slack call are like phone calls, but give the optional extra of
having your web-cams on so you can see each other. This, of course, can
put stress on the bandwidth, since you are uploading and downloading
pictures and sounds, rather than just listening to each other. Very
distracting. I acknowledge some people like to see each other and wave.
Having a virtual beer with the camera on is great. You can discuss what
you are drinking. Or, for the alcohol-free, sharing a remote cup of tea and
cake means you can show off the cake and discuss recipes. All good.
Something that works well for one situation may not work well across the
board. As all consultants will tell you, there is no One True Way to
approach things. It always depends.

Talking over a phone or video call is no less talking than a face to face
conversation. Certainly, there are differences. You don’t have to spend
time and money travelling to be in the same place. You can’t shake hands
or hug remotely. You can still talk, and listen. Sharing barcodes or running
a script might be better done without talking, as discussed. Writing things
down can force you to be precise and unambiguous with language. It also
provides a paper trail, which is useful in a variety of circumstances. It may
not count as a real conversation, but who cares or even knows what’s real.
Life is complex.

Code can get complex too. Object oriented programming using the idea
of dynamically dispatched functions, flagged up as virtual to vary
behaviour at runtime. In The Design and Evolution of C++ [Stroustrup94,
p73], Stroustrup explains functions marked as virtual use “the Simula and
C++ term for ‘may be redefined later in a class derived from this one’”. This
avoids a huge switch statement choosing what to do at run time for a
specific ‘type’, perhaps indicated with a flag. Any new types need to be
added to the switch statement, increasing compile times and potentially
introducing bugs. Stroustrup explains he adopted the Simula inheritance
mechanism to avoid these problems. Simula hails from the 1960s, and the
inheritance model along with subclasses may have been introduced in
Simula67 [Wikipedia]. Be aware that subclassing, having a sub and super
class, or base and derived as Stroustrup re-dubbed them, is different to
virtual functions. [op cit, p 49] “Even without virtual functions, derived
classes in C with Classes were useful for building new data structures out
of old ones.” I half wonder why we use the virtual and override
keywords. The base class can have an implementation, so abstract
would be the wrong word. We indicate that with = 0 {}; well, the curly
braces are only needed if we want to implement the abstract function.

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | October 2020

EDITORIALFRANCES BUONTEMPO
Without the braces, we have a pure virtual function, which is non-
functional and will crash if it’s ever called. Don’t tell non-tech people.
Their heads will explode.

Now, virtual functions are one thing, but people who know other OO
languages often laugh at C++’s multiple inheritance model, and the use of
a virtual base class. Language bashing often springs from not fully
understanding a different paradigm. Rein yourself in if you notice you’re
doing this. Nonetheless, some ways of coding are less than ideal.
Structured programming offered a grand improvement over jumping
around between various lines of code. Though it is possible to warp your
head into code laced with goto statements, I suspect most programmers
would say it is OK to bash this way of coding. Dijkstra’s famous ‘Go to
considered harmful’ paper [Dijkstra68] is probably legendary by now, and
inspires many similar talk titles. One thing we do all seem to agree on.

The pandemic has forced many things into cyberspace that used to be face
to face. People are discussing the pros and cons of virtual meetups and
conferences. Having not spoken at one, I can appreciate it must be odd to
not have the visual or auditory feedback of attendees. People will type
questions or share great quotes on social media, but it must be impossible
to follow what’s happening while talking into a laptop and wondering if
anyone can even see or hear you. Alex Chan recently offered some advice
for presenters:

Virtual presenters should ALWAYS wear high-contrast lipstick. I’m
sick of seeing presenters whose lips are barely distinguishable from
their face.

It makes you look even more fabulous than usual.

1 The extra contrast makes it easier for anybody who relies on lip-
reading. [Chan20]

This kicked off a small discussion about the history of television, or even
older, black and white films. Make-up was, and still is, used to great visual
effect, and also to avoid distractions like shiny skin and so on. Sound
engineering is also a full on-technical discipline, to adapt and change the
real sound, making it clearer, better, or more dramatic. Even a live stage
performance, for example at a real metal festival, has lighting to emphasise
cool stuff, often flames, loud noises, costumes and a sound desk for
reasons. Good reasons. A ‘real’ live performance, would be unplugged, no
make-up, no lighting. You could argue it shouldn’t involve any kind of
‘man-made’ instrument. If you don’t agree, consider for a moment the
source of the word virtual. It ties in with the idea of possessing certain
virtues. OK, that’s not so helpful. What is a virtue? Somewhere between
potency or effectiveness, and manliness [Etymology-1]. If you follow the
latter meaning, not only do you get the idea of ‘man-made’, but you get
‘vir’ or ‘wiro’ or even ‘were’ as a root word [Etymology-2]. A werewolf
is a virtual or man wolf. I’m happy to leave the ‘man’ aside as perhaps
meaning ‘human’ in this case.

Where does this leave us? Virtual reality is created by humans, but
therefore has virtue. Virtual reality is no less real than reality itself. It
comes in many flavours, for example sometimes we talk of augmented
reality instead. Sometimes virtual and real aren’t opposite. If something
in tech is described as real-time, that distinguishes it from a lag or polled
snapshot, rather than virtual time, whatsoever that might be. Of course,
time and space are relative, so talking of ‘real’ time, as though there is One
True Time that we can all agree on, reveals a lack of understanding of
Relativity. Furthermore, many real-time operating systems or loggers are
more ‘near-real-time’ than actual real time. This starts to beg the question,
what is real anyway? We use the word carelessly, and try ideas like
‘Actually existing, things… genuine’. As opposed to fake? I am told, ‘The

meaning ‘genuine’ is recorded from 1550s; the sense of ‘unaffected, no-
nonsense’ is from 1847.’ [Etymology-3] I could pull further on the history
of each of these words, but copying from dictionaries is even further from
an editorial than my usual excuses.

Perhaps we should consider fakes for a bit. I recently listened to a Radio
4 programme, called ‘Re-enactment radio’ [BBC]. Antonia Quirke and
guests discuss whether scenes in movies are plausible or even possible.
This time they discussed fight scenes and computers in films. Unrealistic
super-hero style fight scenes got a bashing. Most unfair, to my mind. I like
tightly choreographed unrealistic fight scenes. If I want to see realistic fight
scenes I could go into town on a Friday night and watch the results of too
much alcohol, well, could have done were it not for the virus. Swordfish
[IMDb-2], some kind of covert counter-terrorist hacking story I have never
seen, was then dismantled. The geeky expert on the radio called out
implausible hacking into a government system, using bad C code that does
not compile, and flashing ‘Access Denied’ messages culminating in finally
managing to hack into a directory and list the contents, which included a
customer satisfaction survey. Not what you’d expect to find on a
government IT system. Do any of you pause a film when you see code in
the background and try to figure out what language it is and if it’s correct?
If not, never watch a film with me.

It’s easier to spot fakes when you are knowledgeable on a subject.
However, this isn’t fool-proof. Perhaps this begs an even more important
question. Are you sure you are real, or anything is real? Are you sure you
aren’t a computer program, living in cyberspace? Are you living in the
Matrix? You can’t prove anything, all you can do is wonder and consider.
You can try to be genuine, or virtuous. Don’t bash
virtual goings on, but do consider if you have an
appropriate lip-stick for you next ‘live’ gig. Keep it real,
as they used to say.

References
[BBC] Re-enactment Radio: https://www.bbc.co.uk/programmes/

m000dk15

[Chan20] Alex Chan, tweeted 4 September 2020, https://twitter.com/
alexwlchan/status/1301793743603929088

[Dijkstra68] Dijkstra, Edsger W. (March 1968). ‘Letters to the editor: Go
to statement considered harmful’ Communications of the ACM. 11
(3): 147–148

[Etymology-1] Virtual: https://www.etymonline.com/word/virtual

[Etymology-2] Virtue: https://www.etymonline.com/word/
virtue?ref=etymonline_crossreference

[Etymology-3] Real: https://www.etymonline.com/word/real

[IMDb-1] Predator (1987) https://www.imdb.com/title/tt0093773/

[IMDb-2] Swordfish (2001) https://www.imdb.com/title/tt0244244/

[Stroustrup94] Bjarne Stroustrup (1994) The Design and Evolution of
C++ published by Addison Wesley

[Waugh15] Rob Waugh (2015) ‘Predator’ becomes reality as scientists
unveil a real camouflage cloak, published in https://metro.co.uk/
2015/06/16/predator-becomes-reality-as-scientists-unveil-a-real-
camouflage-cloak-5249172/

[Wikipedia] Simula: https://en.wikipedia.org/wiki/Simula
October 2020 | Overload | 3

https://www.bbc.co.uk/programmes/m000dk15
https://www.bbc.co.uk/programmes/m000dk15
https://twitter.com/alexwlchan/status/1301793743603929088
https://twitter.com/alexwlchan/status/1301793743603929088
https://www.etymonline.com/word/virtual
https://www.etymonline.com/word/virtue?ref=etymonline_crossreference
https://www.etymonline.com/word/virtue?ref=etymonline_crossreference
https://www.etymonline.com/word/real
https://www.imdb.com/title/tt0093773/
https://www.imdb.com/title/tt0244244/
https://metro.co.uk/2015/06/16/predator-becomes-reality-as-scientists-unveil-a-real-camouflage-cloak-5249172/
https://metro.co.uk/2015/06/16/predator-becomes-reality-as-scientists-unveil-a-real-camouflage-cloak-5249172/
https://en.wikipedia.org/wiki/Simula
[BBC]

FEATURE JANKY FERENC NÁNDOR
poly::vector – A Vector for
Polymorphic Objects
Heterogeneous vectors can be slow. Janky Ferenc introduces a
sequential container for storing polymorphic objects in C++.
n the Object-Oriented Programming paradigm, dealing with collections
of polymorphic types is a recurring programming pattern.
Heterogeneous collections storage cannot always guarantee co-locating

objects, resulting in access penalties on modern CPU hardware where
memory caching is utilized. This paper describes a container that has (on
average) better access performance when storing polymorphic objects than
other C++ Standard Template Library (STL) based variants. It achieves
this by structurally enforcing the locality of references and by reducing the
number of the total allocation count when a unique ownership model is
desired.

Introduction and motivation
One of the most recurring patterns with the object-oriented software (OOP)
design paradigm is ownership and management of ownership. In order to
exploit the benefits of the design principles, the use of interface, and
implementation classes are required. In the C++ language, dynamic
dispatch is only applicable when a particular virtual function is called
through a pointer or reference to an interface class. When pointers are
involved in C++, the most frequently arising question is ownership: who
owns the object, i.e., which part of the code will free up resources
associated with an object?

There are multiple working solutions for this problem: smart pointers for
expressing unique (std::unique_ptr<T>) and shared ownership
(std::shared_ptr<T>) or the gsl::owner<T> from GSL libraries
for marking pointers as owners of the resource while treating all others as
non-owners. While the former is an active way of having a handle object
through which to access the desired object and also of invoking the
destructor and freeing up the allocated memory on the handle object’s
destruction, the latter is more like an annotation. Static analyzers can flag
potential leaks and undefined behaviours related to resource management
based on these annotations.

If the objective is to have a collection of polymorphic objects whose
lifetime is associated with the containing data structure, the standard
solution is to use one of the standard containers parameterized with a smart
pointer of the interface type, e.g: std::vector<std::unique_ptr
<MyInterface>>. That solution fulfils the requirements of resource
management. However, if modern CPU architecture is considered – where
locality of references is the key driver of performance – it might be sub-
optimal as, typically, the memory layout will look as illustrated in Figure 1.

On most modern CPU architecture that uses out-of-order execution,
overall performance is mostly affected by how the CPU cache is utilized.
Assuming that it is more important to ensure the locality of references than

optimizing asymptotic complexity – if the problem size is below a certain
threshold where the former limit dominates performance – that locality
must somehow be enforced structurally to squeeze out maximum
performance from both software and hardware [Maness18]. In managed
languages, there is no direct control available for the application
programmer to manually control allocation layout; however, with such a
system programming language as C++, this can be addressed as well – pun
intended.

Nevertheless, such a data structure does not exist in the C++ Standard
Library. While the Standard Template Library (STL) is generic enough for
locality to be improved by using custom allocators, and C++17’s recent
addition of std::pmr::monotonic_buffer_resource makes it
easier than ever. The monotonic resource’s only problem is that if the
assigned memory resource is exhausted, it will fall back to the upstream
allocator, and the locality is not guaranteed once again. Moreover, if we
exami ne t he t o t a l a l l oc a t i on co un t wh en u s in g e . g :
std::pmr::vector<unique_ptr<Interface>>, it will be still
higher than expected (including the object allocation as well).

The purpose of this article is to introduce a container that is specifically
tailored for the use-case described earlier, structurally providing locality
of references and keeping the total allocation count (when the data
structure requests a new chunk of memory) at a minimum without the need
for custom allocators. Furthermore, this container must not be comparably
worse than the standard alternative in the best-case scenario while also
being significantly better in the worst-case scenario. The best-case
scenario means that most allocations happen successively, and in contrast,
the worst-case means when random allocations happen with random
longevity. Given this data structure, the memory layout would be

I

Figure 1

Janky Ferenc Nándor Ferenc received an MSc in Electrical
Engineering from BME, Budapest, in 2013. He has since worked for
various telecommunication companies, and is currently working as a C++
software developer for an international corporate bank. His main areas of
interest are C++ programming, network protocols, FPGA programming
and software development. Ferenc is a member of the SmartComLab at
BME TMIT. He can be reached at mailto:janky@tmit.bme.hu
4 | Overload | October 2020

FEATUREJANKY FERENC NÁNDOR

the static type of the object inserted must be
known at compile time at the point of insertion
guaranteed to look something like that illustrated by Figure 2. The
implementation and the benchmarks can be obtained from [Janky18].

Design
While STL already presents a solution for dynamic memory management
abstraction in the form of Allocators – an application of policy-based class
design [Alexandrescu11] – the key for managing/storing objects in this
fashion is cloning/moving. To address the other problem of relocating
objects through their interface reference, another concept has to be
introduced in the form of a Cloning Policy. This can be described as a
concept, as seen in Listing 1.

The cloning policy must be able to clone – move if supported – objects
around in memory through a base class pointer. The new additions to the
typical class hierarchy can be identified by the small white star () in
Figure 3. The other component is the element pointer, which can be
thought of as a decentralized smart pointer as the smart pointer operation
is really realized by two collaborating classes: the vector and the element
pointer itself, with the vector managing the lifetime while the access is
provided through the element pointer.

Two a rche types o f c lon ing po l ic i e s have been des igned :
delegate_cloning_policy and no_cloning_policy. The
former is suitable for the most common use cases where the derived classes
are regular in terms of copy/move. As one might assume, this cloning
policy captures the method of cloning/moving at the time of insertion to
the container. That also means the static type of the object inserted must

Figure 3

Figure 2
October 2020 | Overload | 5

FEATURE JANKY FERENC NÁNDOR
be known at compile time, at the point of insertion. The latter does not
allow any copy/move of an object, i.e., if the container capacity is
exhausted, then a std::bad_alloc exception is raised.

Since cloning_policy is a concept – as denoted in Figure 3 – the user
can supply a type that suits the actual class hierarchy whose instances are
stored in the container. For example, if there is already a Clone virtual
member function declared in the interface, a policy class can be written
quickly to use that function when the container must copy the objects to a
new location, e.g., because of a resize.

The classic size and capacity concept has to be augmented in this
container: here, an average size is considered as size, which is the total
amount of memory occupied by the objects stored in the container divided
by the number of objects. The container’s exponential growth is also
calculated based on the average size (including the to-be inserted element
in the average).

Besides these, the aim was to provide the same level of exception safety
and API as one would expect from the implementation based on
std::vector<std::unique_ptr<Interface>>.

Evaluation and measurements
Time-based measurements are not trivial to carry out during software-
benchmarking and when using a non-realtime OS. For these scenarios, the
measurement metric is the overall execution wall clock time. This is
provided by the OS through a high resolution clock – for specific
operations over a given object count that is processed through the
containers [Reich18]. For the evaluation, a demo Interface class has
been defined with two distinct and different sized implementation classes.
The vectors under test were populated randomly from these two types. To
minimize the variance of the measurements, the concept of static thread
affinity (a.k.a thread pinning) was used hand-in-hand with setting the
highest priority (smallest nice value) for the benchmark process. This way,
the process will not be scheduled away that much, and most of the cache
trashing occurs because of the benchmark program itself and not as a result
of the rescheduling.

