
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 7
April 1995

Editorial: Subscriptions:
Sean A. Corfield Membership Secretary
13 Derwent Close c/o 11 Foxhill Road
Cove Reading
Farnborough Berks
Hants RG1 5QS
GU14 0JT pippa@octopull.demon.co.uk
sean@corf.demon.co.uk

£3.50

Contents
Editorial 3

The AGM 3

Future directions 3

Submissions 3

The Overload disk 3

Software Development in C++ 4

C++ compilers – mainly for OS/2 4

No such thing as a free lunch 7

Subsidising lunch? – a reply 10

Operators – an overloaded menace 12

Overloading on const and other stories 15

operator= and const – a reply 18

The Draft International C++ Standard 18

The Casting Vote 18

C++ Techniques 22

Wait for me! – copying and assignment 23

Related objects 24

Related addendum 28

Multiple inheritance in C++ – part I 28

On not mixing it... 32

editor << letters; 35

Questions & Answers 40

++puzzle; 41

Books and Journals 42

Coming soon! 42

The C++ Report 42

News & Product Releases 42

Programming Research to distribute TestView 42

NoBUG 43

 Overload – Issue 7 – April 1995

 Page 3

Editorial
Thankyou to everyone who has contributed to
Overload 7 – I have received more material than
I can publish so please keep it up! The success of
Overload depends on each and every one of you.

The AGM

Yesterday (as I write this) was my first atten-
dance at an ACCU AGM. It was good to put
faces to so many contributors and committee
members and was a lot of fun. The programming
competition was let down somewhat by the fail-
ure of several teams to attend but Acorn and
IBM put on a good show with some completely
over the top hardware (Acorn) and some very
entertaining MPEGs (IBM). My favourite mo-
ment was Acorn’s team saying that if they could
just get their program to compile, it would work
wonderfully! “Yah boo sucks!” to the other ven-
dors – I hope you redeem yourselves next year!

Future directions

The most common question I was asked at the
AGM was “Where is Overload going?” Well,
that’s not true – the most common questions I
was asked were “When are you lot going to stop
messing around with the C++ standard?” and
“Don’t you think C++ is too big and complex for
the average programmer?” Several articles in
this issue address both of those questions but
back to Overload...

My stock answer was that it depends on what
you write for Overload. Quite a few people
wanted to see more material for the beginner or
intermediate but a similar number wanted to see
more advanced material. I don’t think there’ll be
any shortage of the latter but I must appeal to all
of you to consider the former. What I’d like to
see in that vein are articles about your first C++
project: what went right, what went wrong and
why, did C++ make it easier or harder, how dif-
ferent was it to using C (or whatever). If you feel
that your company might not appreciate such
candour, I will withhold names on request (but I
will not accept anonymous submissions!).

Submissions

At some point, I’m going to run a survey to find
out what percentage of you are using which plat-
forms and how many of you have email. The
submissions that I’ve received for this issue sug-
gest that most of you use IBM-compatibles and
most of you have email.

I do not use an IBM-compatible, although I have,
with some effort, managed to read everything
submitted so far. Some of the material has been
very carefully formatted and looks great when it
is printed but remember that Overload will, in
general, be laid out by Alan Lenton so, to some
extent, your careful formatting will be to no
avail. Accordingly, my preferred formats for
submissions are: plain ASCII text or RTF. Every
WP package should be able to produce one of
these. I’m also happy to receive Word 6.0 docu-
ments since that’s my native format (on a Macin-
tosh).

If you want to include fancy graphics with your
article, contact me first to ensure that Alan and I
can incorporate them.

Please use email, where possible, for submis-
sions – I am allergic to paper :-) If you want to
send compressed files, I have UNIX compress
and gzip only (I run Tenon Intersystem’s Mach-
Ten on my PowerBook – a BSD4.3 port). If
email is not possible, I will accept soft copy by
snail mail. I promise to acknowledge all email
submissions – if I reject an article or want it re-
worked, I’ll let you know fairly quickly, other-
wise you can assume it will appear in the next
issue of Overload.

Please note that it is Overload’s policy to print
email addresses unless you explicitly request
otherwise.

The Overload disk

In Overload 6, Francis asked what you thought
we should do about the supplementary disk that
appeared with previous issues of Overload. Sev-
eral people have responded that they would pre-
fer the code to be made available on Demon.
Accordingly, there will be no disk with future
issues of Overload and I will arrange for code,

 Overload – Issue 7 – April 1995

 Page 4

documentation and other interesting material to
be placed on Demon for anonymous ftp. Full
details will be in Overload 8. For those of you
without ftp facilities, this would be a service that

the Software Librarian could provide – if some-
one volunteers for the position!

Sean A. Corfield

sean@corf.demon.co.uk

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development
tools, the software process and discussions about the good, the bad and the ugly in C++.

In this issue, our survey of C++ compilers continues and several contributors make critical comments
about the cost and complexity of using C++. I have held the second instalment of my compiler-writing
series over to Overload 8 for various reasons that will, I hope, become clear in that issue!

C++ compilers – mainly for OS/2
by Francis Glassborow

Before I tackle the primary subject of OS/2
C/C++ compilers I’d like to take a little space to
expand on my column in the last issue.

For some reason I completely forgot to mention
the most outstanding feature of Salford Soft-
ware’s C and C++ compilers – their debug sup-
port and in particular, runtime debugging.
Anyone who has written more than the most triv-
ial of programs will have tripped over memory
problems (though they may not realise it yet).

Memory problems

There are four major categories of memory prob-
lem:

1. Dangling pointers (and references in C++),
i.e., using a pointer variable that is no longer
attached to underlying memory. For exam-
ple, returning a pointer or reference to a lo-
cal (auto) object. Often such abuse actually
appears to work because the associated
memory has not been reused yet. This actu-
ally makes matters worse because the defect
will only manifest rarely, and will get past
many programmer contrived test suites.

2. Writing beyond the end of an object – or
sometimes before the beginning but this is a
far less frequent problem. C’s mechanisms
for handling array parameters (and dynamic
arrays) make this problem particularly vi-
cious and frequently impossible (or effec-
tively so) to detect statically (at compile
time).