The evaluation of the container was based on three sets of measurement
scenarios that have been defined as the following:

 total number of allocation count: how many times did the program
allocate memory from the runtime environment – the smaller the
value, the better;

 best-case scenario (when the objects are populated into the vector in
a successive manner without any in-between allocations from other
places): benchmark the sequential access time – the smaller the
value, the better;

 worst-case scenario (where the vector is populated with objects
while allocations are happening from other places, resulting in each
and every object being on a separate page): benchmark the
sequential access time – a smaller value is better (NB: this is simply
emulated by allocating a page for an object and constructing it there).

Figure 4 shows the total allocation count, while Figure 5 the allocated size
of memory, including the allocations made as a result of storing the object
on a heap managed by a smart pointer handle. The data has been plotted
using a log-log scale for better clarity. Figure 4 and Figure 5 should be
interpreted together, e.g., for 1000 objects (at coordinate 3 on the
horizontal axis) of randomly chosen types from the demo class hierarchy,
there were a total of 11 calls to the allocator’s allocate member function
with the total size of 66006 bytes, while for the std::vec alternative the
total allocation calls were 1018 with the total size of 24812 bytes – on
average. As one can see, the total allocation count is smaller for
poly::vector, which is a consequence of the omitted heap allocation
when the objects are instantiated, while the total size is slightly greater for
poly::vector. This is because that poly::vector is growing its

Listing 1

namespace poly
{
template <typename T>
struct type_tag
{
 using type = T;
};
} // namespace poly
using namespace poly ;
using namespace std;

template <typename InterfaceT, typename Allocator>
constexpr auto AllocatorPointerMatch =
 is_same_v < InterfaceT ,
 typename pointer_traits<
 typename allocator_traits < Allocator >::
 pointer >:: element_type >;

template <typename T, typename InterfaceT,
 typename Allocator >
concept HasClone = requires (T cp , Allocator a)
{
 {
 cp. clone (a,
 declval < typename allocator_traits
 < Allocator >::pointer >(),
 declval < typename allocator_traits
 < Allocator >::void_pointer >())
 } -> same_as < typename allocator_traits
 < Allocator >:: pointer >;
};
template <typename T, typename InterfaceT,
 typename Allocator >
concept HasMove =
 is_nothrow_move_constructible_v <T> &&
 is_nothrow_move_assignable_v <T> &&
 requires (T cp , Allocator a)
 {
 {
 cp. move (a,
 declval < typename allocator_traits
 < Allocator >::pointer >(),
 declval < typename allocator_traits
 < Allocator >::void_pointer >())
 } -> same_as < typename allocator_traits
 < Allocator >:: pointer >;
 };

template <typename T, typename I, typename A,
 typename Derived >
concept CloningPolicy =
 AllocatorPointerMatch <I, A> &&
 is_nothrow_constructible_v <T> &&
 is_nothrow_copy_constructible_v <T> &&
 is_nothrow_copy_assignable_v <T> &&
 copyable <T> &&
 (constructible_from <T, type_tag < Derived >>
 || default_initializable <T >) &&
 (HasClone <T, I, A> || HasMove <T, I, A >);

Figure 4
6 | Overload | October 2020

FEATUREJANKY FERENC NÁNDOR
capacity exponentially – based on the average size that is a weighted
average of all stored objects’ size. This trade-off for ensuring the locality
incurs somewhat higher memory utilization. However, the benefit of a
reduced allocation count is obvious. Furthermore, it is even more
significant when allocators from the pmr namespace are used, as the
allocate call there will not be inlined normally. There is no
devirtualization, as it is a dynamically dispatched call. This adds more
penalty if there are more allocations made than necessary.

The measurement data that was used to generate Figure 6 and Figure 7 is
based on average values. Multiple measurements were carried out for the
same object count, and the statistical difference was determined by using
two-tail Student T-test with unequal variances, α = 0:01. For Figure 6 –
which shows the averages for the best-case scenario based on the raw data

at the key points – there is no statistical significance of the differences
between the averages. Therefore we can say that, most probably,
poly::vector is not worse than the std::vector based alternative
in this aspect. In the worst-case scenario – illustrated by Figure 7 – the raw
data showed that until the object count reaches 100, the difference is
statistically insignificant, and also showed that for a greater object count,
poly::vector outperforms the STL-based alternative in terms of
sequential access performance. (NB.: For the small object count
measurements, the variance was so significant and also the timings were
inaccurate that no real consequence can be deduced from those data
points.)

Another important aspect – yet less tangible in terms of performance – is
the syntactic verbosity of poly::vector compared to std::vector.
Even though it has no runtime impact, it is still much more convenient to
express ideas directly in code. As an example: if the programmer wishes
to place an object of polymorphic type into a container, currently a smart
pointer has to be created, memory to be allocated, the object to be
constructed and assigned to the smart pointer handle instance for memory
and lifetime management, then inserted into the container itself. With
poly::vector, this is not the case: the intention is expressed directly.
This argument is analogous to the for loop versus STL range-based
algorithms. While each has its place, the intention and the business logic
are still more clearly communicated using the latter.

Conclusion
In this paper, a generic container has been described that is tailored for
storing polymorphic instances derived from a well-known interface. Due
to the underlying memory and layout management, locality of references
is enforced structurally, which results in increased sequential access
performance with greater object counts, while also reducing the total
number of allocation count which could also be beneficial from
performance perspective. The trade-off for achieving this is an increased
memory utilization, as the container maintains capacity not just for the
objects handles but also for the yet to be stored objects based on an average
size computation. It has also been shown that with the best-case allocation
scheme the access performance is comparable to the standard based
alternative.

In summary this container can be used as a drop in replacement for
std::vector<std::unique_ptr<InterfaceType>> pattern in
high performance applications that use OOP for abstraction but still want
to eliminate the penalties due to memory fragmentation.

References
[Alexandrescu11] Andrei Alexandrescu. Modern C++ design: generic

programming and design patterns applied, Chapter 1. Addison-
Wesley, 2011.

[Janky18] Ferenc Nandor Janky. poly::vector github repository.
https://github.com/fecjanky/poly_vector, 2018. Accessed: 2020-09-
18.

[Maness18] Wesley Maness and Richard Reich (2018) ‘Cache-line aware
data structures’ in Overload 146, available at: https://accu.org/
journals/overload/26/146/maness_2535/

[Reich18] Richard Reich and Wesley Maness (2018) ‘Measuring
throughput and the impact of cache-line awareness’ in Overload 148,
available at: https://accu.org/journals/overload/26/148/reich_2585/

Figure 5

Figure 6

Figure 7
October 2020 | Overload | 7

https://accu.org/journals/overload/26/146/maness_2535/
https://accu.org/journals/overload/26/146/maness_2535/
https://accu.org/journals/overload/26/148/reich_2585/

FEATURE STANISLAV KOZLOVSKI
Kafka Acks Explained
Kafka’s configuration can be confusing.
Slanislav Kozlovski helps us visualise this
most misunderstood configuration setting.
Apache Kafka is a battle-tested event streaming platform that allows you

Apache Kafka

aving worked with Kafka for almost two years now, there are two
approaches to whose interaction I’ve seen to be ubiquitously
con fused . Those t wo con f i gs a r e acks and

min.insync.replicas – and how they interplay with each other.

This article aims to be a handy reference which clears the confusion
through the help of some illustrations.

Replication
To best understand these configs, it’s useful to remind ourselves of Kafka’s
replication protocol.

I’m assuming you’re already familiar with Kafka – if you aren’t, feel free
to check out my ‘A Thorough Introduction to Apache Kafka’ article
[Kozlovski20].

For each partition, there exists one leader broker and n follower brokers.
The config which controls how many such brokers (1+N) exist is
replication.factor. That’s the total amount of times the data inside
a single partition is replicated across the cluster. The default and typical
recommendation is 3 (see Figure 1).

Producer clients only write to the leader broker – the followers
asynchronously replicate the data. Now, because of the messy world of
distributed systems, we need a way to tell whether these followers are
managing to keep up with the leader – do they have the latest data written
to the leader?

In-sync replicas
An in-sync replica (ISR) is a broker that has the latest data for a given
partition. A leader is always an in-sync replica. A follower is an in-sync
replica only if it has fully caught up to the partition it’s following. In other
words, it can’t be behind on the latest records for a given partition.

If a follower broker falls behind the latest data for a partition, we no longer
count it as an in-sync replica. See Figure 2, which shows that Broker 3 is
behind (out of sync).

Note that the way we determine whether a replica is in-sync or not is a bit
more nuanced – it’s not as simple as ‘Does the broker have the latest
record?’ Discussing that is outside the scope of this article. For now, trust
me that red brokers with snails on them are out of sync.

Acknowledgements
The acks setting is a client (producer) configuration. It denotes the
number of brokers that must receive the record before we consider the
write as successful. It support three values – 0, 1, and all.

‘acks=0’
With a value of 0, the producer won’t even wait for a response from the
broker. It immediately considers the write successful the moment the
record is sent out. (See Figure 3: The producer doesn’t even wait for a
response. The message is acknowledged!)

H

Figure 1
8 | Overload | October 2020

to implement end-to-end streaming use cases. It allows users to publish
(write) and subscribe to (read) streams of events, store them durably and
reliably, and process these stream of events as they occur or
retrospectively.

Kafka is a distributed, highly scalable, elastic, fault-tolerant and secure
system used by more than one-third of Fortune 500 companies.

Stanislav Kozlovski Stanislav began his programming career racing
through some coding academies and bootcamps, where he aced all of
his courses and began work at SumUp, a German fintech company
aiming to become the first global card acceptance brand. He was later
recruited into Confluent, a company offering a hosted solution and
enterprise products around Apache Kafka. Contact him on Twitter,
where he’s @BdKozlovski or at Stanislav_Kozlovski@outlook.com

October 2020 | Overload | 9

FEATURESTANISLAV KOZLOVSKI

Figure 2

Figure 3

Figure 5

Figure 4

10 | Overload | October 2020

FEATURE STANISLAV KOZLOVSKI

Figure 6

Figure 7

Figure 9

Figure 8

FEATURESTANISLAV KOZLOVSKI
‘acks=1’
With a setting of 1, the producer will consider the write successful when
the leader receives the record. The leader broker will know to immediately
respond the moment it receives the record and not wait any longer. (See
Figure 4: The producer waits for a response. Once it receives it, the
message is acknowledged. The broker immediately responds once it
receives the record. The followers asynchronously replicate the new
record.)

‘acks=all’
When set to all, the producer will consider the write successful when all
of the in-sync replicas receive the record. This is achieved by the leader
broker being smart as to when it responds to the request – it’ll send back
a response once all the in-sync replicas receive the record themselves. (See
Figure 5: Not so fast! Broker 3 still hasn’t received the record.)

Like I said, the leader broker knows when to respond to a producer that
uses acks=all. (See Figure 6: Ah, there we go!)

Acks’s utility
As you can tell, the acks setting is a good way to configure your preferred
trade-off between durability guarantees and performance.

If you’d like to be sure your records are nice and safe – configure your acks
to all.

If you value latency and throughput over sleeping well at night, set a low
threshold of 0. You may have a greater chance of losing messages, but you
inherently have better latency and throughput.

Minimum in-sync replica
There’s one thing missing with the acks=all configuration in isolation.

If the leader responds when all the in-sync replicas have received the write,
what happens when the leader is the only in-sync replica? Wouldn’t that
be equivalent to setting acks=1?

This is where min.insync.replicas starts to shine!

min.insync.replicas is a config on the broker that denotes the
minimum number of in-sync replicas required to exist for a broker to allow
acks=all requests. That is, all requests with acks=all won’t be
processed and receive an error response if the number of in-sync replicas
is below the configured minimum amount. It acts as a sort of gatekeeper
to ensure scenarios like the one described above can’t happen. (See Figure
7: Broker 3 is out of sync).

As shown, min.insync.replicas=X allows acks=all requests to
continue to work when at least x replicas of the partition are in sync. Here,
we saw an example with two replicas.

But if we go below that value of in-sync replicas, the producer will start
receiving exceptions. (See Figure 8: Brokers 2 and 3 are out of sync.)

As you can see, producers with acks=all can’t write to the partition
successfully during such a situation. Note, however, that producers with
acks=0 or acks=1 continue to work just fine.

Caveat
A common misconception is that min.insync.replicas denotes how
many replicas need to receive the record in order for the leader to respond
to the producer. That’s not true – the config is the minimum number of in-
sync replicas required to exist in order for the request to be processed. That

is, if there are three in-sync replicas and min.insync.replicas=2, the
leader will respond only when all three replicas have the record. (See
Figure 9: Broker 3 is an in-sync replica. The leader can’t respond yet
because broker 3 hasn’t received the write.)

Summary
And that’s all there is to it! Simple once visualized – isn’t it?

To recap, the acks and min.insync.replicas settings are what let
you configure the preferred durability requirements for writes in your
Kafka cluster.

 acks=0 – the write is considered successful the moment the request
is sent out. No need to wait for a response.

 acks=1 – the leader must receive the record and respond before the
write is considered successful.

 acks=all – all online in sync replicas must receive the write. If
there are less than min.insync.replicas online, then the write
won’t be processed.

Further Reading
Kafka is a complex distributed system, so there’s a lot more to learn about!

Here are some resources I can recommend as a follow-up:

 Kafka consumer data-access semantics (https://www.confluent.io/
blog/apache-kafka-data-access-semantics-consumers-and-
membership/) – A more in-depth blog of mine that goes over how
consumers achieve durability, consistency, and availability.

 Kafka controller (https://medium.com/@stanislavkozlovski/apache-
kafkas-distributed-system-firefighter-the-controller-broker-
1afca1eae302) – Another in-depth post of mine where we dive into
how coordination between brokers works. It explains what makes a
replica out of sync (the nuance I alluded to earlier).

 ‘99th Percentile Latency at Scale with Apache Kafka’ (https://
www.confluent.io/blog/configure-kafka-to-minimize-latency/) –
An amazing post going over Kafka performance – great tips and
explanation on how to configure for low latency and high
throughput.

 Kafka Summit SF 2019 videos: https://www.confluent.io/resources/
kafka-summit-san-francisco-2019/

 Confluent blog (https://www.confluent.io/blog/) – a wealth of
information regarding Apache Kafka

 Kafka documentation (https://kafka.apache.org/documentation/) –
Great, extensive, high-quality documentation.

Kafka is actively developed – it’s only growing in features and reliability
due to its healthy community. To best follow its development, I’d
recommend joining the mailing lists (https://kafka.apache.org/contact).

Reference
[Kozlovski20] Stanislav Kozlovski ‘’ in Overload 159, August 2020,

available at: https://accu.org/journals/overload/28/158/kozlovski/

This article was first published on Stanislav’s blog on 29 March
https://medium.com/better-programming/kafka-acks-explained-
c0515b3b707e
October 2020 | Overload | 11

https://medium.com/better-programming/kafka-acks-explained-c0515b3b707e
https://medium.com/better-programming/kafka-acks-explained-c0515b3b707e
https://www.confluent.io/blog/apache-kafka-data-access-semantics-consumers-and-membership/
https://medium.com/@stanislavkozlovski/apache-kafkas-distributed-system-firefighter-the-controller-broker-1afca1eae302
https://medium.com/@stanislavkozlovski/apache-kafkas-distributed-system-firefighter-the-controller-broker-1afca1eae302
https://medium.com/@stanislavkozlovski/apache-kafkas-distributed-system-firefighter-the-controller-broker-1afca1eae302
https://www.confluent.io/blog/configure-kafka-to-minimize-latency/
https://www.confluent.io/blog/configure-kafka-to-minimize-latency/
https://www.confluent.io/resources/kafka-summit-san-francisco-2019/
https://www.confluent.io/resources/kafka-summit-san-francisco-2019/
https://www.confluent.io/blog/
https://kafka.apache.org/documentation/
https://kafka.apache.org/contact
https://accu.org/journals/overload/28/158/kozlovski/

FEATURE LUCIAN RADU TEODORESCU
Concurrency Design Patterns
Orchestrating concurrent tasks using mutexes is seldom
efficient. Lucian Tadu Teodorescu investigates design
patterns that help unlock concurrent performance.
Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. In his spare time, he is
working on his own programming language and he is improving his
Chuck Norris debugging skills: staring at the code until all the bugs
flee in horror. You can contact him at lucteo@lucteo.ro

f you are a reader of Overload, then you probably know by now that
mutexes should be avoided and tasks can be a viable alternative to them.
If you are not an Overload reader, you are missing out .

In the last two articles [Teodorescu20a] [Teodorescu20b], I tried to show
that using tasks instead of mutexes is more performant, is safer and they
can be employed in all the places that mutexes can. Tasks are not the only
alternative to mutexes, but this seems to be the most general alternative;
to a large degree, one can change all programs that use mutexes to use
tasks. In general, using tasks, one shifts focus from the details of
implementing multithreaded applications to designing concurrent
applications. And, whenever the focus is on design, we can be much better
at the task at hand – design is central to the software engineering discipline.

But, as tasks are not very widespread, people may not have sufficient
examples to start working with tasks instead of mutexes. This article tries
to help with this by providing a series of design patterns that can help ease
the adoption of task systems, and that may, at the same time, improve
general concurrency design skills. Even more fundamentally, it tries to
show how applications can be designed for concurrency.

Concurrency vs. parallelism
There is widespread confusion in the software industry between
concurrency and parallelism. Before moving forward with the article, it’s
worth clarifying the distinction.

Parallelism is about running multiple things in parallel; concurrency is
about ensuring that multiple things can run in parallel (or, more correctly,
at the same time), the composition of independent processes1. For
parallelism, one needs to have at least two CPU cores; on the other hand,
concurrency can be expressed on a single core too. Having two threads
doesn’t imply parallelism, but it implies concurrency. So, parallelism
implies concurrency, but not the other way around. To benefit from
parallelism, one needs to design for concurrency.

If we look from a performance point of view, one wants parallelism, but
needs to design the code for concurrency. If we look from a design point
of view, then we should mostly be only concerned with concurrency. At
design time, it’s not clear if at run-time one will have the hardware to run
things in parallel. The goal of concurrency is to structure programs, but
not necessarily to make them run with more parallelism – in the best case,
it is an enabler for parallelism.

See [Pike13] for a better-articulated distinction between the two concepts.

We are focusing here on the design aspects, on how to express concurrent
processes, and, therefore, we will ignore parallelism for the most part.

Approach
Drawing inspiration from Christopher Alexander [Alexander77], Gamma
et all. [Gamma94] popularized the idea that designing software systems
can be greatly improved by using patterns. Instead of working up all the
details of a software system, one can get inspiration from various design
pattern to speed up the design process. In some sense, patterns are a
formalization of collective experience; using this experience can greatly
help the design process.

Here, we aim at leveraging patterns as a compact way of transmitting a
body of experience in designing concurrent systems. Mixing and matching
these patterns can help to solve a large variety of concurrency problems.
Moreover, as we present some fundamental patterns, I would argue that it
can help solve any concurrency problem – maybe, in some cases, not the
best solution, but still a solution. The reader is strongly encouraged to see
these patterns as building blocks and start playing with them to build more
and more complex concurrency systems.

Because of the space constraints, we will expose a compact version for
each pattern. We will say a few words about what each pattern is about,
when to use it and, when appropriate, some key points. Diagrams seem to
help a lot the process of reasoning about the design of a system, so we’ll
make sure to include a diagram for each pattern we discuss. Also, for each
pattern we’ll provide a short example in C++ code, using my Concore
library [concore]2. One of the benefits of using these examples is to show
that, using an appropriate library, one can easily express concurrency in
C++. After all, concurrency doesn’t need to be one of the hardest areas in
computer science.

Basic concurrency patterns

Create concurrent work
Description. Allows the creation of concurrent work; increases concurrency.
Creates new tasks (typically two or more) from the existing task.

Representation. See Figure 1. We represent this pattern by multiple
arrows originating from the single task, leading to new tasks. There can
be more than two tasks created from one task, so there can be more than
two arrows.

I

Figure 1

T1
T2

T3
T1

T2

T3

1. We use the term processes here in the same way that Hoare uses it in
his seminal book [Hoare85]; it means any body of work; not to be
confused with OS processes.

2. Concore is not yet a production-ready library; things may change in the
future, both in terms of API and of features.
12 | Overload | October 2020

FEATURELUCIAN RADU TEODORESCU

With respect to performance, is often better to
over-split the work into multiple concurrent
processes than to split it less than needed
Example. See Listing 1. In the body of the first task (start() function),
we do some work, then we spawn two new tasks; the two tasks can be
executed concurrently. For spawning the two tasks we use lambdas, as they
are perfect for the job. Tasks are implemented using functors that take no
arguments and return nothing. (We can build tasks that pass values around
by binding values to the lambdas used to create the tasks.)

Discussion. There are multiple ways in which a task can be given to the
task system; this example uses the spawn function. Another way to do it
is to use a global_executor or some other type of executor. Executors,
in Concore, can be used to customize how tasks are executed (they are
somehow similar to the executors proposed for the C++ Standard, but, at
least for the moment, they are not the same).

Key point. It’s important to ensure safety for the concurrent tasks that are
created; i.e., there should be no race condition bugs between the set of tasks
that are created. See [Teodorescu20b] for more details. In our example,
showSplashScreen() should not interfere with loadAssets().

When to use. To increase concurrency in an application, this should be
used as often as our correctness allows (and performance does not
degrade). With respect to performance, is often better to over-split the
work into multiple concurrent processes than to split it less than needed –
it’s much easier, later on, to combine work later on than to split it further.
But, if we have enough tasks in the system, and we want to maximize
performance, considering the results from [Teodorescu20a], we should
split tasks so that the sizes of the tasks are several orders of magnitude
higher than the overhead generated by the task framework.

Continuation
Description. Allows ‘do X after finishing Y’ workloads to be encoded.
Allows decoupling between the first task and its continuation (see
[Wikipedia]). Can also be used to split longer tasks into smaller ones, for
performance reasons.

Representation. See Figure 2.

Example. Listing 2 shows an example of how this pattern can be used; we
have an HTTP engine that makes async requests, and whenever the

response comes back, it executes a continuation; the example shows just
how the continuation is started, and how the top-level API can be used.
One can see that the HTTP implementation is decoupled from the response
handling logic; the latter is passed as a continuation to the HTTP engine.

Discussion. This is similar to the creation of concurrent work, but we just
create one follow-up task. In this pattern, the follow-up task is always
started at the end of the first task.

When to use. Mostly when we need to decouple two actions that need to
be executed serially. Sometimes when we just need to break a long task
into smaller tasks (which can improve performance by giving more
flexibility to the task scheduler).

See also. Creating of concurrent work, serializers.

Join
Description. Allows the execution of work whenever multiple concurrent
tasks are finished. The inverse of the creation of concurrent work pattern.

Representation. See Figure 3.

Example. Listing 3 shows how the problem from Listing 1 can continue;
when both the two tasks are complete, a finish_task is started. At the
end of each task, they have to notify an event object to ensure that the
fhish_task starts at the right time.

Listing 1

void start() {
 initComponents();
 concore::spawn([]{ loadAssets(); });
 concore::spawn([]{
 initiliseComputationEngine (); });
}

Figure 2

T1 T2

Listing 2

void handleResponse(HttpResponseData respData,
HandlerType handler) {
 // the work for this task: process the response
 HttpResponse resp = respData.toResponse();
 // create a continuation to handle the response
 concore::task cont{[resp = std::move(resp),
 handler] {
 handler(resp);
 }};
 concore::spawn(std::move(cont));
}
void httpAsyncCall(const char* url,
 HandlerType handler) {
 // does HTTP logic, and eventually async
 // calls handleRespnse()
}
void useHttpCode() {
 // the work to be executed as a continuation
 HandlerType handler = [](HttpResponse resp) {
 printResponse(resp);
 };
 // call the Http code asynchronously, passing the
 // continuation work
 httpAsyncCall("www.google.com", handler);
 // whenever the response comes back,
 // the above handler is called
}

October 2020 | Overload | 13

FEATURE LUCIAN RADU TEODORESCU

In task-based programming, people are
encouraged to minimize the number of

waits in favour of creating new tasks
Discussion. The way this pattern is expressed, we create a task whenever
the previous tasks are done, as opposed to somebody waiting for the tasks
to be complete. In task-based programming, people are encouraged to
minimize the number of waits in favour of creating new tasks.

When to use. Whenever several tasks need to complete before starting
another task (e.g., they compute something that is needed for the successor
task).

Fork-join
Description. This pattern is somehow a combination of the creation of
concurrent work and the join pattern. But we present it here separately for
its peculiar way of handing the stack and continuing the work; the thread
that created the work also waits for the work to be completed, and its stack
remains intact. This is actually a busy-wait. See [McCool12], [Robison14]
for more details.

Representation. See Figure 4.

Example. Listing 4 shows a recursive generic algorithm that applies a
functor over a range of integers. While the interval is large enough, it
divides it and recursively applies the functor. It’s important to notice that,
even if this works with tasks, the stacks for all the recursive calls are kept
alive by the wait() calls.

Discussion. As tasks are functions that do not take any parameters and
don’t return anything, the way to pass information between tasks is via

captured variables in the given functors/lambdas. Typically, if the stack is
not available, the data passed between the tasks need to be allocated on
the heap. By keeping the stack around, this pattern allows the user to avoid
allocating data on the heap. It also simplifies the handling of the data (i.e.,
don’t need to pack the data in additional structures). This can save a lot of
development time if one wants to improve concurrency for a piece of code
that is found at the bottom of a somehow larger callstack.

Key point. This pattern waits on the caller thread/task. But, it’s important
to realize that this is a busy-wait. If it cannot execute any tasks that have
just forked, it will attempt to execute other tasks from the system in the
hope that the forked tasks finish as soon as possible. While trying to
maintain a constant throughput, this pattern may slightly damage the
latency of certain operations.

When to use. Whenever the fork and the join need to happen in the same
area of code, whenever we want to take advantage of the stack, or whenever
it’s too complex to refactor the code to use continuations and regular join
patterns.

Designing with basic patterns
After describing these basic patterns, we should pause and reflect on their
usage. They can be combined in a lot of ways to describe any problem that
can be expressed as a direct acyclic graph. Moreover, with a little creativity
(i.e., creating some helper control tasks), we can also handle arbitrary

Figure 3

T1

T2
T3

Listing 3

concore::finish_task doneTask([]{
 listenForRequests();
}, 2); // waits on 2 tasks

// Spawn 2 tasks
auto event = doneTask.event();
concore::spawn([event] {
 loadAssets();
 event.notify_done();
});
concore::spawn([event] {
 initiliseComputationEngine();
 event.notify_done();
});
// When they complete, the done task is triggered

Figure 4

T1 T2

T3

T4

Listing 4

template <typename F>
void conc_apply(int start, int end,
 int granularity, F f) {
 if (end - start <= granularity)
 for (int i = start; i < end; i++)
 f(i);
 else {
 int mid = start + (end - start) / 2;
 auto grp = concore::task_group::create();
 concore::spawn([=] { conc_apply(start, mid,
 granularity, f); }, grp);
 concore::spawn([=] { conc_apply(mid, end,
 granularity, f); }, grp);
 concore::wait(grp);
 }
}

14 | Overload | October 2020

FEATURELUCIAN RADU TEODORESCU

After describing these basic patterns, we
should pause and reflect on their usage – they
can be combined in a lot of ways
restrictions [Teodorescu20b]. This means that all 4 of these basic patterns
can be used to implement any concurrency problem. This is a powerful
design tool.

Derived patterns

Task graph
Description. Allows the expression of directed acyclic graphs of tasks
directly.

Representation. See Figure 5 for an example of a task graph.

Example. Listing 5 shows an example of how one can code the graph from
Figure 5. After constructing the tasks, one can set the dependencies
between the tasks to match the desired graph. To start executing, one has
to schedule the first task from the graph.

Discussion. The defined graph must be acyclic, otherwise, the tasks will
not run. It’s also worth noting that the task graph doesn’t necessarily need
to start with just one task; one can have graphs that have multiple starting
points. This allows the modelling of much more complex flows.

When to use. Whenever the execution flow is clear upfront and/or the
graph is slightly more complex.

Pipeline
Description. Allows the expression of data pipelines that can process
items concurrently.

Representation. See Figure 6 for an example of a pipeline with 4 stages,
2 in order and 2 concurrent.

Example. Listing 6 shows a classic pipeline with stages for Decode, Fetch,
Execute and Write. The Decode and Write stages need to run the elements
in the order in which they are pushed to the pipeline, but the other two
stages can be executed concurrently. For any item pushed through the
pipeline, all the stage functions will be executed in order; they would all
receive the shared pointer to the same data. We gain concurrency by
allowing multiple items to be in the Fetch and Execute stages. The
execution of the Decode and Write stages is serialized, and the items are
processed in the order in which they are pushed.

Discussion. Each item that goes through a pipeline must follow a certain
number of stages, in sequence. But, in some cases, several items can go
through the pipeline concurrently. A pipeline can typically limit the
maximum number of items that are processed concurrently. In a classical

pipeline, processing items at any stage is ordered, but one may want to
relax these restrictions. In the above example, we enforce the Fetch and
the Write stages to be ordered, but we didn’t impose any limit on the middle
stages; the middle stages are allowed to be fully concurrent. Between an
ordered restriction (first and last stages) and no restrictions at all, there is
another type of restriction that one may want to use: out-of-order serial.

Figure 5

T3

T2T1

T7

T8

T9

T4

T5 T6

Listing 5

std::shared_ptr<RequestData> data
 = CreateRequestData();
// create the tasks
concore::chained_task t1{[data] {
 ReadRequest(data); }};
concore::chained_task t2{[data] { Parse(data); }};
concore::chained_task t3{[data] {
 Authenticate(data); }};
concore::chained_task t4{[data] {
 StoreBeginAction(data); }};
concore::chained_task t5{[data] {
 AllocResources(data); }};
concore::chained_task t6{[data] {
 ComputeResult(data); }};
concore::chained_task t7{[data] {
 StoreEndAction(data); }};
concore::chained_task t8{[data] {
 UpdateStats(data); }};
concore::chained_task t9{[data] {
 SendResponse(data); }};
// set up dependencies
concore::add_dependencies(t1, {t2, t3});
concore::add_dependencies(t2, {t4, t5});
concore::add_dependency(t4, t7);
concore::add_dependencies({t3, t5}, t6);
concore::add_dependencies(t6, {t7, t8, t9});
// start the graph
concore::spawn(t1);

Figure 6

F1

F2

F3

F4

D1

D2

D3

D4

E1

E2

E3

E4

W1

W2

W3

W4
October 2020 | Overload | 15

FEATURE LUCIAN RADU TEODORESCU

Improving concurrency is directly
related to relaxing some of the

constraints of the original model.
In this mode, the system is allowed to execute at most one task per stage,
but it doesn’t need to be in order.

Key point. This pattern is a great example of how to change an apparently
sequential system and add concurrency to it. Improving concurrency is
directly related to relaxing some of the constraints of the original model.
The first constraint we drop is that we can execute a maximum of one item
concurrently; it turns out that if we keep the input and the output stage
ordered, most of the time we don’t need this constraint. Also, if one can
move most of the work in a pipeline in stages that are not fully concurrent,
this can improve concurrency a lot; for example, if one spends more than
half of the total time in concurrent stages of the pipeline, then given that
we have enough items that flow through the pipeline, the concurrency will
steadily grow.

When to use. Whenever we have a process that needs to execute
sequentially some steps over some items, but some of the steps can run
concurrently.

Serializers
Serializers are presented in detail in the previous article [Teodorescu20b],
so we won’t cover them here. The main idea that we want to stress here is
that they are often design patterns in the concurrency world. In my
experience, I find that using a serializer is one of the most frequent first-
choices whenever expressing constraints between tasks; maybe a bit too
often.

Data transformation patterns

Concurrent for
Description. Allows the concurrent execution of a body of work over a
collection of items, or transforming a collection of elements with a
mapping function.

Representation. See Figure 7 for a representation of a data transformation.
Yellow/light circles and diamonds represent data.

Example. Listing 7 shows how one can apply a transformation to a
collection of elements.