3. Memory leaks – the commonest form of re-
source leakage. This is another problem that

is difficult or impossible to detect statically
and which needs special tools to detect dy-
namically. In a way, it is the exact reverse of
‘dangling pointers’ because it occurs when
all pointers and references to dynamically
assigned memory are lost before that mem-
ory is freed. The real sting in this problem is
that it often only manifests as a serious prob-
lem when a program has been running for
hours, days or possibly weeks. Virtual mem-
ory resources make it worse by delaying ul-
timate collapse.

4. Reading uninitialised memory. Any attempt
to read from memory that your program has
not previously written to will exhibit unde-
fined behaviour. Unfortunately, undefined
behaviour often manifests by doing exactly
what you expected. That makes it rather dif-
ficult to detect.

I recently had an instance in my training room
where a programmer was puzzled because his
program always ran correctly the first time and
failed the second. The first time the program ran,
his assumption that a variable was zero agreed
with the memory provided. On running the pro-
gram again he got the same storage with the re-
sults he had written to it during the first
execution.

Clever operating systems such as Windows NT
make this kind of problem harder to detect be-
cause they clean up storage before re-allocating
it to a new task.

I believe NT stamps 0xDEADBEEF all over
freed memory? Clearly not a vegetarian op-
erating system... – Ed.

There are tools available to tackle these prob-
lems and I hope readers will write in to describe

 Overload – Issue 7 – April 1995

 Page 5

anything that helps them reduce the incidence of
these problems.

Salford Software C & C++

The item that I completely forgot to mention in
my notes last time was that these compilers pro-
vide special support for detecting all the above
categories of memory problem. This is not the
place to go into details except to say that it is
probably the cheapest tool for this kind of de-
bugging, certainly much cheaper than such com-
mercial products as ‘Purify’.

Symantec C++ 7.0

Note that this release requires substantial re-
sources including 16 Mbytes of RAM (not the 8
that EXE magazine mentions). The full require-
ments as specified by Symantec are in the March
issue of C Vu.

I was being a bit optimistic when I wrote my last
column but my latest information is that version
7 will ship on March 25th (I guess those who
had the sense to get to our AGM may already
know that).

...if Symantec’s team had turned up! – Ed.

The upgrade price is £89 and the special offer
price (until the end of May) is £149 – at these
prices it must be worth considering upgrading
your machine to 16 Mbytes. The way things are
going you are likely to need that much for sensi-
ble performance with the next generation of
OS’s and development tools anyway.

I mentioned last time that the parser had been
disconnected from the rest of the compiler. I can
now be more precise and tell you that it has been
wired into the editor so that your code is being
parsed while you write it. This is not intrusive in
that it lets you write whatever you want to and
ignores what it does not understand. May be we
could persuade Symantec to provide an option
which was a bit more intrusive (i.e., howls when
you write code that will not parse).

The environment (IDE) is one of the best that I
have used, though it will take those of you used
to the cruder early 1990’s PC IDE’s some time
to get to grips with it. Those coming from pow-
erful workstation environments may wonder
what is so special.

The MSWindows support is based on MFC so at
least you will have a few familiar bugs and de-

fects to work round. By the way, if your code is
in any way critical you should only use MFC
(and code generated using it) if you are familiar
with the details of MFC. It is far too late to dis-
cover an MFC problem when running mission
critical code. I, like many others, can live with
the bugs in such Microsoft products as Word for
Windows 6 because I do not multi-task critical
software along side it.

Those of you who think you can just install a
product and jump in to using it at once will find
this a difficult product but that is because such
attitudes are unrealistic. If you want something
better you must expect to invest some effort in
learning to use the new product.

Compilers for other OS’s

Before tackling OS/2 compilers, a few words
about all the others available. What I need from
you, the readers, is short descriptions of the com-
pilers you use in VMS, UNIX etc. I do not have
the hardware to tackle most of these and even
where I do, I lack the time to master yet more
operating systems before looking at the relevant
development tools.

There is an exception to this and this is GNU C
and G++. Sean added a comment about UNIX
users expecting these to be free. This is funda-
mentally true but – and in a PC world it is a big
but – you will still have to get a copy as well as
copies of all the other tools you will need such
as debuggers, profilers etc. The cost of this in a
UNIX context (remembering that Unix was de-
signed with programmers in mind) is very low.
In addition the tools will work just about straight
out of the box (well for Unix gurus it will).

The cost in a PC environment is quite different.
Here we expect the basic commercial tools to
cost a few (very few) hundred pounds. For the
novice, the tools must work directly without any
fiddling. It was in this context that I was suggest-
ing that the GNU development tools were not
suitable and not that low cost, the actual delivery
of the free software will cost close to the price of
a low end PC C/C++ IDE such as Turbo C++.

I would still argue that the entire GNU de-
velopment environment, debuggers and all, is
free. However, Francis’ point is well taken –
GNU software does not always run “out of
the box” and can therefore prove expensive
to get running – Ed.

 Overload – Issue 7 – April 1995

 Page 6

How about one of the Linux specialists writing a
series on using G++ with Linux. Such a series
could be at one of two levels. That for experi-
enced UNIX users and professional program-
mers could focus on quality programming and
tool support. On the other hand there is a place
for a series for inexperienced UNIX users and
part time programmers aiming at leading the
reader from the start. The former would seem
appropriate for publication here while the latter
would, I think, better fit C Vu.

It would also be nice to see the Macintosh spe-
cialists report on the compilers available for
their system. I find people often assume that eve-
ryone else will know as much as they do about
what is available. It isn’t true others know more,
less and the same but different.

Anyone out there use Symantec, MPW or
Code Warrior on the Mac? Write it up and
send it to Francis to collate! – Ed.

C++ for OS/2

I wonder how many of you realised that there
was some sort of order (though not a complete
ordering) to the list I presented last time? Well
I’m using similar criteria this time.

Free Software Foundation G++

Let me be entirely truthful about this product; I
have never used it. I assume it must exist be-
cause I cannot believe that it does not. If any
reader has used it, would they write in about
their experience of it. I would be particularly
interested in any support given to the OS/2
GUIs.

Metaware High C/C++

The problem I have with this one is that Met-
aware with extreme promptness shipped the
wrong compiler across the Atlantic. They sent a
Windows NT version, which is fine and when I
get to do a round-up of Windows NT tools I’ll
have some relevant experience but in the mean-
time I can only make general comments about
their compilers.

One point that is well worth keeping in mind is
that their is a strong relationship between Met-
aware and IBM. Metaware wrote the SOM com-
piler for IBM and also provide a direct C++ to
SOM compilation system.

What is SOM? Well that is a little complicated
to answer in the current context but I’ll give a
brief (and I hope not too inaccurate) answer. One
of the growth areas in current computing is
DLLs and forms of object linking. The problem
from the C++ point of view is that any change in
a class declaration changes the object module so
that relinking is often not enough. This is par-
ticularly problematical when your program util-
ises a DLL. If the DLL version does not have the
same layout for classes that your code expects
there will be a horrible crunch.

SOM tackles this problem by providing an extra
layer of indirection in a language independent
way. This means that for a relatively small over-
head (less than 15%) in performance your pro-
gram can use both current and future versions of
other SOM conforming software.

The real fun starts as we move into distributed
systems and support via DSOM.

Er, yes, but what does SOM actually stand
for? – Ed.

Watcom C++ 10

The major advantage of this product is that you
get the OS/2 version along with the MSDOS /
Windows / Windows NT varieties.

As you would expect from a high quality com-
piler specialist, this is an excellent compiler. The
IDE is pretty rudimentary, which is less signifi-
cant for those who already have OS/2 develop-
ment tools from which they can, to a large
extent, build their own IDE.

I wish Watcom would go out and negotiate with
companies such as Blue Sky and Kaseworks.
Add products from these companies to Watcom
compiler technology and you have something
really special. The problem is that full products
from these companies are expensive to buy for
any but the specialist developer. Once you have
tried special versions attached to a compiler you
are likely to want the full product if your work
merits it.

If you need to support more than one platform on
an Intel x86 based machine this is a compiler
you should consider very seriously.

 Overload – Issue 7 – April 1995

 Page 7

Borland C++ 2.0 for OS/2

This is the only compiler product that I know of
that supports both OS/2 GUIs and Microsoft
ones.

Watcom, above, not withstanding? – Ed.

With this release Borland includes OWL for
OS/2. This is not a perfect match for OWL for
MSWindows but it a pretty good one. The prod-
uct is well up to Borland’s normal standard.

The down side is that it is a separate set of tools
at a separate purchase price. What we really
need is an x86 platform developers CD with both
these tools and the MSWindows ones together.

In the meantime, if you need to develop for both
Microsoft and IBM GUIs on an Intel x86 plat-
form this has got to be worth serious considera-
tion. The pity is that other priorities at both
Borland and Novell (I think they are still respon-
sible) have delayed the development of OWL for
Appware.

IBM C Set ++ 2.01

This is IBM’s package of development tools. It
is the latest release version though by the time
this is published we will not be that far from the
next release.

As always with products from IBM this is a solid
well constructed product. I don’t mean that it is
entirely bug free – I don’t think that there are
any products of this complexity for which you
can say that. However if your code does not be-
have the way you expect the chances are pretty
high that your expectations were wrong.

Of course, with a language still under develop-
ment and refinement it may be that you know
about the current state of the language while this
compiler is still implementing the 1992 version
but even the best of firms has this kind of prob-
lem.

The development environment is among the best
that I have used and the bundled KASE:Set from
Kaseworks puts all the other code generators for
AFXs to shame.

If you program solely for IBM platforms (OS/2
etc.) then by all means look at the other products
but this is the one that you will buy. I can hardly
wait to get my hands on the next version.

Conclusion

Well that’s my lot. If you want to know about
other compilers you will have to hope that your
fellow members will send me reports to collate
and publish in future issues.

I hope you can understand why I get so irritated
by those who ask me what is the best C++ com-
piler. There is no such thing and anyone who
tries to give you an answer without first check-
ing what you want to do is too ignorant to be
worth listening to.

People who answer questions without asking any
of their own are unlikely to provide useful an-
swers.

Francis Glassborow

francis@robinton.demon.co.uk

No such thing as a free lunch
by Alan Griffiths

Introduction

C++ is a wonderfully expressive language but it
places stringent demands upon the developer’s
competence. In doing this it imposes a cost on
any development using C++ which has to be bal-
anced against the benefits offered by the capa-
bilities of the language. Expressive power and
skill are often linked – a violin is harder to play
than a Stylophone but can, in the hands of a vir-
tuoso, produce music that is in a different class.
However some of the difficulties associated with
C++ are not caused by its capabilities, they are
caused by the way in which the language has
evolved. In particular: the need for compatibility
with the past has brought such baggage as the C
declaration syntax; while the “don’t pay for
things unless they’re used” principle has led to
such costly default options as static linkage of
member functions.

I have used a wide range of programming lan-
guages over the last twenty years; C++ is unique
both in the facilities it offers and in the continu-
ing effort required to use it competently. I don’t
mind the effort needed to use the expressive
power of the language but the effort required to
circumvent soluble problems is a continual irrita-
tion. In short C++ programming is not only hard,
but also harder than it needs to be.

I am not saying that programming in C++ is
wrong; far from it – I frequently need its power

 Overload – Issue 7 – April 1995

 Page 8

of expression, but this power often comes at an
excessive cost. It takes considerable practice on
the violin to play a tune (I can’t), but anyone can
play one on a Stylophone (at least I can). The
other difference is that there are many more
ways to play the tune – the results may be much
better but the cost is higher. It is always neces-
sary to consider the costs and C++ is pricing it-
self out of the market. If I have a program to be
written and a choice of a trainee programmer and
Visual Basic for a couple of weeks or an experi-
enced C++ programmer for a couple of weeks
(or an inexperienced one for a few months)
which route am I going to take? The Visual Ba-
sic program may not be as elegant or efficient,
but it is far cheaper.