Discussion. This looks very much like a for structure, in which all the
iterations can be executed concurrently. Because of that, it’s probably the
easiest form of concurrency.

When to use. Whenever the iterations of a for loop are independent of
each other.

Concurrent reduce
Description. A concurrent version of std::accumulate, allowing
reduction over a collection of items.

Representation. Figure 8 shows the inner tasks involved in reducing a
collection of 4 elements.

Example. Listing 8 shows how one can use concurrent reduce operations
to compute the total memory consumption for a vector of resources. It’s
assumed that getting the memory consumption of one resource is
independent of getting the memory consumption for another resource.

Discussion. This is similar to a concurrent for, but also reduces the results
obtained from all iterations into one value. The reduction operation is not

Listing 6

using LinePtr = std::shared_ptr<LineData>;
auto my_pipeline =
concore::pipeline_builder<LinePtr>()
 | concore::stage_ordering::in_order
 | [](LinePtr line) { Fetch(std::move(line)); }
 | concore::stage_ordering::concurrent
 | [](LinePtr line) { Decode(std::move(line)); }
 | [](LinePtr line) { Execute(std::move(line)); }
 | concore::stage_ordering::in_order
 | [](LinePtr line) { Write(std::move(line)); }
 | concore::pipeline_end;

for (int i = 0; i < num_lines; i++)
 my_pipeline.push(get_line(i));

Figure 7

Listing 7

std::vector<int> ids = getAssetIds();
int n = ids.size();
std::vector<Asset> assets(n);
concore::conc_for(0, n, [&](int i) {
 assets[i] = prepareAsset(ids[i]); });
16 | Overload | October 2020

FEATURELUCIAN RADU TEODORESCU

Adding more work is sometimes used to add
concurrency to an algorithm; the hope is that
even with the added work, the added
concurrency will make the algorithm faster
linearly performed as in the case of a traditional for loop, and therefore
the reduction needs to be associative.

When to use. Whenever one needs a reduction over a collection, and the
operations involved can run concurrently.

Concurrent scan
Description. Allows concurrent execution of loops that
have dependencies of the results computed in the
previous iteration; implements a concurrent version of
std::partial_sum.

Representation. Figure 9 shows the processing needed
to apply a concurrent scan over 8 elements.

Example. Listing 9 shows an example in which we have
a vector of feature vectors, and we want to successively
combine these, and keep all the intermediate results.

Discussion. Naively, as one needs the result of the
previous iteration in the current iteration (i.e., outi=outi-

1 ini), one may think that this cannot be done
concurrently. But, if the operation that we apply is
associative, then this can also be transformed into a
concurrent algorithm.

Key point. The implementation of this concurrent
algorithm does more work than its serial counterpart.
Adding more work is sometimes used to add concurrency
to an algorithm; the hope is that even with the added
work, the added concurrency will make the algorithm
faster.

When to use. Whenever one needs to do a prefix sum
type of algorithm and the speed of the algorithm should
be improved by running it in parallel.

Figure 8

Listing 9

std::vector<FeatureVector> in = getInputData();
std::vector<FeatureVector> out(in.size());
auto op = [](FeatureVector lhs, FeatureVector rhs)
-> FeatureVector {
 return combineFeatures(lhs, rhs);
};
concore::conc_scan(in.begin(), in.end(),
 out.begin(), FeatureVector(), op);

Listing 8

std::vector<Resource> res = getResources();
auto oper = [&](int prevMem, const Resource& res)
-> int {
 return prevMem + getMemoryConsumption(res);
};
auto reduce = [](int lhs, int rhs) -> int {
 return lhs + rhs; };
int totalMem = concore::conc_reduce(res.begin(),
 res.end(), 0, oper, reduce);

Figure 9
October 2020 | Overload | 17

FEATURE LUCIAN RADU TEODORESCU

there is no need to use synchronization
primitives while designing for concurrency: a

task-based system is enough for the job
Other patterns
There are a lot of other patterns used in concurrent design. [McCool12]
provides a much more extensive collection of patterns to be used in the
concurrent world. Patterns like stencil, geometric decomposition, pack,
expand, gather, scatter are some of the patterns described in the book that
we haven’t touch at all here.

Although, not expressed in terms of tasks, [Buschmann07] also provides
a series of patterns that can be used to build concurrency. Some of the
patterns there encourage people to use synchronization primitives, but as
previously shown [Teodorescu20b], one can always model them with
tasks.

I believe that, by now, the reader should have a good intuition on how serial
programming patterns can be transformed into concurrent patterns; how
expressing the problems in terms of tasks can ease the design of concurrent
applications.

Final words
This article provides a short catalogue of design patterns that are applicable
for building concurrent applications. It can serve both as a quick
introduction into designing concurrent applications for those who never
designed concurrent applications with tasks, and also a refresher for those
who are experienced with task-based programming.

One important point that the article tries to make is that there is no need
to use synchronization primitives while designing for concurrency. A task-
based system is enough for the job. Moreover, the patterns exposed here
try to highlight that, in some cases, designing with such primitives it’s
much easier than doing multithreading with explicit threads and
synchronisation primitives.

From a design perspective, it’s much easier to reason in terms of these
patterns compared to reasoning systems built with synchronisation
primitives. If the preconditions are met (tasks are independent, as required
by the patterns), then one can fully reason about the implications of using
such a pattern. There are no hidden dependencies with other parts of the
system (as opposed to a lock-based system; see [Lee06]). One can say that
the concurrency of such a pattern is fully encapsulated within the pattern
itself. This is a huge step forward for designing concurrent applications.

References
[Alexander77] Alexander, Christopher. A pattern language: towns,

buildings, construction. Oxford university press, 1977

[Buschmann07] Frank Buschmann Kevlin Henney, Douglas C. Schmidt,
Pattern-Oriented Software Architecture: A Pattern Language for
Distributed Computing (Volume 4). Wiley, 2007.

[concore] Lucian Radu Teodorescu, Concore library,
https://github.com/lucteo/concore

[Gamma94] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional, 1994

[Hoare85] C.A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall; http://www.usingcsp.com/cspbook.pdf

[Lee06] Edward A. Lee, The Problem with Threads, Technical Report
UCB/EECS-2006-1, 2006, https://www2.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-1.pdf

[McCool12] Michael McCool, Arch D. Robison, James Reinders,
Structured Parallel Programming: Patterns for Efficient
Computation, Morgan Kaufmann, 2012

[Pike13] Rob Pike, ‘Concurrency Is Not Parallelism’,
https://www.youtube.com/watch?v=cN_DpYBzKso

[Robison14] Arch Robison, A Primer on Scheduling Fork-Join
Parallelism with Work Stealing, Technical Report N3872,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/
n3872.pdf

[Teodorescu20a] Lucian Radu Teodorescu, ‘Refocusing Amdahl’s Law’,
Overload 157, June 2020 available at https://accu.org/journals/
overload/28/157/teodorescu_2795/

[Teodorescu20b] Lucian Radu Teodorescu, ‘The Global Lockdown of
Locks’, Overload 158, August 2020, available at https://accu.org/
journals/overload/28/158/teodorescu/

[Wikipedia] Wikipedia, ‘Continuation-Passing Style’,
https://en.wikipedia.org/wiki/Continuation-passing_style
18 | Overload | October 2020

https://github.com/lucteo/concore
http://www.usingcsp.com/cspbook.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www.youtube.com/watch?v=cN_DpYBzKso
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf
https://en.wikipedia.org/wiki/Continuation-passing_style
https://accu.org/journals/overload/28/157/teodorescu_2795/
https://accu.org/journals/overload/28/157/teodorescu_2795/
https://accu.org/journals/overload/28/158/teodorescu/
https://accu.org/journals/overload/28/158/teodorescu/
[Buschmann07]

FEATURENATHAN SIDWELL
C++ Modules: A Brief Tour
C++20’s long awaited module
system has arrived. Nathan Sidwell
presents a tourist’s guide.
ne of the major C++ 20 features is a module system. This has been a
long time in coming. The idea predates C++98; it is about time C++
caught up with other languages! In this article, I’ll show 3 example

programs, using progressively more advanced organization of code. There
are a number of call-out boxes answering a few questions the main text
might suggest. You can read those separately.

Let’s start with a simple example showing some modular concepts. Listing
1 is a module interface file – this is the source file that provides importable
entities to users of the module.

The name of the file containing that code can be anything, but let’s put it
in hello.cc. Listing 2 is a user of that module.

We can compile our program using a module-aware GCC1 with:

 > cd ex1
 > g++ -fmodules-ts -std=c++20 -c hello.cc
 > g++ -fmodules-ts -std=c++20 -c main.cc
 > g++ -o main main.o hello.o
 > ./main
 Hello World!

You’ll notice there are some differences to using header files:

 You compile the module interface, just as a regular source file.

 The module interface can contain non-inline function definitions.

 You need to compile the interface before you compile sources that
import it.

The interface is a regular source file. It just happens to create an additional
artefact to the usual object file – a Compiled Module Interface (CMI). That
CMI is read by importers of the module, and then code can refer to entities
exported by the module. It is this dependency that forces the compilation
ordering. In this particular case, the CMI contains information about the
SayHello function’s declaration, but not (necessarily) about its body. If
SayHello was an inline function, the body would also (most likely) be
present in the CMI.

1. GCC’s main development trunk and released versions do not yet
provide module support. See the ‘Implementations’ box for details.

O

Listing 1

// file: ex1/hello.cc
module;
// legacy includes go here – not part of this module
#include <iostream>
#include <string_view>
export module Hello;
// the module purview starts here
// provide a function to users by exporting it
export void SayHello
 (std::string_view const &name)
{
 std::cout << "Hello " << name << "!\n";
}

Listing 2

// file: ex1/main.cc
import Hello; // import the Hello module,
 // its exports become available
#include <string_view>
int main ()
{
 SayHello ("World");
} Nathan Sidwell is a long-time developer of GCC, having

discovered that Open Source is more rewarding than proprietary
software, compilers are more rewarding than hardware, and
hardware is more rewarding than Physics. He can be contacted at
nathan@acm.org.

ISO Working Group 21 (WG21) is responsible for C++. It holds meetings
3 times a year, to discuss new features and resolve issues with existing
features. These physical meetings are on hold now, and various
subcommittees hold virtual ones.

In 2016 a Technical Specification (N4592) was published, which
specif ied a modules system. As implementors (such as me)
experimented with this, a number of changes or clarifications were made
during its path to incorporation into C++20.

Because of the pervasive use of header files as the way of describing
interfaces, a particular difficulty is solving what may be phrased as the
‘how do we get there from here?’ problem. That took up a significant
fraction of design and implementation effort.

The road to standardization

Often other module tutorials use a new source file suffix for the module
interface file. This is user choice. The compiler doesn’t need a new suffix
– it’s all still C++. Adding a new suffix means teaching your entire
toolchain about the new suffix, which was too fiddly for me, and I control
the compiler and am completely at home in an emacs config file!

As described in the build-systems box, prescanners need to scan all your
sources, not just interface files, they gain nothing from distinguished
interface names. If you do want to distinguish your interfaces, for the
same reasons it’s useful to distinguish header files from source files, you
could augment another part of the filename – a ‘-I.cc’ ending maybe?
As we’ll see further down, there are variations on module interfaces –
should they be distinguishable from each other? (With yet more
suffixes?)

Part of the reason may be due to history. The modules-ts did not have a
specific syntax to denote a module interface, as opposed to a module
implementation. The compiler had to be told via command line switch. It
was one of my first contributions to suggest in-file syntax should make it
clear.

Do we need a new source suffix?
October 2020 | Overload | 19

FEATURE NATHAN SIDWELL

A module can export names in any namespaces
it chooses. The namespaces are common
across all modules, and many modules can
export names into the same namespace
You may notice that modules are not namespaces. A module can export
names in any namespaces it chooses. The namespaces are common across
all modules, and many modules can export names into the same
namespace. An importer of a module has to use a qualified name to refer
to a module’s exports (or deploy using-directives).

You’ll also have noticed that the main program had to #include
<string_view>, even though the interface had already done so. The
interface had done this in part of the file that precedes the module itself,
and that part is not visible to importers. As the user code needs to create a
std::string_view, it needs the header file itself. The header include
and the import can be in any order. I’ll get more into detail about this later,
as it is an important bridge from today’s code to the future’s module code.

Export
You’ll see the example used the resurrected export keyword in two
places:

 export module Hello;
// declare the interface of a module

 export void SayHello (…);
// make a declaration visible to importers

The first use is a module-declaration, a new kind of declaration specifying
the current source file is part of a module. You can only have at most one
of them, and there are restrictions on what can appear before it. The intent
is that you won’t get surprised with it buried in the middle of a file. As you
might guess, there’s a variant of the module-declaration, which lacks the
export keyword. I’ll get to that later.

The second use allows you to make parts of the module interface visible
to importers, and most importantly its lack allows you to keep parts of the
interface private to the module. Only namespace-scope nameable
declarations can be exported. You can’t export (just) a member of a class,
nor can you export a specific template specialization (specializations are
not found by name). You cannot export things from within an anonymous
namespace. You can only export things from the interface of a module (see
Listing 3).

If you export something, you must export it upon its first declaration. This
is like declaring something static – you have to do so on its first
declaration, but a later redeclaration can omit the static. In fact, export
is described in terms of linkage – it’s how you get external-linkage from

Listing 3

export module example;
// You can export a class.
// Both it and its members are available (usual
// access restrictions apply)
export class Widget { … };
namespace Tool {
 // export a member of a namespace
 export void Frobber ();
}
// export a using declaration (the used things must
// be exported)
export using Tool::Frobber;
// export a typedef
export using W = Widget;
// export a template definition. Users can
// instantiate it
export template<int I> int Number () { return I;}
// you cannot explicitly export a specialization,
// but you can create them for importers to use
template<> int Number<0> () {
 return -1; /* Evil! */ }

I’ve described a module interface as producing a CMI. That’s a common
implementation technique, but the standard itself makes no mention of
such things, nor does it require them (the standard says nothing about
object files either, by the way). Different compilers have taken different
approaches to the CMI. For instance, Clang’s CMI represents the entire
source file, and is another step in the compilation sequence, from whence
the object file can be generated for instance. GCC generates the CMI as
a separate artefact containing only the items required by importers. The
CMI is a serialization of the compiler’s internal representation, but a more
mergeable form than the usual PreCompiled Header (PCH) mechanism.

Rather than distribute source code, could one distribute a CMI? Not
really. The CMI contains target CPU-specific information in addition to
being very compiler-specific. Besides, users of a module will probably
need source code to aid debugging. As mentioned above, the CMI may
not contain all the source code information, so an object file would be
needed too.

Why is the CMI not general? C++ itself requires certain architectural
features to be locked down in the front end. For instance, sizeof(int)
– consider instantiating a template on that value, we have to know what
it is to get the correct specialization. Other pieces of the C++ language
are implementation-defined, and to be portable all implementations
would need to have the same behaviour. Underlying ABI decisions make
themselves visible in the C++ front end, as it may or may not need to
create temporaries in passing and returning. Don’t forget, different
Standard Libraries are not binary compatible – you cannot link object files
built against different library implementations.

Command line options also affect source. For instance -std=c++20
will allow rather different code, and enable different standard library code
to -std=c++17. If you disable exceptions with -fno-exceptions,
you’ll have differences in the internal representation streamed. The CMI
data is probably tightly related to several command line options.

While CMIs might not be interchangeable, both GCC and Clang have
extended the Itanium ABI so that their object files remain link-compatible.

 The CMI is a caching artefact, recreateable on demand.

 We already have a code distribution mechanism. It is source code.

What’s a Compiled Module Interface (CMI) and how is it used?
20 | Overload | October 2020

FEATURENATHAN SIDWELL

C++ already had export as a
keyword … but module and import

are new. Will that cause problems?
inside a module. Declarations with external linkage are nameable from
other modules.

So, what happens if you omit the export inside a module? In that case,
you get a new kind of linkage – module-linkage. Declarations with module-
linkage are nameable only within the same module, as a module can consist
of several source files, this is not like the internal-linkage you have with
static. It does mean that two modules could both have their own int
Frob (int) functions, without placing them into globally unique
namespaces.