Having just made some claims about the unnec-
essary cost of using C++ I should come up with
some justifications! A continual problem for me
is the unhelpful defaults of many features of the
language, for instance:

• member functions don’t default to virtual;

• default constructors, copy constructors, and
assignment operators are generated auto-
matically.

Other problems for the developer are caused by:

• the lack of a syntax for referring to classes
by their relationships (“my base class”),

• with the addition of “exception handling”
C++ is no longer a “better C”, and

• constraints on the program that cannot be
checked automatically (e.g., the “one defini-
tion rule”).

Allow me to elucidate...

Non-virtual default for member func-
tions

The static linkage of member functions (and de-
structors) is really an optimisation, and any op-
timisation choices really belong to the latter
stages of the development cycle (that is not as a
cost throughout the whole of program
development). If member functions were
declared “virtual” by default then, when it
becomes apparent that a function needs to be
overridden by a derived class, there would be no
need to amend the original class and recompile it
and everything that references the class
declaration.

The default is “justified” on the basis that the
overhead of a virtual function call is avoided
except where explicitly requested. However, I
cannot believe that the cost of dynamic binding
is significant in the majority of cases. In speed
terms suppose that dynamic binding adds 20% to
the function call overhead and 10% of the pro-
grams execution time is spent in the function call
overhead – this is almost certainly an overesti-
mate and still only gives a 2% performance hit.
Of more relevance are small classes that have
large numbers of instances. These may not be
able to stand the overhead of a vtable reference
in the memory mapping of the class.

Before anyone writes in and tells me that I
should just put virtual before almost all member
function declarations let me point out that this is
my argument. It is the need to know this is desir-
able and the time spent overriding the language
default that are unnecessary costs.

In addition, (and this is common to a number of
the other points) it is impossible to override the
defaults in library code that is outside my con-
trol. To cite a particular example of a problem
library: there are a number of classes in the MFC
library that should (allegedly :-) have virtual de-
structors but don’t. If the default were “correct”
then this would be very unlikely to have hap-
pened. It is not just Microsoft that make this er-
ror – it is also a problem with the current draft of
the proposed “Standard Library”.

The “big three”

There are many classes for which the automatic
generation of the “big three” (the default con-
structor, the copy constructor, and the copy as-
signment operator) is a positive menace. If, for
example, a pointer to dynamic memory is not
initialised (generated default constructor), or is
“bit copied” (generated copy constructor or as-
signment operator) and then “deleted” in the de-
structor, then memory management is
compromised and there are no guarantees of sub-
sequent program behaviour.

The committee recently clarified that the gen-
erated copy constructor and copy assignment
operator perform memberwise copy and
memberwise assignment respectively. Such
copying or assigning of an uninitialised value
causes undefined behaviour so you may not
even get to your destructor – Ed.

 Overload – Issue 7 – April 1995

 Page 9

Any class that manages a resource needs to de-
clare the “big three” to avoid problems. Of
course to change the language to prevent auto-
matic generation for classes which contain point-
ers (or member/base classes without the
corresponding functions) leads to a problem
about how to code copy constructors and as-
signment operators.

Naturally, tools like “lint” can be used to check
for these functions (and some of the other prob-
lems mentioned). However, the need for such
aids complicates the development process and
(as mentioned above) does not help if it is library
code in error.

Referring to related classes

Coding copy constructors and assignment opera-
tors “by hand” is difficult because there is no
syntax for navigating the network of base
classes. The lack of a syntax for “base class of
this class” also leads to problems with maintain-
ing inheritance trees in cases where derived
classes supplement the behaviour of virtual func-
tions by explicitly calling the corresponding
function in the base class.

It would be nice to say, for instance, “the direct
base class with this function”, but instead one
must identify the specific base class whose mem-
ber function is to be called and hope that anyone
adding a class between them in the inheritance
graph updates the reference. C++ would be sim-
pler to use if this process were automated. (Of
course, if one gets the design right first time...)

No longer a better C

For a large part of its development period it has
been possible to treat C++ as “a better C”, which
provides a pool of programming resources. Al-
though ex-C programmers may not produce ideal
C++, they could be productive and be gently in-
troduced to C++ programming constructs during
the course of a development. (One such pro-
grammer, after a few days spent coding some
functions with “C++” names such as
AClass::AClass and AClass::method was asking
how one went about writing a class. He took
some convincing that he had already written
most of one.)

The advent of “exception handling” changed all
that. This flow control mechanism affects every
piece of code and needs to be understood by the
programmer. As indicated above it is possible to

produce correct code without a clear understand-
ing of the “class” mechanism. However, a lack
of understanding of “exception handling” is far
too likely to lead to problem code like the fol-
lowing:

void f()
{
 char* buf1 = new char[100];
 char* buf2 = new char[100];

 if (buf1 && buf2)
 {
 // Something
 }

 delete [] buf2;
 delete [] buf1;
}

This is now badly broken – if an exception is
thrown anywhere between initialising buf1 and
deleting it, then the memory that it references
will “leak”. Of course, on many platforms losing
a few bytes like this may not be an issue, but the
same problem exists with more complex objects
and other types of resource.

Some other languages that use exception han-
dling also include “garbage collection” which
trades these problems for another, more intracta-
ble set (when you find you have insufficient con-
trol over the “garbage collection” process you
have no options). In C++ the code can be fixed
(below) but the style seems less natural to those
moving from C or early C++ implementations:

void g()
{
 char* buf1 = NULL;
 char* buf2 = NULL;
 try
 {
 buf1 = new char[100];
 buf2 = new char[100];

 if (buf1 && buf2)
 {
 // Something
 }

 delete [] buf2;
 delete [] buf1;
 }
 catch (...)
 {
 delete [] buf2;
 delete [] buf1;

 throw;
 }
}

Naturally, this is not the only solution, but unless
you wish to obscure meaning by avoiding the
direct use of pointers in this type of code then
the alternatives are equally long winded.

 Overload – Issue 7 – April 1995

 Page 10

The “One Definition Rule”

I’m not sure of the current phrasing of the “One
Definition Rule” – the draft Standard makes it
clear that “clarification” is taking place. It says
something to the effect that there may only be
one definition of any entity within a program,
and if not the behaviour of the program is unde-
fined. It also adds the helpful information that
the development environment need not offer any
diagnostic message.

This means that if both you and the developer of
a library you are using decide to define the same
“entity” then there need be no diagnostic and the
program could do anything! Just imagine what
trying to police such a requirement without di-
agnostic aids does to your development costs.

In conclusion

As I said at the beginning, “C++ is a wonderfully
expressive language” – it is; it allows a wider
range of programming idioms and algorithms
than any other language that I’ve encountered.
The downside of C++ is the need for a much
higher level of competence in using it. If C++
had a different history, or there were less focus
on “don’t break existing code” these problems
could be addressed.

At the time of writing the language standardisa-
tion process has reached a stage where the
chance of fixing any of these problems is remote.
The cost will now fall on the developer.

Alan Griffiths

alan@octopull.demon.co.uk

Subsidising lunch? – a reply
by Sean A. Corfield

First of all, let me say that I think Alan makes an
excellent point about the demands that C++
places on developers. There is no doubt that the
learning curve for a language as complex as C++
is much steeper than for, say, C. It may not be so
clear-cut that the benefits are correspondingly
higher too and so I shall not attempt to argue that
point. I shall, however, put on my compiler-
writer / X3J16 hat and respond to several of
Alan’s more specific points.

A non-virtual cost

Alan argues against the non-virtual default for
member functions and estimates a 2% perform-

ance penalty for using virtual everywhere in-
stead. Typically, 1 in 5 instructions in generated
code are function calls. Even assuming calls are
no more expensive that ordinary instructions
(and they often are), a program will spend about
20% of its time calling functions. On a particular
machine, a function call instruction takes 2 cy-
cles – what overhead does a virtual call add?
First, you have to load the address of the vtable
from the object, which takes 3 cycles. Then you
have to load the address of the function from that
table – another 3 cycles. Plus the call. This
quadruples the cost of the call. If half of all the
function calls were virtual, this would add 30%
to program execution time. Moving to another
machine, the call takes 3 cycles compared to a
load (average 6 cycles) and an indirect call (av-
erage 10 cycles) – a factor of more than 5 on the
call, and an overall factor of 40% on the pro-
gram. Of course, in these days of faster proces-
sors, even factors such as these should not matter
too much...

My thanks to Derek Jones for providing typi-
cal execution times on two very different ar-
chitectures – Ed.

As for the draft Standard Library making the
mistake of using non-virtual destructors – I
can’t think of any library classes that are in-
tended to be used as base classes, with the ex-
ception (sic) of the exception class hierarchy
which does have virtual destructors.

Base class names

In one OO-language, you can refer to a base
class with the keyword inherited. This was pro-
posed for C++ by Dag Brück some years ago
(see Stroustrup’s Design and Evolution book for
details). The proposal was not accepted for two
reasons. Firstly, what happens if you have multi-
ple base classes? Secondly, there was already a
way to do this within the language:

class Derived : public Base
 // #1
{
public:
 typedef Base inherited; // #2
 void f() { inherited::f(); }
};

Admittedly, this suffers from the multiple base
class problem too, and if you change #1 without
changing #2...

 Overload – Issue 7 – April 1995

 Page 11

Exceptions break everything

I’d love to be able to argue with Alan on the
negative impact of exception handling but, un-
fortunately, it’s even worse than he indicated!
Let’s look again at the “fixed” version of his ex-
ample:

void g()
{
 char* buf1 = NULL;
 char* buf2 = NULL;
 try
 {
 buf1 = new char[100];
 buf2 = new char[100];

 if (buf1 && buf2)
 {
 // Something
 }

 delete [] buf2;
 delete [] buf1;
 }
 catch (...)
 {
 delete [] buf2;
 delete [] buf1;

 throw;
 }
}

Is this fixed? Not quite! What happens if new
fails? It throws an exception and does not return.
In the example above, testing that buf1 and buf2
are not null pointers is redundant. In fact, it
makes no difference in the above case but the
fact that new throws bad_alloc instead of return-
ing zero will “break” almost every program writ-
ten before exception handling. One common
trick in use today is to add the statement:

set_new_handler(0);

near the beginning of main() which often sets
the behaviour of global operator new back to
the “old” behaviour. This was not portable and
in Austin (March ‘95) the committee voted to
remove this “hack” and provide a standard way
to use new without having to deal with excep-
tions – see The Casting Vote in this issue for
more details.

One solution to this problem is to embrace the
“initialisation is resource acquisition” idiom
where the “resource”, in this case memory, is
“acquired” by a constructor and released by the
corresponding destructor. The draft Standard
Library provides several ways to do this – for the
example above, it would be more “natural” to
use the vector template class:

void g()

{
 vector<char> buf1(100);
 vector<char> buf2(100);
 // Something
}

This does mean, of course, that you need to
“know” even more about C++ and its library but
the benefits are more maintainable programs
since you no longer clutter up functions with
error-prone housekeeping code.

Just One Definition?

Alan complains that no diagnostic is required for
a violation of the “One Definition Rule” which
is a reasonable complaint, but let us look back at
C first. The ODR corresponds roughly to the
link-model used in C: if you provide more than
one definition of a function or object at link-
time, it causes undefined behaviour. So we ap-
pear to have made no progress over C. Wait a
minute though – what about C++’s “type-safe”
linkage, you ask? Consider the following:

/* file1.c */
int a;
/* file2.c */
void a();
int main()
{

 a();

}

On some systems, a C compiler will successfully
link this program because it uses only names for
linkage, not types. Some systems might give a
link-time message – I once saw the very mysteri-
ous “too far to jump” message from a linker pre-
sented with the above code. Now consider a C++
system: it typically encodes a function’s calling
sequence into the name. This means that the
link-names of a the variable and a the function
will be different. So C++ has actually helped us
here!

My conclusion

At the end of the day, I basically agree with
Alan – C++ is harder to use than C – and I think
his comparison between a Stylophone and a vio-
lin is well-drawn. I don’t blame the language
(and I don’t really think Alan does either) – I
blame IT management for giving everyone a vio-
lin and saying “right, now play a tune!” What
C++ highlights is the need for better training,
better tools and more realistic expectations.