Types (including typedefs) can be exported (or not exported), in the same
way as functions and variables. Types already have linkage (but typedefs
do not). Usually we don’t think about that, because we use header files to
convey such information and they textually include the class or typedef
definition. Modules has more rigorous formulation of linkage of these
entities that do not themselves generate code (and hence object-level
symbols).

You can also export imports (see Listing 4).

Here I’ve imported and re-exported <string_view>, (wait, what?
importing a header file!? I’ll get to that) so that users do not need to
#include (or import) it themselves. To build this, you will need to
process <string_view>:

 > cd ex2
 > g++ -fmodules-ts -std=c++20 -c \
 -x c++-system-header2 string_view
 > g++ -fmodules-ts -std=c++20 -c hello.cc
 > g++ -fmodules-ts -std=c++20 -c main.cc
 > g++ -o main main.o hello.o
 > ./main
 Hello World!

World in transition
So, how do I write my lovely new modules, but have them depend on olde
worlde header files? It’d be unfortunate if it could only use modules.
Fortunately there’s not one, but two ways to do this (with different trade-
offs).

You saw the first way in the early example. We had a section of the source
file before the module-declaration. That section is known as a Global
Module Fragment (GMF). It’s introduced by a plain module; sequence,
which must be the first tokens of the file (after preprocessing and comment
stripping). If there is such a GMF, there must be a module-declaration –
you can’t just have an introduced GMF, why would you need that? The
contents of the GMF must entirely consist of preprocessing directives (or
comments). You can have a #include there, but you can’t have the
contents of that #include directly in the top-level source. The aim of this
design is to make scanning for the module-declaration simple. Both the
introductory module; and the module-declaration must be in the top-
level source, unobscured by macros.

2. As string_view has no suffix, you need to tell G++ what language
it is. The c++-system-header language specifies (a) searching on the
system #include path and (b) with -fmodules-ts, specifies
building a header-unit. Other possibilities are c++-header
(automatically recognized with a variety of typical header file suffixes)
and c++-user-header (use using #include path).

Listing 4

// file: ex2/hello.cc
module;
#include <iostream>
export module Hello;
export import <string_view>;
// importers get <string_view>

using namespace std; // not visible to importers
export void SayHello (string_view const &name)
{
 cout << "Hello " << name << "!\n";
}
// file: ex2/main.cc
// same contents as ex1/main.cc

Module ownership is a new concept. Declarations in the purview (after
the module-declaration) of a module are owned by that module. No other
module can declare the same entity. The module specification has been
carefully designed to not require new linker technology. In general,
module ownership can be added to the symbol-name of an entity, at the
object-file level. You’re probably familiar with overloaded functions
having mangled names, so that the linker can distinguish between int
Frob (int) and int Frob (double). Module ownership can be
implemented by extending that mangling, and that is just what the Itanium
ABI does (used on Linux and many other systems).

However, there is a design trade-off. Should exported names be link-
compatible with their non-modular equivalent? I.e. is it possible to create
a header file with just the exported declarations of a module, and have
that useable in module-unaware code? An alternative way of phrasing
the question is whether modules exporting the ‘same’ entity should result
in multiple definition errors (it is ill-formed). The Itanium ABI takes that
approach, which is known as weak ownership.

The alternative strong ownership includes the module ownership in the
exported symbols too, or uses new linker technology.

Module ownership

C++ already had export as a keyword, exported templates were
removed in C++11, but the keyword remained reserved, but module and
import are new. Will that cause problems? There is known code that
uses module and import as identifiers in their external interfaces. It
would cause difficulty if those suddenly became unusable.

The C++ committee took care to specify that the lexing and parsing of
module and import declarations was context sensitive. Code using
those tokens as identifiers will largely be unaffected, and if they are there
are simple formatting workarounds.

New keywords
October 2020 | Overload | 21

FEATURE NATHAN SIDWELL

Modules can get access to regular header
files, and not reveal them to their users – we
get encapsulation that is, in general,
impossible with header files.
In this way, modules can get access to regular header files, and not reveal
them to their users – we get encapsulation that is, in general, impossible
with header files. Hurrah!

There is a missed opportunity with this kind of scheme. The compiler still
has to tokenize and parse all those header files, and we might be blocking
the compilation of source files that depend on this module. That’s
unfortunate. Another scheme to address this is header-units. Header units
are header files that have been compiled in an implementation-specified
mode to create their own CMIs. Unlike the named-module CMIs that
we’ve met so far, all header-unit CMIs declare entities in the Global
Module. You can import header-units with an import-declaration naming
the header-file:

 import <iostream>;

This import can be placed in the module’s purview, without making it
visible to importers.

Naturally, as header-units are built from header files, there are issues with
duplicate declarations and definitions. But we can make use of the One
Definition Rule, and extend it into this new domain. Thus header-units
may multiply declare or define entities, and be importable into a single
compilation. Unlike header files, importing a header-unit is not affected
by macros already defined at the point of the import – the meaning of the
header-unit is determined by the macros defined when it was compiled to
a CMI.

Not all header files are convertible to header-units. The goal here is to
allow most of them to be, generally the well-behaved header files. This
work derives from Clang-modules, which was an effort to do this
seamlessly without changing source code.

One thing header-units do, which named modules do not, is export macros.
This was unfortunately unavoidable as so many header files expose parts
of their interface in the form of macros. Named-modules never export
macros, even from re-exported header-units.

Splitting a module
So far I’ve only shown a module consisting of a single interface file. You
can split a module up in two different ways.

The simplest way is to provide module-implementation files, distinct from
the interface. An implementation file just has a module-declaration
lacking the export keyword (it doesn’t export things). While a module
must have only one interface file, it can have many implementation files
(or none at all). The implementation files implicitly import the interface’s
CMI, but themselves only produce an object file. If you think about
modules as glorified header files, then this is the natural separation of
interface and implementation (but you’re probably missing out).

The interface itself can be separated into module-partitions. Partitions
have names containing exactly one :. These themselves can be interface
or implementation partitions depending on whether their module-
declaration has the export keyword or not. Interface partitions may
export entities, just as the primary interface does. These interface partitions

must be re-exported from the primary interface. The partitions may also
be imported into any unit of the same module.

 Partitions provide a way to break a large interface into smaller
chunks.

 Partitions are not importable into different modules. The partitions
are invisible outside of their module.

 Implementation partitions provide a way to make certain definitions
available inside the module only, but have users aware of the type
(for instance).

For example we could break our original example up as shown in Listing
5, overleaf.

In the primary interface, the three imports can be in any order. That’s one
of the design goals – import order is unimportant. You can see that the
import syntax for a partition doesn’t name the module. That’s also
important, so that there is no temptation to import into a different module.

I know of 4 popular compiler front ends that are on the path of
implementing C++20 modules support.

 The Edison Design Group FE. This is a popular front end for many
proprietary compilers. They implemented the original export
specification and gained an awful amount of knowledge about
pitfalls in combining translation units. I do not know the current state
of the implementation, nor do I know implementation details.

 The Microsoft Compiler. This is complete, or very nearly so. The
main architect of the modules-ts, Gabriel dos Reis, is at Microsoft,
and has guided that design. I believe this is the most complete
implementation.

 Clang. The Clang FE has provided an implicit module scheme for
use with header files for some time. Much of that experience went
into the header-unit design. Richard Smith of Google has guided
that design.

 GCC. I have been working on an implementation for GCC. This is
currently on a development branch, and not in a released version.
Godbolt (https://godbolt.org) provides it as an available compiler
‘x86-64 GCC (modules)’. The current status (along with build
instructions and list of unimplemented features) is described at
https://gcc.gnu.org/wiki/cxx-modules. I try not to regress its state,
and I hope to merge it soon.1

The latter 3 implementations (at least), have a lazy loading optimization.
Importing a module does nothing beyond annotating symbol tables
noting that an import contains something with a particular name. It is only
when user code mentions a name that the relevant parts of the import
are read in. The same is true for the macros of header-units. Thus
importing is even cheaper than #including than might be expected.

Apologies to any other C++ compilers that I have failed to mention.

1. Det er vanskeligt at spaa, især naar det gælder Fremtiden. [It is
difficult to make predictions, especially about the future.] Probably a
Dane other than Niels Bohr, https://quoteinvestigator.com/2013/10/
20/no-predict/.

Implementations
22 | Overload | October 2020

FEATURENATHAN SIDWELL
Here are the build commands:

 > cd ex3
 > g++ -fmodules-ts -std=c++20 -c \
 -x c++-system-header string_view
 > g++ -fmodules-ts -std=c++20 -c hello-inp.cc
 > g++ -fmodules-ts -std=c++20 -c hello-imp.cc
 > g++ -fmodules-ts -std=c++20 -c hello-i.cc
 > g++ -fmodules-ts -std=c++20 -c main.cc
 > ar -cr libhello.a hello-{i,inp,imp}.o
 > g++ -o main main.o -L. -lhello
 > ./main
 Hello World!

Note that in this example there was no need to import the implementation
partition – it had no semantic effect.

Module ABI stability
An important part of module interface design is control of the aspects that
are visible to users. Generally, the parts of the interface that can result in
the importer emitting code are part of the ABI of your module. You want
to control that.

Every exported inline function’s body is visible to importers (they need to
refer to the entities it names), and changing the body can change the ABI
of a module. To that end, one significant change has been made to in-class
function definitions. They are no-longer implicitly inline in a module’s
purview! The implicit functions are still inline, as are lambdas. This means
you no longer have to separate the definitions of your non-inline member
functions (including template definitions), from their in-class declaration.

Onwards!
I hope the examples here have shown you a flavour of what is available
with modules. I kept the examples simple, to show some of the core module
concepts, particularly how non-modular and modular code can interact.

As mentioned elsewhere, I believe the Microsoft implementation is the
most advanced, and has been used for production code. Of the other
implementations, GCC’s is more complete than Clang’s (mid 2020).

Unfortunately, for GCC one must use Godbolt, which is awkward for the
more advanced use, or build one’s own compiler, which is a steep cliff to
climb for for most users. To make things even more exciting, those that
have played with GCC have fallen over bugs. As with any major new
feature, ensuring it is correct is difficult, and users have imaginative ways
of exercising things. Don’t let that put you off though, user bug reports are
helpful.

Listing 5

// file: ex3/hello-inp.cc
module;
#include <string_view>
// interface partition of Hello
export module Hello:inter;
export void SayHello
 (std::string_view const &name);

// file: ex3/hello-imp.cc
module;
#include <iostream>
// implementation partition of Hello
module Hello:impl;
import :inter; // import the interface partition
import <string_view>;

using namespace std;
void SayHello (string_view const &name)
// matches the interface partitions’s exported
// declaration
{
 cout << "Hello " << name << "!\n";
}

// file: ex3/hello-i.cc
export module Hello;
// reexport the interface partition
export import :inter;
import :impl; // import the implementation
partition
// export the string header-unit
export import <string_view>;
// file: ex3/main.cc
// same contents as ex1/main.cc

C++ build systems will need to change. The hardest build is build-from-
scatch, when one does not have dependency information from a previous
build.

In a header-only world, their problem was much simpler – all sources files
can be built in parallel. Unless of course there are generated headers,
and usually build systems suck with those. But now, we have
interdependencies between source files. We cannot build the importers
of module Foo, until we’ve built module Foo – we have the equivalent
of generated headers all over the place! To make the problem harder,
there’s no defined mapping between module names and the source file
name of the interface.

There are essentially two approaches to solving this.

 Prescanners. A prescan stage processes all the source files.
Fortunately the design is such that this scanning is relatively simple,
if one’s happy with over-estimating the dependencies. The module-
declarations and import-declarations must appear on lines by
themselves, without the module, export or import keywords
being obscured by macros. They’re pretty much like preprocessor
directives without the leading #. If one ignores everything else –
including #if lines, one will get the maximal set of dependencies.
To further simplify, all the imports of a module must appear
immediately after the module-declaration – you can’t place one
later in the middle of the module. For more accurate dependencies
one would have to track #ifs and macros. With this information
computed, the build can launch compiles in the correct order, and
inform each of the locations of the Compiled Module Interfaces
(CMIs) it will require.

 Dynamic build graph. The compiler could consult an oracle
whenever it meets an import-declaration, and inform the same
oracle whenever it meets a module-declaration and produces a
CMI. If the oracle is the build-system, it can modify its dependency
graph, build the needed CMI(s) and then inform the compiler of the
location. Because of the requirement of import placement, this can
even be parallelized somewhat!

In both cases the determined build graph can be retained for a
subsequent incremental build.

Note that in an unconstrained parallel build, a clean build of modular code
is likely to be slower than that of #include builds – it’s constrained by the
module dependency tree. However, an incremental build is likely to be
much faster, because header-files do not need to be reparsed all the time.
Google’s experience with Clang’s implicit modules showed this to be a
significant win.

How will build systems be affected?

The One Definition Rule specifies that in a complete program there can
only be One Definition of certain types of entities. And for those that can
have multiple definitions (class, inline function, template instantiations),
it places restrictions specifying how all those definitions are equivalent.
It is the source of many ‘ill-formed, no diagnostic-required’ clauses in the
standard – you the poor user get to figure it out.

Modules, and header-units, make it much harder to have silent ODR
violations, which is good. The down side is you shouldn’t be surprised
when it finds ODR violations in your existing code as you convert to
modules. At least you’ll get a diagnostic rather than a land mine.

The One Definition Rule
October 2020 | Overload | 23

FEATURE DEÁK FERENC
The Edge of C++
Everything has limits. Deák Ferenc explores
the bounds of various C++ constructs.
verything we interact with in our daily lives (well, except the universe)
has a boundary that constrains its existence to within well-defined
limits. There are borders delimiting a country, there are walls keeping

out bluer than white walkers, there is a finite number of bits that a variable
can reach and, of course, there is the maximum quantity of source a C++
compiler can swallow without choking.

In our daily usage of C++, we rarely reach these limits, but regardless, the
almighty Standard covers these fringe situations too. This article, in which
we will explore the outer edges of some of the most common compilers,
is based on ‘Annex B – (informative) Implementation quantities’
[ANNEX-B] of the (current) C++ Standard.

In this article, I will walk you through these limitations and what they mean
for your daily life. I will present a tool for generating small test source files
for testing each of the specific limits from Annex B and that will push the
compilers to their limits.

Annex B
No, I am not going to include Annex B in the article. It would be a waste
of paper and we are trying to be as environmentally conscious as possible,
so anyone interested can fetch it (from [ANNEX-B]), and I will just give
a short overview of what it is.

In the C++ Standard, Annex B lists the maximum recommended values
for various code snippets from a C++ application that the Standard writers
recommend that a compiler should support. From the Standard:

However, these quantities are only guidelines and do not determine
compliance.

For example, it is recommended that the supported number of arguments
in one function call should be at least 256. Certainly, this sounds like a pretty
big number and no-one would be expected to type in 256 arguments by
hand, but consider that today a lot of the code that is being compiled is first
generated by code generators (think about Google’s protobuf compiler for
example, or just the unreadable output of a software modeling/CASE
application, Qt’s resource compiler or any other applications out there
which generate code for you). You may find yourself in a situation where
code being generated is heading towards this limit.

The actual limits imposed by the compiler
All the current compilers I have tested have a page ([GCC], [CLANG],
[MSVC]) where they present the limitations actually imposed by their
implementations. However, not all the available limits presented in Annex
B were to be found in all the documented limitations, and not all the
compilers have identical values.

The test suite
As mentioned before, the main purpose of this article is to provide a set of
tests for compilers to test the supported edge situations. The code is
generated by an application, for fun’s sake written in the go programming
language, and it is available at the [GITHUB] location. Everyone is free
to download it, modify it and extend it to fit their needs.

The test suite is contained in a big json package where each entry is of
the format shown in Listing 1, where most of the fields are self-
explanatory; however, testName must be mapped to one of the functions
in the go program, which parses this json, and calls the specific methods,
for each value in the count field.

As a side note, some of these test cases were intended to test a specific
feature of the compilers, but unwittingly highlighted an error somewhere
else in the product. I took the decision to leave them as they are because
highlighting these errors might be useful for compiler writers on the quest
to continuously improve their products.

The compilers
All the tests I have performed on a computer using dual boot between two
operating systems: Firstly a brand new shiny Ubuntu 20.04 just
downloaded from Canonical which by default comes with the following
compilers:

 g++ 9.3.0 (installed via apt)

 clang 10.0.0 (installed again via apt)

 icc (ICC) 19.1.2.254 20200623 installed as a by-product
from a trial version of Intel Parallels Studio

And secondly, under Windows 10:

 msvc from Visual Studio 2019 (Version 16.4.5)

I deliberately chose not to use a locally compiled version of any of those
compilers. I tend to stick to the mainstream Linux distributions, and use
what is available for the largest communities of programmers right out of
the box, so making a highly personalized compiler would not have been

E

Listing 1

{
 "run": true,
 "testName" :
 "parameterCountInFunctionDefinition",
 "count": ["256"],
 "minimum": "256",
 "description":
 "Parameters in one function definition
 ([dcl.fct.def.general]"
}

Deák Ferenc Ferenc has wanted to be a better programmer for the
last 15 years. Right now he tries to accomplish this goal by working
at Maritime Robotics as a system programmer, and in his free time,
by exploring the hidden corners of the C++ language in search of
new quests. He can be reached at fritzone@gmail.com
24 | Overload | October 2020

FEATUREDEÁK FERENC

everything we interact with in our daily lives has
a boundary that constrains its existence to

within well-defined limits
an ideal comparison ground for everyone who uses default compilers on
their OS.

Some of these test cases required the activation of C++17 features;
however, I consider that in 2020 this should not be such a big issue.

Timing issues
In the test results, I intentionally did not include a precise measurement of
the time it took each test to compile. That would have only made sense for
my computer, and if someone repeats the test on a much slower or faster
computer, the results they obtain will be significantly different.

Where I have observed a noticeable difference between the various
compilers, I have added my comments regarding the specific case.

The compilers’ own test suites
Before digging deeper into the subject, I have to mention that both gcc
and clang come with exhaustive test suites meant to verify the correct
functionality and compliance (with the Standard) of the compilers.
However, I did not find a dedicated test suite for the edge situations I am
researching through this article, so I thought that providing a unified set
of tests for all the C++ compilers would be beneficial.

Unfortunately, I did not find any test suite for the Microsoft compiler nor
for Intel’s compiler, considering the closed source nature of the product,
but I would love to hear from developers who actually work(ed) on
Microsoft’s C++ compiler to see whether they have considered these test
cases too.

Numbers
For the test cases, I intentionally used numbers that are powers of two. Only
for very special cases did I dig deeper and identify a number outside of
this family. For most of the test cases, I specifically tested against the
Standard-recommended values, and where for some test cases I have
pushed the compilers a bit further, there is a note in the test case.

The tests
Most of the tests are represented as a single generated C++ file; however,
some cases required that some of the tests are joined together. For example,
testing the maximum number of arguments really makes sense with the
maximum number of parameters a function can have.

These small applications were carefully engineered to cover all the
required edge cases and are all compilable independently of each other.
Setting generateMakefile to true in the json will generate a Makefile
when the test generator is run beside the CPP files.

Furthermore, you can request measurements of execution time (and other
important data) using the timeCompilation flag, and the timeFlags
in the json. I currently use "-f '%E,%M'" to measure the time taken in
seconds (%E) and the amount of memory used (%M) by the process.

So as not to depend on data from only one invocation of the compiler, you
can gather an average execution time for the compiler compiling the same

source by specifying the "compilationTimes" property to be the
number of compiler invocations you want.

There are places in the tests where local (global) variables are initialized.
For ease and in order to get a consistent and reproducible behaviour
between test runs, all of them are initialized to 1. I found no difference in
the compilers’ performance whether I used a set of random numbers or just
used 1.

All of the tests require the output of some values to the screen, so I used
the standard iostream header with std::cout to print out all necessary
values.

Nesting level of iteration, selection, compounds statements –
nestingOfStatements
For this test, I generated a simple source file containing alternating for
and if statements, like the sequence in Listing 2.

This seemed to be complex enough to prevent the compiler from
optimizing out everything while still generating assembly code that was
not itself overly complex.

Regardless, no-one in this life should be required to handle applications
in which the nesting level reaches even half of the Standard-recommended
maximum value to support, which is 256. (Maybe this is why clang, being
a pragmatic compiler, actually got stuck at 128 and was killed after five
hours of struggling with the generated source consisting of 256 nested
statements.) gcc, though, had no problem compiling applications which
contained up to 1024 nested levels. More, I did not dare try.

icc had no problems generating code for up to 256 nested levels, but msvc
does not support the depth of 256. It actually gives an error at 166:

 nestingOfStatements-166.cpp(169): fatal error
 C1061: compiler limit: blocks nested too deeply

but compiles fine for 164 levels.

Nesting levels of conditional inclusion –
nestingLevelOfConditionalInclusion
This test required the definition of a specific number of identifiers, all of
which could be used as tests in a conditional check. If all of them evaluated

gcc clang msvc intel

1024 128 164 256

Listing 2

int main() {
 for (int f0 = 1; f0<256; f0++)
 if (f0 % 2 == 0)
 for (int f1 = f0; f1<256; f1++)
 if (f1 % 3 == 0)
 for (int f2 = f1; f2<256; f2++)
 if (f2 % 4 == 0)
 ...
October 2020 | Overload | 25

FEATURE DEÁK FERENC

optimizers in today’s compilers … do the
calculations themselves and substitute
the results in the generated code
to true, the proper header file for writing out the actual number for this test
was included. The code generated was like:

 #define COND_0 1
 #define COND_1 1
 ...
 #if defined COND_0
 #if defined COND_1
 ...
 #include <iostream>
 ...
 #endif
 #endif

No compilers had any issue compiling the code up to 512 identifiers, which
is double the Standard-recommended value to support; however, clang
was much slower than gcc.

Pointer, array, and function declarators modifying something –
pointerAndArrayDeclaratorsModifyingSomething
I have to admit, this was one of the trickiest cases I had to generate code
for, as the optimizers in today’s compilers are simply too clever. They
instantly see through your intentions and, throwing out all your efforts to
generate code for calculating values, instead do the calculations
themselves and substitute the results in the generated code. I really had to
use a lot of trickery.

For example, Listing 3 (overleaf) is the code generated for 4.

As expected, it prints out 4. Some explanations: firstly, if there is no
volatile, the compiler simply ignores all the code and just generates the
required assignment. The weird looking expression of * & z()[* &
z()[* & z()[&p2]]] = 4; is actually equivalent to **&p2[0]
= 4; but I wanted to use both pointer arithmetic, array indexing and
function in the same expression, thus ended up with this monstrosity.

gcc had no problems compiling up to 1024 modifiers, clang complained
at a certain point that fatal error: bracket nesting level
exceeded maximum of 256; however, if I specified -fbracket-
depth=1024, it compiled without any issues.

msvc and icc again had no problems compiling up to 1024.

Nesting levels of parenthesized expressions –
nestingLevelsOfParenthesizedExpressionsInAFullExpression
Because the compiler can be very effective at optimizing code by pre-
calculating values in the compilation phase, this test generated a complex
parenthesized expression to calculate the summation and multiplication of
various numbers. gcc had no issues with the depth of the expression up
to 1024 (four times the Standard-recommended number); however, clang
gave a very clear error message in the form of fatal error: bracket
nesting level exceeded maximum of 256 and I also appreciated
the suggestion on the next line on how to fix it: use -fbracket-
depth=N to increase maximum nesting level. After using this
parameter, clang compiled without problems.

msvc and icc had no problems compiling nesting parentheses up to 1024,
which is a pretty large value for this purpose, so I concluded that this was
an acceptable value for this test case as some compilers (well, all except
gcc) started showing error messages for 2048.

Number of characters in an internal identifier or macro name –
identifierOrMacroNameLength
This was an easy run: just define a macro with a long random name, then
a function with a different long random name containing a variable with
a third long random name being assigned to the macro. Then, call this
function. Most of the tested compilers had errors when compiling code
with variable names as long as 8192 characters, except msvc which
conjured up the message:

 identifierOrMacroNameLength-8192.cpp(3): fatal
 error C1064: compiler limit: token overflowed
 internal buffer

msvc proved to be successful for 2048.

gcc clang msvc intel

512 512 512 512

Listing 3

#include <iostream>

constexpr int z() {
 return 0;
}
int main() {
 volatile int i = 0;
 volatile int *volatile p1=&i;
 volatile int *volatile *p2 = &p1;

 * & z()[* & z()[* & z()[&p2]]] = 4;
 std::cout << i << std::endl;
}

gcc clang msvc intel

1024 1024 1024 1024

gcc clang msvc intel

2048 1024 2048 2048

gcc clang msvc intel

8192 8192 2048 8192
26 | Overload | October 2020

FEATUREDEÁK FERENC

These test cases were specifically
engineered for a unique purpose, and

they are not real life situations
Number of characters in an external identifier –
externIdentifierNameLength
Almost as easy as the previous test, I just had to use a small trick. To avoid
multiple compilation units for the extern variable, I defined it just after
main as follows:

 #include <iostream>

 int main() {
 extern int vxvl;
 std::cout << vxvl << std::endl;
 }
 int vxvl = 4;

Most of the tested compilers had no issues in compiling code with variable
names up to 8192 characters, which I consider to be more than enough,
except msvc which gave up with a similar error message to the previous
case, but it succeeded for 2048.

External identifiers in one translation unit –
externIdentifiersInOneTranslationUnit
The code generated for this case pretty much follows the recipe for the
previous case, just varying the number of identifiers. Here, to my surprise,
clang crashed during something that – in the printed stack trace – looked
like a recursive call when it tried to compile the Standard-suggested value
of 65536. gcc also had its fair share of struggles with this value, taking
several minutes; however, it completed its task successfully. icc gave up
with the following error:

 externIdentifiersInOneTranslationUnit-
 65536.cpp(65540): internal error: bad pointer

so I had to lower my expectations. clang successfully managed to
compile 8192 external identifiers, and icc managed 4096.

msvc really had no problems compiling the test case with 65536 values.

Identifiers with block scope declared in one block –
identifiersWithBlockScopeDeclaredInOneBlock
This test just consisted of generating a long list of variables in a block and
seeing when the compiler complained, but all the tested compilers
successfully compiled up to 8192 local variables.

Parameters in one function definition –
parameterCountInFunctionDefinition
This is one of the test cases which was joined together with another, namely
‘Arguments in one function call’, because it just made sense. The
application generates a function with the required number of parameters,
generates a list of variables of different type, and calls the function with
the required number. None of the tested compilers had issues compiling
functions with up to 4096 parameters, which is 16 times the recommended
amount, so I consider that to be a fair number.

Structured bindings introduced in one declaration –
structuredBindingsInOneDeclaration
The code generated for this is a larger scale of the one in Listing 4.

Some of the tested compilers (well, all except icc) had no issues
compiling code with up to 8192 values in the structured binding
expression. To my huge surprise, however, this is one of the tests gcc
proved to be slower at than clang, but both compiled the test files nicely.

My other surprise came from icc, which gave a core dump upon
compiling 8192 (see Listing 5) but in the end, 4096 seemed like a good
number for icc.

Macro identifiers simultaneously defined in one translation unit
– macroCountInOneTranslationUnit
This was one of the easiest tests to come up with: just generate a file with
enough macros and let the compilers go wild on them. gcc and icc had
no problems sorting out files (at blazing speeds) containing up to 65536
macros; however, clang started choking after 8192 with a coredump. A
similar fate awaited msvc:

 macroCountInOneTranslationUnit-8192.cpp(8197):
 fatal error C1009: compiler limit: macros nested
 too deeply`

gcc clang msvc intel

8192 8192 2048 8192

gcc clang msvc intel

65536 8192 65536 4096

gcc clang msvc intel

8192 8192 8192 8192

gcc clang msvc intel

4096 4096 4096 4096

gcc clang msvc intel

8192 8192 8192 4096

Listing 4

#include <iostream>

int main() {
 int arr[] = {1, 1, 1, 1};
 auto volatile [v0, v1, v2, v3] = arr;
 int i = v0 + v1 + v2 + v3;
 std::cout << i << std::endl;
}

October 2020 | Overload | 27

FEATURE DEÁK FERENC

Each of the tested compilers shines in
some areas and performs poorly in others
so I had to lower my expectations and the number of generated macros to
256.

When even this number gave a compiler error (not a compile error), I
started thinking that maybe my test case is simply wrong, maybe I expect
too much from the macro engine of msvc, or that the test with the following
logic is simply not good:

 #include <iostream>

 #define V0 1
 #define V1 V0 + 1
 #define V2 V1 + 1
 #define V3 V2 + 1
 #define V4 V3 + 1

 int main() {
 std::cout << V4<< std::endl;
 }

From the error message, I felt that somehow this specific test case must
have stepped on the toes of the msvc compiler, so I concluded that the test
is using the wrong approach for this situation because I felt that no (decent)
compiler would have problems with 256 macros defined in a source file
so the problem must be the recursive substitution part of it. However, since
it managed to annoy two of the compilers to the point of breaking, I decided
to leave it in here; maybe someone will have a look at these cases in one
of the development teams.

Parameters in one macro definition –
parametersInMacroDefinition
This test was very simple to construct, involving a macro, similar to the
parameterCountInFunctionDefinition. This test case was
implemented together with the ‘Arguments in one macro invocation’ test,
since it sort of made sense to have both run together.

All the compilers did very well with the code with up to 4096 parameters
(except the Microsoft compiler, see below) which is several time above
the supported number recommended by the Standard. On [GCC], it is
mentioned that gcc allows up to USHRT_MAX number of arguments, which
should be at least 65535. 65535 worked nicely, but the gremlin woke up
somewhere inside and I had to try to run with 65536.

gcc provided a cute (but weird) error:

parametersInMacroDefinition-65536.cpp:5: error:
macro "M" passed 65536 arguments, but takes just 0
 5 | int v = M(1, 1, 1,

Seemingly there was an overflow somewhere deep inside gcc. clang
threw a tantrum in form of a coredump for the same number. icc compiled
without any complains.

Microsoft’s own compiler was very consistent with the amendments
mentioned in [MSVC]. It accurately gave a warning that 127 is the
maximum number of parameters supported for these situations.

clang successfully compiled for 9216 parameters but failed for 10240,
so I decided that the maximum supported value must be somewhere
between the two.

Characters in one logical source line –
charactersInOneLogicalSourceLine
This test case was just about generating a long list of summations, that in
the end will print out the number of characters in the test case. The
following listing, for example, gives the source for 15.

 #include <iostream>
 int main() {
 int a=9+2+2+2 ;
 std::cout << a << std::endl;
 }

gcc struggled with the Standard-recommended value (65536), but after a
while it completed the operation successfully. clang, to my big surprise,

gcc clang msvc intel

65536 8192 128 65536

Listing 5

structuredBindingsInOneDeclaration-8192
": internal error: ** The compiler has encountered an unexpected problem.
** Segmentation violation signal raised. **
Access violation or stack overflow. Please contact Intel Support for assistance.

icc: error #10105: /home/fld/intel/compilers_and_libraries_2020.2.254/linux/bin/intel64/mcpcom: core
dumped
icc: warning #10102: unknown signal(0)
icc: error #10106: Fatal error in /home/fld/intel/compilers_and_libraries_2020.2.254/linux/bin/intel64/
mcpcom, terminated by unknown
compilation aborted for structuredBindingsInOneDeclaration-8192.cpp (code 1)

gcc clang msvc intel

65535 9216 127 65536
28 | Overload | October 2020

FEATUREDEÁK FERENC
crashed again; however, I am not sure whether it was due to the very long
sequence of operations handled in a peculiar mode by clang or due to the
line length. Since I personally don’t consider this to be the most important
test case, I just let it lie. This test case will not work correctly for values
under 10, but lines with length under 10 should not be a struggle for any
compiler.

msvc and icc had no problems compiling lines with the required length.

Characters in a string literal after concatenation –
charactersInAStringLiteral
This is again was one of the easiest test cases: just generate a string long
enough and run a strlen on it. This case might be useful for tools which
are generating source code for embedding resources into C++ applications
(such as aforementioned Qt’s resource compiler). None of the compilers
(except msvc, with a well defined limit from [MSVC]) I tested had any
problems running with strings long as 131072 characters, double the
Standard-recommended value.

Size of an object – sizeOfAnObject
This required some tricks in order to beat the optimizer, leading to the
source in Listing 6 for 262144 (which is, by the way, the value
recommended by the Standard) being generated.