Sean A. Corfield

sean@corf.demon.co.uk

 Overload – Issue 7 – April 1995

 Page 12

Operators – an overloaded men-
ace

by George Wendle

I have received some private comments about
George’s last column so I feel compelled to
explain my position: like Francis for CVu, I
do not edit George’s column (other than to
correct typos) which means he may well be
more controversial than you care for – he
also might be completely wrong! That is for
you, dear reader, to decide. I hope that
George’s columns will encourage several of
you to respond – in the past, a particularly
barbed attack on the C++ standards commit-
tee (CVu5.6) caused me to write a somewhat
outraged response (CVu6.1) – Ed.

I like C++, it has the potential for being a great
language but it is also exceptionally complicated
almost, I think, to a degree where the designers
themselves do not understand the implications of
their decisions.

What I would like to see is a concerted effort to
simplify the language itself and make it easier to
use with predictable results – predictable, that is,
to the ordinary working programmer not just to
balding whiz kids.

The language designers seem prone to introduc-
ing things that make their lives easier, often by
allowing compilers to implicitly support some-
thing which would otherwise have to be made
explicit.

One area that is a minefield of unwanted com-
plexity is that of overloading. What is so wrong
about forcing programmers to disambiguate
close decisions? Doing so might persuade them
to look more carefully at their designs and re-
consider the degree to which they overload
things. By the way, it would be no bad thing if
the designers reversed their habit of overloading
new, subtly different, meanings onto keywords
like static. Actually that keyword is a complete
disaster akin to the term chosen for new style
function declarations: “prototypes”. Both words
are already in active use in computer science for
other purposes.

Enough of this pre-amble. Let me come to the
point of this article – overloading, and specifi-
cally operator overloading. Before dealing with

the latter let me take a quick look at function
overloading.

Function overloading – a harmless
convenience

I must admit that I think the idea of function
overloading is quite elegant, even if it is gener-
ally unnecessary. Bjarne Stroustrup writes in his
book “The Design and Evolution of C++” that
the idea arose from the need to provide multiple
versions of a class’s constructor function. There
are other solutions to this problem but I agree
that function overloading is a ‘nice’ answer.
Once you introduce it for that reason you might
as well make it a general facility.

Once you have function overloading you need a
method to resolve uses of an overloaded function
name. The first part is to collect all the candi-
dates for the decision.

The rule is currently simple (I say currently, be-
cause I do not understand namespaces well
enough to be sure that it will remain simple in
future.)

Start by examining the current scope, remember-
ing that where the call is to a member function –
always identifiable because an object or pointer
to object will decorate the call – the initial scope
is that class’s scope.

Search that scope for all declarations of the re-
quired identifier, if any are found that is your
complete candidate set.

Otherwise repeat the process for each scope con-
taining that scope.

Keep going until you either obtain a candidate
set or have failed while searching the global
scope.

In the next stage trim the candidate set to those
that have the right number of parameters (being
careful to leave in appropriate versions of decla-
rations that fit by using default parameters.)

Now look to see if one of the candidates has the
types of its parameters exactly matching those of
the arguments in the call. If so, use it (if two
match at this stage, take the programmer out and
shoot him/her – its probably an acne-ridden male
teenage, bedroom whiz kid hacker, but to say so
would make me guilty of so many -isms that the
PC world would put out a contract on me.)

 Overload – Issue 7 – April 1995

 Page 13

Don’t worry George, the PC police do not
roam the pages of Overload – Ed.

If not, you will have to go into best fit mode and
start playing games with type conversions. This
stage needs drastic simplification because the
rules are just too fine grained for good sense. It
may mean that ambiguity rarely arises, but it also
means that sometimes the resolution is not the
one that you expected, leaving some subtle de-
fect in your work. I much prefer to have a com-
piler require me to be more precise than to have
it double guess me. Now we have a range of
new-style casts, disambiguation through casting
an argument is much less dangerous.

The end result is that function overloading is
fine. You only have to use it for constructors. If
we shout loud enough the granularity of resolu-
tion might be coarsened or one of the providers
of support tools might provide a tool that would
warn of close calls.

Noted :-) – Ed.

Good programmers (usually those whose em-
ployers have supported with training and time to
develop skills) will use function overloading
with care. Bad programmers, well I doubt that
anything will make them better (but see my col-
umn in CVu7.3).

Operator overloading

I bet you thought this was just a variety of func-
tion overloading. You could not be more mis-
taken. It is completely different, it is in the
language for different reasons and it has its own
overloading rules. These are so complicated that
I am not sure that I fully understand them my-
self, so feel free to write in tearing the following
to shreds. With Sean Corfield as editor I am sure
he will act as referee and prevent any actual
spilling of blood.

Before we start providing any overloading on
operators, the language has a fully defined set of
operators, each appropriately overloaded (or not
provided if inappropriate) in the context of the
built-in types. Whatever mechanism implemen-
tors use to support these operators, it is inacces-
sible.

On the other hand, programmers who wish to
overload an operator must do so by providing a
function to do the work. Despite the slightly ec-
centric form of such an operator function, it is a

function and is subject to exactly the overloading
rules that pertain to other functions.

This can lead to some weird behaviour. Consider
the following:

void fn()
{
 int i;
 i= 1 + 2; // the RHS will, I
think,
 // be statically
evaluated
 // by the compiler.
 i = operator+ (1,2); // does
what?
}

Well that explicit call to the operator+ function
won’t be able to call the normal ‘+’ for ints be-
cause no such function exists (well it may be an
implicit function provided by the compiler im-
plementor – but we cannot use that). Instead it
will have to search global scope for any avail-
able user provided versions. These certainly will
not be for two int arguments because the lan-
guage rules explicitly forbid users providing
their own versions for parameter lists that do not
include any user defined types.

That rule is, in itself, an error because it prevents
users from providing their own mixed mode
arithmetic via operators. One of the eccentrici-
ties of C++ is the automatic type conversion
rules it inherited from C and this rule prevents
me from fixing that.