It actually surprised me how far the optimizer can go in order to save
memory, time and space for you. Unless you place some complex
calculations and constraints on the values it has to manage, it will simply
precalculate all the values for you without leaving a trace of their origins
in the generated binary. Of course, I am talking about release builds with
optimization turned on.

No compilers had problems in generating code (and running the generated
executable) for class sizes up to 2097152, which is 8 times the Standard-
required supported size.

Nesting levels for #include – filesnestingLevelsForIncludes
For this test, I created the required number of header files and placed them
in the inc directory, with each header including the next one. The current
iteration of the Standard suggested a supported nesting level of 256 here,
and this is mentioned on [GCC] (but with a value smaller, specifically
200). Both gcc and clang subscribe to this 200, and we get a very specific
error in the form of error: #include nested too deeply.

icc and msvc, on the other hand, managed up to 256, which is considered
a success.

Case labels for a switch statement – caseLabelsForSwitch
For this test, I implemented a simple random generator, which could pick
values between 1 and the required value, and – in a long switch statement
– printed out the square of that number. No compiler had problems
compiling the code up to 16384, the value recommended by the Standard.

Non-static data members in a single class –
nonStaticDataMembersOfClass
This was also one of the more wood-cutting types of work: just generate
a class, with the required number of data members (and for simplicity’s
sake, all in one class) and sum those up. msvc, gcc and clang had no
problems generating code for classes which contained 65536 data
members, which is more than the double the recommended amount.

icc choked on that value (and for 32768, 16384, 8192 and 4096 too), but
nicely compiled for 2048, which I found a bit strange (see Listing 7)
because an application of the form in Listing 8 (generated for 4) does not

gcc clang msvc intel

65536 16384 65536 65536

gcc clang msvc intel

131072 131072 65535 131072

gcc clang msvc intel

2097152 2097152 2097152 2097152

gcc clang msvc intel

200 200 256 256

gcc clang msvc intel

16384 16384 16384 16384

Listing 6

#include <iostream>
#include <numeric>

class A {
public:
 A() {
 std::iota(std::begin(c), std::end(c), 0);
 }
 void printer() {
 for(auto i=0ULL; i<sizeof(c); i++) {
 if(c[i] * 256 == i && i > 0) {
 std::cout << i ;
 }
 }
 volatile auto x = sizeof(*this);
 std::cout << x << std::endl;
 }
private:
 unsigned char c[262144];
};
int main() {
 static A a;
 a.printer();
}

Listing 7

nonStaticDataMembersOfClass-4096
": internal error: ** The compiler has encountered an unexpected problem.
** Segmentation violation signal raised. **
Access violation or stack overflow. Please contact Intel Support for assistance.

icc: error #10105: /home/fld/intel/compilers_and_libraries_2020.2.254/linux/bin/intel64/mcpcom: core
dumped
icc: warning #10102: unknown signal(0)
icc: error #10106: Fatal error in /home/fld/intel/compilers_and_libraries_2020.2.254/linux/bin/intel64/
mcpcom, terminated by unknown
compilation aborted for nonStaticDataMembersOfClass-4096.cpp (code 1)
Command exited with non-zero status 1
October 2020 | Overload | 29

FEATURE DEÁK FERENC
possess a huge level of complexity, so theoretically should not be a huge
problem for a compiler.

Lambda-captures in one lambda-expression –
lambdaCapturesInOneLambdaExpression
Again, one of the easiest test cases: just generate the required number of
variables, and a lambda trying to capture them. msvc, gcc and clang had
no issues compiling lambdas capturing 8192 values, which I considered
enough for even the most evil code generated by any code generator.

icc core-dumped for that value, but successfully compiled code generated
for 4096 variables.

Enumeration constants in a single enumeration –
enumerationConstantsInEnum
This was again one of the easiest cases: just generate an enum with enough
members and let the compiler pick out a random value from them. No
compiler had issues compiling code generated with up to 8192 values,
which is the double of the indicated number to be supported in the
Standard.

Levels of nested class definitions – nestingOfClasses
Nested classes used in projects when encapsulating information should
provide a better overview of what the class is about, and what information
to keep apart. However, too deep a nesting of inner classes will (after a
while) produce unreadable code (personal opinion) and will possibly lead
to a maintenance nightmare. This may be why Microsoft reduced the
nesting level to a humanly manageable number (16) while other compilers
keep their value at 256, the value recommended by the Standard.

Functions registered by atexit() – functionsRegisteredByatexit
The Standard recommends 32 here, but no compiler had problems
generating code (which worked as expected) for sane values, although this
was all actually dependent on my OS. On systems conforming to POSIX,
the correct method for finding out the number of functions that can be
registered for atexit is using the sysconf function with
_SC_ATEXIT_MAX as a parameter.

The Windows SDK had a remark in the form that the number of functions
that can be registered is limited by the available heap space.

Functions registered by at_quick_exit() –
functionsRegisteredByat_quick_exit
According to the documentation, the difference between std::exit and
std::quick_exit is the amount of cleanup done when the application
exits (for example, calling static objects’ destructors, or other fine
nuances). The Standard recommends at least 32 functions, but I have found
that registering 8192 is also alright with gcc, icc and clang. And
because, sadly, this feature is among the ones for which there is no POSIX-
assigned retrieval count, as is case for atexit, I concluded that 64, the
same value as for atexit, should be a good value for this situation.

Direct and indirect base classes for a class –
directAndIndirectBaseClassesOfClass
Making this test would have been much more easier if I had opted just to
generate a bunch of classes as I did for directBaseClassesOfClass.
However, what I did was to create a full binary tree with a number of nodes
as close as possible to that required and generate a class hierarchy from
this tree. A binary tree with 13 levels already contains a huge number of
nodes and this pretty much covers the classes for the main part of our test.
In cases where the requested number was not exactly one less than a power
of two, I generated a set of additional classes that were added to the
inheritance list for the tests’ target Derived class, bumping the number
of classes up to that required.

No compiler had any problems compiling code with values up to 65535.

Direct base classes for a single class –
directBaseClassesOfClass
This test was also a straightforward one: I just had to generate a long list
of base classes and a derived one from them. To prevent the compiler
optimizing away the classes, for each class I stored a global static value in
a class member (and also printed it out in the constructor), which
incremented with every constructor call, and I also summed the values at
the end.

No compilers had problems compiling code with up to 4096 generated
direct classes, which is 4 times more than the number recommended by
the Standard.

Class members declared in a single member-specification –
classMembersDeclaredInASingleMemberSpecification
The code generated for a value of 5 is something like:

 #include <iostream>
 class A {
 public:
 int v1 = 1, v2 = v1 + 1, v3 = v2 + 1,
 v4 = v3 + 1, v5 = v4 + 1;
 };
 int main() {
 A a;
 std::cout << a.v5 << std::endl;
 }

gcc clang msvc intel

65536 65536 65536 2048

gcc clang msvc intel

8192 8192 8192 4096

gcc clang msvc intel

8192 8192 8192 8192

gcc clang msvc intel

256 256 16 256

Listing 8

#include <iostream>
class TestClass {
public:
 short int m_member0 = 1;
 unsigned short int m_member1 = 1;
 unsigned int m_member2 = 1;
 int m_member3 = 1;
};
int main() {
 TestClass tc; int v = 0;v += tc.m_member0;
 v += tc.m_member1;
 v += tc.m_member2;
 v += tc.m_member3;
 std::cout << v << std::endl;
}

gcc clang msvc intel

64 64 64 64

gcc clang msvc intel

64 64 64 64

gcc clang msvc intel

65535 65535 65535 65535

gcc clang msvc intel

4096 4096 4096 4096
30 | Overload | October 2020

FEATUREDEÁK FERENC
so for the Standard-recommended 4096, the same logic is used. No
compiler had problems compiling code for up to 16384 class members,
which I considered enough for this purpose as I strongly advocate the
principles of clean code, and recommend everyone to have at most one, or
(in the worst case) a small group of members that logically belong together
(and of course, don’t forget to add comments to explain their purpose).

Final overriding virtual functions in a class –
finalOverridingVirtualFunctions
This t e s t case a l so r equ i res a c l a s s h ie ra rchy jus t a s fo r
directAndIndirectBaseClassesOfClass but also introduced
virtual functions, to make the generation more fun. Since, even for small
numbers, the code tends to be long and repetitive, I will not put any
example code here, but feel free to check out the code generated for this
case by the test application. The Standard recommends 16384 as the magic
limit for this case, and I think that is indeed a very good number.

gcc and clang had no problems generating code for values up to 32768;
however, msvc didn’t manage to compile code generated for this value
(neither the 32 bit compiler, nor the 64 bit one). Both failed with the error:

 finalOverridingVirtualFunctions-32768.cpp(262149):
 fatal error C1060: compiler is out of heap space`

I found this a bit strange, since neither of those compilers consumed too
much memory while running. The real surprise came when I tried to
compile with 16384 functions, and I was greeted by an internal error from
the compiler:

 finalOverridingVirtualFunctions
 -16384.cpp(196618): fatal error C1001: An
 internal error has occurred in the compiler.
 (compiler file 'msc1.cpp', line 1528)

Finally, 8192 gave a result for msvc in the form of a compiled executable.
Intel’s icc could not even manage 8192, its final value is 4096.

Direct and indirect virtual bases of a class –
directAndIndirectVirtualBaseClassesOfClass
Thi s t e s t c a se i s a l so ve ry s im i l a r t o t he one fo r
directAndIndirectBaseClassesOfClass except that the
inheritance must be virtual. The same language mechanisms were used to
generate the required number of base classes, and the result is also very
similar. Compiling with the limit set at 65535 took forever, but
successfully completed both for gcc and clang. I did not dare try with a
larger value. Interestingly, the code generated by clang is only 62
megabytes, while the one generated by gcc is 72 MB.

Sadly, after half an hour of struggle msvc gave up with the following error
message:

 directAndIndirectVirtualBaseClassesOfClass-
 65535.cpp(65527): fatal error C1060: compiler is
 out of heap space

and the same result was produced for 32768, and 16384 and 8192 too, so
I came to the conclusion that the C++ compiler of Visual Studio 2019 can’t
handle these large applications, and I therefore reduced the maximum
supported number to 4096.

icc really struggled with 4096. It took more than 30 minutes to compile
the source file, so again, I have decided that this should be enough for it,
and the same value applies for msvc too.

Static data members of a class – staticDataMemberOfClass
This test case consisted of generating a class with the specified number of
public static members, of various numeric types. Following that is code to
initialize these values to 1 and in the main function is code generated to
sum up all the members.

None of the tested compilers had any issues with generated code
containing up to 16384 static members except icc, which core-dumped
again (see Listing 9).

Friend declarations in a class – friendsOfAClass
Friends of a class provide a useful back door into the internals of a class,
but too many back doors aren’t a very good approach to optimal
application design, so you should not over-abuse them. The Standard
indicates a value of 4096 and the compilers had no problems compiling
with values up to 8192.

For this test, I generated a class and a combination of friend classes and
functions, and then counted the number of private members via friend
functions and classes.

Access control declarations in a class –
accessControlDeclarationsInClass
I interpreted this test case as alternating protected, public, private
of various data members, so the test generated is also nothing else but a
long list of data members with alternating visibility, a set of public getter
functions (the test application will print out the required number - 1, due
to this last set being public) for the private and protected members, and a

gcc clang msvc intel

16384 16384 16384 19384

gcc clang msvc intel

32768 32768 8192 4096

gcc clang msvc intel

65535 65535 4096 4096

gcc clang msvc intel

16384 16384 16384 2048

gcc clang msvc intel

8192 8192 8192 8192

Listing 9

 staticDataMemberOfClass-16384
 ": internal error: ** The compiler has
 encountered an unexpected problem.
 ** Segmentation violation signal raised. **
 Access violation or stack overflow. Please
 contact Intel Support for assistance.

 icc: error #10105: /home/fld/intel/
 compilers_and_libraries_2020.2.254/linux/bin/
 intel64/mcpcom: core dumped
 icc: warning #10102: unknown signal(0)
icc: error #10106: Fatal error in /home/fld/intel/compilers_and_libraries_2020.2.254/linux/bin/intel64/
mcpcom, terminated by unknown
compilation aborted for staticDataMemberOfClass-16384.cpp (code 1)
Command exited with non-zero status 1
October 2020 | Overload | 31

FEATURE DEÁK FERENC
main function which simply generates a summation of all the members
(which were set to one).

Some of the compilers I tested had no problems in generating code for
alternating the visibility of data members up to 16384. To my surprise, this
was one of the test cases where clang outperformed gcc in terms of
speed.

icc sadly gave up at 16384 with the following error message:

 accessControlDeclarationsInClass-16384.cpp(43698):
 internal error: bad pointer

and threw an exception for 8192 (shown in Listing 10) but compiled nicely
for 4096.

Member initializers in a constructor definition –
memberInitializersInAConstructorDefinition
A not overly complicated test case: I just generated the required number
of members in a class, generate code for the constructor and printed their
sum in order to have some confirmation. Except for icc, no compiler had
problems in compiling code generated for values up to 16384, and again,
this is one of the test cases where clang was faster than gcc. However,
for this high value icc came up with the following error:

 memberInitializersInAConstructorDefinition-
 16384.cpp(16720): internal error: bad pointer

Finally, icc settled at the value of 4096 (not being able to compile the
Standard-recommended 6144 either) and I had a feeling there is a
connection with the previous test case.

Initializer-clauses in one braced-init-list –
initializerClauseInBracedInitList
Another test case which just repeatedly required generating an array with
the required number of elements, and then iterating over it to sum up a
value to get the required number for the test case.

Although the Standard recommends 16384 clauses, I found that no
compiler had problems generating code for initializer lists of lengths up
to 262144, which is several times the Standard-recommended value.

Scope qualifications of one identifier –
scopeQualificationOfOneIdentifier
Although this seemed to be one of the more banal test cases, the higher
values turned out to be fatal in the end to clang and msvc when I
increased the bracket depth (via -fbracket-depth=4096 for clang)
but gcc was happy even with 4096 (this being 16 times the Standard-
recommended value).

clang gives up somewhere at a value between 1024 and 2048 in a
seemingly infinite recursive call between:

 EmitTopLevelDecl(clang::Decl*)

and:

 EmitDeclContext(clang::DeclContext const*)

but I’d rather say that 1024 scopes for a variable is more than enough.

msvc does not even support the Standard-recommended 256; it gives up
at 128 with the error message:

 scopeQualificationOfOneIdentifier-128.cpp(130):
 fatal error C1061: compiler limit: blocks nested
 too deeply

but with a depth set to 127 there were no problems.

icc had no problems with compiling to depths of 2048, but failed with
4096.