Actually, the language doesn’t forbid this –
but only when at least one operand is a user-
defined type is the full search performed, oth-
erwise only built-in operators are consid-
ered – Ed.

Next case. Consider:

void fn(){
 MyType m(...); //initialised
with
 // appropriate
values
 int i;
 i=m+1; //A
 i=operator + (m, 1); //B
 i=m.operator + (1); //C
}

At line A the compiler first looks in the scope of
MyType to see if I have provided an operator +
function

If I have, it starts the normal process of overload
resolution, but what is the candidate set? Only
those in the current scope? Those in the current
scope and the built-in ones? Those in the current

 Overload – Issue 7 – April 1995

 Page 14

scope, built-ins and globals? All those from the
current scope outwards through all enclosing
scopes to global scope?

If you truly know the answer to this question, I
take my hat off to you. I don’t. Of one thing I am
certain, the normal name hiding rules for nested
scopes do not apply to operators. They cannot or
else declaring an operator will hide and inhibit
the use of all versions in enclosing scopes.

Now suppose that as well as an in-class defini-
tion of MyType::operator+(MyType) there is a
file scope (or wider) definition of opera-
tor+(MyType, int). Under what circumstances
will this exact match be found? Only if no reso-
lution (however bad) can be found in class?
Never (i.e., the in-class version hides the other)?
Always?

Suppose that MyType provides a conversion to
YourType. When will versions of operator+
with YourType as the left operand be consid-
ered?

Now let me turn to line B above (explicit call to
operator+). I assume that this can only consider
versions provided in the scope where it is used
or in some outer containing scope. However I
have to confess that I am not entirely sure of
this.

Whether I am right or wrong, it is certainly the
case that the explicit use of an operator function
will result in quite different overload rules from
those that are used when I use the operator itself.

Obviously line C only searches within the scope
of MyType and its enclosing scopes. Obviously?
What about the case where MyType contains an
operator YourType() function? Of course you
already know the rules for this situation. You do,
don’t you? Oh, well, perhaps I over simplified
the rules for overloading functions, or did I?

Questions, questions, everywhere a
question

Have you noticed how many questions I have
asked above? Some I know the answer to, some I
don’t, but my knowledge is irrelevant. The im-
portant thing is how much can we expect from
the competent programmer like yourself. I bet if
I gave my questions to two C++ experts I would
get two sets of answers that differed in at least
one instance.

Even those that can answer all the above consis-
tently may find that they are not so sure when we
throw namespace and templates into the mix-
ture. When we get operators defined in template
classes, or worse still get offered template opera-
tor functions, we really do need a very clear un-
derstanding of the overloading rules for both
functions and for operators.

Conclusion

In the meantime I think we should all be very
wary of overloading operators. I think we can
just about live with the provision of in-class op-
erators as long as they really do represent the
natural expectations of naive users of that class.

On the other hand, I think that any global provi-
sion of operators is highly dangerous. Frankly, I
would like to see producers of class libraries
completely avoid the provision of out-of-class
operators. If they must provide them, please do
so by providing the functionality in-class and
wrapping it up in an inline function (see Francis
Glassborow’s article in Overload 6). Such inline
operator functions should be in a separate header
file so that the user determines their availability
not the library provider.

The rules for operator overloading need to be
cleaned up and made comprehensible to mere
mortals such as I, until they are the best advice is
‘do not use them, they will introduce unexpected
behaviour into your work and that of your cli-
ents’.

Finally, could our new editor (congratulations on
your first issue) either write a detailed explana-
tion of overloading or commission some other
expert to do so. I guess it might even take several
issues.

George Wendle

Thankyou George. A detailed explanation of
overloading would be very likely to fill sev-
eral issues of Overload! Perhaps I’ll take up
the challenge after I finish my cOOmpiler se-
ries or maybe I can persuade someone else to
write a series on overloading? Just to add
more spice to the issue, the Standards com-
mittee have been making changes to operator
name lookup too – see my Casting Vote col-
umn in this issue – Ed.

 Overload – Issue 7 – April 1995

 Page 15

Overloading on const and other
stories

by Kevlin Henney

I read George Wendle’s article “Overloading on
const is wrong” in Overload 6 with great inter-
est. I have always been a keen advocate of const
and the idea of const-correctness in code: it
permits the visible expression of certain design
level decisions in code for the benefit of both the
compiler and the human. So where should we
draw the line: why should some member func-
tions be const and not others, what are the ex-
ceptions to the rule, and would you like biscuits
with your const?

I thought that was “would you like fries with
your const?” – Ed.

Sean also raised an issue in reply to an old letter
of mine. Why should the assignment operator
return a non-const reference to its left hand op-
erand?

Overloading on const

George cited a few examples where overloading
on const arguments appeared to be a bad idea.
The only problem I have with these is that they
did not appear to be real examples:

void fn(D&);
void fn(const D&);

Looking over my code, I only ever use const
overloading in the context of a class and I have
been unable to find any functions overloaded on
const that do not differ in either return type or
argument count. Clearly something interesting,
and hopefully useful, is going on if I feel the ac-
cessibility of the current object should dictate
the result type. George cites the classic example
of operator[]. Providing a subscript operator for
a vector, string or map class is practically a fun-
damental requirement:

string motd = "hello";
motd[0] = 'j';

What such an operator must also ensure is the
preservation of const-ness. Consider a string
class with only one subscript operator:

char& operator[](size_t) const;

If it did not return a reference, the change to
motd above would not be possible. However, not
declaring it const would actually prevent rou-

tines passed references to const strings from
reading through the string character at a time.
There is a problem with this one size fits all ap-
proach:

const string greeting = "hey";
greeting[2] = 'p';

This is legal, but is clearly a violation of the ex-
pected semantics. The solution is to overload on
const-ness to determine the level of access the
user should have:

char operator[](size_t) const;
char& operator[](size_t);

Beyond subscription

If this were the only example of this technique I
might be inclined to agree with George that it is
an exception and should be catered for sepa-
rately, but it is not. This example outlines a gen-
eral principle related to member access. In
search of concrete examples you need go no fur-
ther than the STL1. Each container may be iter-
ated over. An iterator is defined to have pointer-
like semantics and may be initialised to the be-
ginning of a container, its end or to the result of
a search.