Nested linkage-specifications – nestedLinkageSpecifiers
Personally, I think that nesting linkage specifications can, in the long term,
lead to highly unmaintainable code. But if the Standard allows it, and there
is even a recommended depth, who am I to protest. So, some code in the
form of the one in Listing 11 (example shown for 4) was generated, and I
have just acknowledged that 1024 sounds like a good number for this
purpose unless you really want to be the source of future headaches.

gcc and clang had no issues compiling code with the aforementioned
depth; however, the msvc compiler gave up somewhere at a value between
736 and 752 with the following error but works for 736:

 nestedLinkageSpecifiers-752.cpp(748): fatal error
 C1026: parser stack overflow, program too complex

icc accepted for this test case the Standard-recommended 1024.

gcc clang msvc intel

16384 16384 16384 4096

gcc clang msvc intel

16384 16384 16384 4096

gcc clang msvc intel

262144 262144 262144 262144

Listing 10

: internal error: ** The compiler has encountered an unexpected problem.
** Segmentation violation signal raised. **
Access violation or stack overflow. Please contact Intel Support for assistance.

icc: error #10105: /home/fld/intel/compilers_and_libraries_2020.2.254/linux/bin/intel64/mcpcom: core
dumped
icc: warning #10102: unknown signal(0)
icc: error #10106: Fatal error in /home/fld/intel/compilers_and_libraries_2020.2.254/linux/bin/intel64/
mcpcom, terminated by unknown
compilation aborted for accessControlDeclarationsInClass-8192.cpp (code 1)

gcc clang msvc intel

4096 1024 127 2048

gcc clang msvc intel

1024 1024 736 1024

Listing 11

#include <iostream>

extern "C" { int fC() { return 1; }
extern "C++" { int fCx() { return 1; }
 extern "C" { int fCxC() { return 1; }
 extern "C++" { int fCxCx() { return 1; }
 int fun() {
 return 0+fC()+fCx()+fCxC()+fCxCx();}
 }
 }
 }
}
int main() {
 std::cout << fun() << std::endl;
}

32 | Overload | October 2020

FEATUREDEÁK FERENC
Recursive constexpr function invocations – recursiveConstexpr
Recursive constexpr function are not the most frequent ones; however,
they can come in very handy from time to time. This test case required the
application in Listing 12, where 512 is the actual required depth of the
recursion. Running this test case gave the results that follow.

clang gave a very correct assessment of the situation:

 recursiveConstexpr-512.cpp:5:30: error: constexpr
 variable 'k' must be initialized by a constant
 expression
 constexpr unsigned long long k = sum(512);
 ^ ~~~~~~~~
 recursiveConstexpr-512.cpp:3:13: note: constexpr
 evaluation exceeded maximum depth of 512 calls

gcc also recognized the situation, in the form of a warning message like:

 recursiveConstexpr-512.cpp:5:41: error:
 ‘constexpr’ evaluation depth exceeds maximum of
 512 (use ‘-fconstexpr-depth=’ to increase the
 maximum)
 5 | constexpr unsigned long long k = sum(512);

However, after applying the suggested -fconstexpr-depth=513, it
actually managed to compile the code, and by making that change we can
bring the level of recursion up to 16384. At 32768, gcc also decided it was
time to give up:

 g++: internal compiler error: Segmentation fault
 signal terminated program cc1plus

icc did not like 512 but worked nicely with 256.

msvc correctly recognized the scenario:

 recursiveConstexpr-512.cpp(5): error C2131:
 expression did not evaluate to a constant

 recursiveConstexpr-512.cpp(3): note: failure was
 caused by evaluation exceeding call depth limit
 of 512 (/constexpr:depth<NUMBER>)

After specifying the required depth, the msvc compiler choked at 16384,
8192, 4096 in the form of an Internal Compiler Error but
successfully compiled for 2048.

Full-expressions evaluated within a core constant expression –
fullExpressionInAConst
The value recommended for this situation is simply so huge (1048576) that
I did not consider it necessary to increase it. The application generated for
this case is just a simple addition of ones, being assigned to a constant
value. Compiling a test case takes a long time, but the only compiler tested
that had any problems with it was msvc, which gave up at somewhere a
value between 65536 and 131072.

Template parameters in a template declaration –
templateParametersInTemplateDeclaration
This test case consisted of creating a source file along the lines of the one
in Listing 13.

No compiler, except msvc, had problems compiling code with values up
to 16384, which is 4 times the value recommended by the Standard. Just
a small interesting observation is that while gcc generally outperformed
all the other compilers (that were run on the same platform) from the point
of view of speed, this test case was aced by clang, which delivered
blazing fast speed for this test case, easily outperforming all the other
compilers.

msvc failed 16384 with fatal error C1111: too many template
parameters but in the end it managed to compile the Standard-
recommended 1024.

Recursively nested template instantiations –
recursivelyNestedTemplateInstantiations
The application in Listing 14 actually gave a headache to a few compilers.
It seems that icc can handle recursively nested templates in a very
predictable way:

 recursivelyNestedTemplateInstantiations-
 1024.cpp(9): error: excessive recursion at
 instantiation of class "C<524>"`.

The troubles for icc were not over since – after a period of
experimentation – I discovered that the maximum value it supports is 500.
For values above 500, I get the previous strange error, with the value being
always the test value - 500. So for 501 the error is: error: excessive
recursion at instantiation of class "C<1>". Strange, but
interesting.

gcc clang msvc intel

16384 16384 2048 256

gcc clang msvc intel

1048576 1048576 65536 1048576

Listing 12

#include <iostream>
constexpr unsigned long long sum(unsigned long
long n, unsigned long long s=0) {
 return n ? sum(n-1,s+n) : s;
}
constexpr unsigned long long k = sum(512);

int main() {
 std::cout << k<<std::endl;
}

gcc clang msvc intel

16384 16384 1024 16384

Listing 13

#include <iostream>

template<int N0,int N1,int N2,int N3>
struct C {
 static const int v = N0 + N1 + N2 + N3;
};
int main() {
 C<1,1,1,1> c;
 std::cout << c.v << std::endl;
}

Listing 14

#include <iostream>
template<typename T>
struct B {
 typedef T BT;
};
template<int N>
struct C {
 typedef typename B<typename C<N-1>::T>::BT T;
};
template<>
struct C<0> {
 typedef int T;
};

int main()
{
 C<1024>::T c = 1024;
 std::cout << c << std::endl;
}

October 2020 | Overload | 33

FEATURE DEÁK FERENC
gcc also had its troubles:

 recursivelyNestedTemplateInstantiations-
 1024.cpp:9:45: fatal error: template
 instantiation depth exceeds maximum of 900 (use
 ‘-ftemplate-depth=’ to increase the maximum)

but after specifying -ftemplate-depth=1025 as an extra parameter,
gcc succeeded. Interestingly, gcc expects +1 to the actual number.

clang aced this test, and without complaining compiled the entire 1024
iterations of template madness. An interesting side-note for clang: for
16384 it gave me the hint to use -ftemplate-depth=16384 and then
it gave me the warning in Listing 15. I had never seen this before, and my
admiration for compiler writers has just gone up. But gcc compiled 16384
too, without this warning (I just had to specify -ftemplate-
depth=16385 as an extra parameter).

1024 proved to be fatal for msvc:

 recursivelyNestedTemplateInstantiations-
 1024.cpp(9): fatal error C1202: recursive type or
 function dependency context too complex

Finally, it managed to compile 128.

Handlers per try block – handlersPerTryBlock
This test case consisted of generating a number of classes derived from
std::exception that will act as objects to be thrown, then throwing an
object of that kind in a try block and then writing a long list of catch
statements for each class. No compiler had problems with code that
contained 256 different handlers for a try block, as per the Standard-
recommended value.

Number of placeholders – numberOfPlaceholders
This is not specifically a compiler limit and is more a library feature, but
in the end we have to agree that all the compilers tested had an upper limit
of 29, except msvc which draws the upper limit at 20.

Conclusion
Before you jump ship and decide that, based on these results, it’s time to
ditch your current compiler and switch to a different one, a big warning
for you: don’t. These test cases were specifically engineered for a unique
purpose, and they are not real life situations. If they were, then maybe it
would be time to rethink your source strategy.

Each of these compilers is able to perform adequately for any project you
can find on the market today, and the purpose of this test was not to find
a winner, but to see which does what well, and what improvements should
be made for future releases.

Each of the tested compilers shines in some areas and performs poorly in
others, and what follows are just a few (personal) observations. If you run
the test cases, you will possibly reach a different conclusion.

gcc and msvc are the oldest of the tested bunch. Their age has positively
affected their performance. Both of them are blazingly fast in all areas of
compilation. msvc has a set of limitations, that you will not notice in your
average daily programming routine unless you specifically look for them,
while gcc can compile basically everything that you throw at it, assuming
you have the patience to wait for the compilation time of a large code base,
and your computer can cope with the expectations of the compiler.

icc, which came more than 20 years after msvc, promises faster-than-
average code targeting its own processors, good c++17 support and also a
decent speed. Sadly, it is packaged into a suite downloadable on a trial basis
from Intel’s homepage, and this possibly makes hobbyist programmers or
the advocates of open source stay away unless forced by some specific
requirements.

clang is the newcomer and the youngest of the tested compilers. It
outperforms all the others when it comes to more recent C++ features but
seems to struggle with notions and constructs that other compilers have
had a few extra decades to polish till perfection. But the speed at which
the community picked it up, and made it into one of the most used
compilers today hints at a bright future for this product.

References
[ANNEX-B] ‘Annex B: (normative) Implementation quantities’ of the

C++ Standard: https://eel.is/c++draft/implimits

[CLANG] Clang limites: https://clang.llvm.org/docs/
UsersManual.html#controlling-implementation-limits

[GCC] gcc limits: https://gcc.gnu.org/onlinedocs/gcc-9.2.0/cpp/
Implementation-limits.html

[GITHUB] The test code: https://github.com/fritzone/cpp-stresstest

[MSVC] Microsoft compiler limits: https://docs.microsoft.com/en-us/
cpp/cpp/compiler-limits?view=vs-2019

gcc clang msvc intel

16384 16384 128 500

gcc clang msvc intel

256 256 256 256

gcc clang msvc intel

29 29 20 29

Listing 15

warning: stack nearly exhausted; compilation time may suffer, and crashes due to stack overflow are likely
[-Wstack-exhausted]
 typedef typename B<typename C<N-1>::T>::BT T;
 ^
recursivelyNestedTemplateInstantiations-1024.cpp:9:30: note: in instantiation of template class 'C<15286>'
34 | Overload | October 2020

https://eel.is/c++draft/implimits
https://clang.llvm.org/docs/UsersManual.html#controlling-implementation-limits
https://clang.llvm.org/docs/UsersManual.html#controlling-implementation-limits
https://docs.microsoft.com/en-us/cpp/cpp/compiler-limits?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/compiler-limits?view=vs-2019
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/cpp/Implementation-limits.html
https://gcc.gnu.org/onlinedocs/gcc-9.2.0/cpp/Implementation-limits.html
https://github.com/fritzone/cpp-stresstest

FEATURE CHRIS OLDWOOD
Afterwood
Assume failure by default. Chris Oldwood
considers various fail cases.
Two roads diverged in a wood, and I –
I took the one less travelled by,

And that has made all the difference.
~ Robert Frost

espite being written in the early part of the 20th century, I often
wonder if Robert Frost’s famous poem might actually have been
about programming. Unless you’re writing a trivial piece of code,

every function has a happy path and a number of potential error paths. If
you’re the optimistic kind of programmer, you’ll likely take the well
trodden path and focus on the happy outcome and hope that no awkward
scenarios turn up. This path is exemplified in the original version of that
classic first program which displays “hello, world!” on the console:

 main()
 {
 printf("hello, world\n");
 }

A standards-conforming version of this classic C program requires the
main function to be declared with an int return type to remind us that
we need to inform the invoker of any problems, but luckily we get to
remain optimistic as we can elide any return value (only for a function
named main) and happily accept the default – 0. Consequently,
irrespective of whether or not the printf statement actually works,
we’re going to tell the caller that everything was hunky-dory.

The classic C version relies on a spot of ‘legal slight-of-hand’ to allow you
to put the program’s return value out of mind whereas C# and Java needed
to find another way to let you ignore it so they allow you to declare main
without a return type at all:

 public class Program
 {
 public static void Main(...)
 {
 // print "Hello World!"
 }
 }

Of course, these languages use exceptions internally to signal errors so it
doesn’t matter, right? Well, earlier versions of Java would return 0 if an
uncaught exception propagated through main so you can’t always rely on
the language runtime to act in your best interests [Wilson10]. Even with
.Net you can experience some very negative exit codes when things go
south which will make a mockery of that tried-and-tested approach to
batch-file error handling everyone grew up with:

 IF ERRORLEVEL 1

Unless you know that Main can also return an exit code I don’t think it
should be that surprising that people have resorted to silencing those
pesky errors with an all-encompassing try/catch block:

 public static void Main(...)
 {
 try
 {
 // Lots of cool application logic.
 }
 catch
 {
 // Write message to stderr.
 }
 }

I wonder if this pattern is more common than even I’ve experienced as
PowerShell has taken the unconventional approach of treating any output
on the standard error stream as a sign that a process has failed in some
way. This naturally causes a whole different class of errors on the other
side of the fence that could be considered worse than ‘the cure’.

Back in the world of C and C++ we can be pro-active and acknowledge
our opportunity to fail but are we still being overly optimistic by starting
out by assuming success?

 int main(int argv, char **argv)
 {
 int result = EXIT_SUCCESS;
 // Lots of cool application logic.
 return result;
 }

It’s generally accepted that small focused functions are preferable to long
rambling ones but it’s still not that uncommon to need to write some non-
trivial conditional logic. When that logic changes over time (in the absence
of decent test coverage) what are the chances of a false positive? When it
comes to handling error paths, I’d posit that it’s categorically not zero.

The trouble with error paths are that they are frequently less travelled and
therefore far less tested. A bug in handling errors where the flow of
control is not correctly diverted can lead to other failures later on which
are then harder to diagnose as you’ll be working on the assumption of
some earlier step having completed successfully. In contrast, a false
negative should cause the software to fail faster which may be easier to
diagnose and fix. To wit, assume failure by default:

 int result = EXIT_FAILURE;

The term ‘defensive programming’ is one which was
well intentioned, and requires an acknowledgement of
failure to allow robust code to be written, but it has also

D

35 | Overload | October 2020

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology from plush corporate offices the lounge below his bedroom. With no
Godmanchester duck race to commentate on this year, he’s been even more easily distracted by messages to
gort@cix.co.uk or @chrisoldwood

FEATURE CHRIS OLDWOOD

Every test framework I’ve encountered makes
the optimistic assumption that as long as
your code doesn’t blow up, then it’s correct
been used to cover a multitude of sins – counter-intuitively making our
lives harder, not easier. It stems from a time when development cycles
were long, releases were infrequent, and patching was expensive. In a
modern software delivery process Mean Time to Recovery is often valued
more highly than Mean Time to Fail.

Another area where I find an overly optimistic viewpoint is with test
frameworks. Take this simple test, which does nothing:

 [Test]
 public void doing_nothing_is_better_than_being_
 busy_doing_nothing()
 {
 }

Plato once said that an empty vessel makes the loudest sound, and yet a
test which makes no assertions is usually silent on the matter. Every test
framework I’ve encountered makes the optimistic assumption that as long
as your code doesn’t blow up, then it’s correct, irrespective of whether or
not you’ve even made any attempt to assert that the correct behaviour has
occurred. This is awkward because forgetting to finish writing the test (it
happens more often than you might think) is indistinguishable from a
passing test.

When practising TDD, the first step is to write a failing test. This is not
some form of training wheels to help you get used to the process, it’s
fundamental in helping you ensure that what you end up with is working
code and test coverage for the future. Failing by default brings clarity
around what it means to succeed, or in a modern agile parlance – what is
the definition of ‘done’?

In those very rare cases where the outcome cannot be expressed as the
absence of some specific operation occurring, there are always the
following constructs to make it clear to the reader that you didn’t just
forget to finish writing the test:

 Assert.Pass();
 Assert.That(. . ., Throws.Nothing);

The few mocking frameworks which I’ve had the displeasure to use also
have a similar misguided level of optimism when it comes to writing tests
– they try really hard to hide dependencies and just make your code work,
i.e. they adopt the classic ‘defensive programming’ approach which I

mentioned earlier. It’s misguided because exposing your dependencies to
the reader is a key part of illustrating what the reader needs to know to
understand what interactions the code might rely on. If this task is onerous
then that’s probably a good sign you need to do some refactoring!

I’m being overly harsh on Hello World; it’s a program intended for
educational purposes not a shining example of 100% error-free code
(whatever that means). I’m sure a kitten dies every time an author writes
‘error handling elided for simplicity’ but maybe that’s an unavoidable
cost of trying to present a new concept in the simplest possible terms.
However, when it comes to matters of correctness perhaps we need to take
the difficult path if we are going to provide the most benefit in the longer
term.

Reference
 Matthew Wilson (2010) ‘Quality Matters #6: Exceptions for Practically-

Unrecoverable Conditions’ in Overload #99, October 2010,
available at: https://accu.org/index.php/journals/1706
36 | Overload | October 2020

We need your help!
ACCU is a volunteer organisation. Without volunteers, we cannot function. We need:

 Volunteers for vacant posts on the committee

 People to write articles (regularly or occasionally)

 People who can help out with particular short-term and long-term projects

If you would like to help but are not sure how you can – you may not have a lot of time, or may not be
able to commit to anything long-term – please get in touch. You may have just the skills we need for

https://accu.org/index.php/journals/1706

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

www.qbssoftware.com

	Virtual/Reality
	poly::vector – A Vector for Polymorphic Objects
	Kafka Acks Explained
	Concurrency Design Patterns
	C++ Modules: A Brief Tour
	The Edge of C++
	Afterwood