One problem that has previously caused prob-
lems with iterator classes is that they often fail to
preserve the const-ness of what they are iterating
over, i.e., through an iterator I can gain writable
access to const objects. Alternatively, the itera-
tor provides only lowest common denominator
access — but it is frustrating being given read-
only access to a writable object! The STL ad-
dresses this problem in a disarmingly simple
manner by requiring both const and non-const
iterators. For example, for access from the first
element a container class would include the dec-
larations

iterator begin();
const_iterator begin() const;

Overloading should only be used to give similar
concepts similar names, and this is clearly the
case here. Suggesting that the const version
should be renamed begin_const breaks with this,
causing the programmer to do the name man-
gling instead of the compiler.

1The Standard Template Library is a collection (sic) of container
classes and algorithms that has been accepted by the ISO commit-
tee as part of the C++ standard library. A copy of the documenta-
tion and a sample implementation, by the original authors of the
STL, was on the disk with Overload 5.

 Overload – Issue 7 – April 1995

 Page 16

Same thing, only different

All the discussion so far has centred on function
pairs that differ in return value but are behav-
iourally identical. There are a few cases where
the semantics and mechanism can also differ. An
example of this is a create-on-demand awk-like
array for which the non-const subscript operator
creates the indexed element with a default value
if it does not already exist. The const version
would throw an exception:

const Type& operator[](const Key&) const
 throw(out_of_range);
Type& operator[](const Key&);

On the whole, behavioural differences between
const and non-const versions of an overloaded
pair should be either non-existent or minimal.

I agree and the STL gets around this by sim-
ply not defining a non-const version of the
subscript operator for map (STL’s associa-
tive array template class) – Ed.

However, there is an example I feel would be
useful that breaks with this requirement. One of
the few areas that the C standard I/O library wins
out over its C++ counterpart is pattern matching
on input. As its name suggests, the scanf func-
tion implements a simple generic scanner, albeit
a somewhat insecure and idiosyncratic one. Tak-
ing advantage of the difference between non-
const references and const references or values
it is not hard to imagine an equivalent facility for
C++:

cin >> day >> '/' >> month >> '/' >>
year;

For such a scheme to work well, the type of lit-
eral strings would have to be const char* rather
than char*. Sean made a proposal to rid C++ of
this irksome piece of C heritage; sadly it was not
accepted by the powers that be.

And I haven’t yet discovered why the Core
WG did not adopt this proposal – Ed.

The functionality described could be imple-
mented using manipulators (see “Writing your
own stream manipulators”, Overload 5):

cin >> day >> match('/') >> month >>
 match('/') >> year;

These could take advantage of templates and
template specialisation. However, I do not be-
lieve there are any proposals to standardise such
a cluster of classes and it would be good to have

a simple version already in place that echoed the
versatility of scanf in softer, safer tones. Perhaps
const-ness in C++ has not been taken far
enough?

Back on the chain gang

Method chaining, also known as cascading, is a
useful technique for grouping a sequence of re-
lated operations together in a single statement.
The result of a function, that would otherwise be
void, can be used for further operations on the
object of interest. A primitive form of this is
available with many of the C string functions. In
C++ the most conspicuous example of chaining
is in the I/O library:

cout << "The temperature at " << time
 << " on " << date
 << " is " << temperature
 << '.' << endl;

The result of each call to operator<< is a refer-
ence to the ostream that was used for output.
Chaining is also present in the C language itself;
it is not just restricted to the library:

a = b = c;

The result of each assignment is a modifiable
lvalue of the left hand side and not a copy of that
value.

Only in C++ I’m afraid! In C, the result of
an assignment is not an lvalue – Ed.

The proposed standard library, and much of my
own code, follows this idiom. Non-const mem-
ber functions that might otherwise return void
often return *this.

coord.radius(new_r).radians(new_theta);
motd.assign(subject).append(" is ")
 .append(opinion);
dir_list.sort().reverse();

The last example is, for some reason, currently
not possible with the STL. It appears to be an
oversight that hopefully will be rectified by the
library committee: first, it is clearly useful; sec-
ond, it is important that all library components
are written to a common style which, in this
case, is that of chainability.

Assigns and wonders

All well and good, but what about the assign-
ment operator? This is the issue that Sean raised
in response to my criticism of one recommenda-
tion in the Ellemtel Programming in C++: Rules
and Recommendations document (included on

 Overload – Issue 7 – April 1995

 Page 17

the disk that came with Overload 4). The discus-
sion above suggests that because the assignment
operator is a non-const member function it
should return a non-const reference to the as-
signee. Many other sources support this view:

• The definition of assignment for the built-in
types;

• Compiler generated assignment operators
return a non-const reference;

• Assignment operators in the fledgling C++
standard library return non-const references;

• Many of the good authors in the C++ com-
munity support this as a standard idiom (e.g.,
Stroustrup, Coplien, Meyers, etc.).

These are, to say the least, quite persuasive rea-
sons. This is clearly standard form, yet the
Ellemtel guide suggests that returning a const
reference is better. To probe this decision we
must better understand what coding rules and
recommendations might help us to achieve:

1. readability, e.g., indentation, identifier
names;

2. defined-ness, e.g., the result of a[i++] = i++
is not well defined;

3. security, e.g., use of gets can seriously affect
the health of your program;

4. insurance against accident, e.g., declaring
without definition a private copy constructor
and assignment operator prevents accidental
copying of certain classes of objects;

5. conformance to expectation, i.e., preserva-
tion of the Principle of least astonishment;

6. interoperability, i.e., the ability to mix with
other components written to a standard form.

In other words, rules and recommendations are a
response to, and a preventative cure for, possible
problems. What are the problems that the Ellem-
tel guide is trying to lay to rest? Unfortunately
only one example is given:

(a = b) = c;

This is a pointless and pathological piece of
code, but how does it measure up against the
criteria for a problem seeking a solution:

1. This is quite readable — pointless, yes, but
with parentheses forcing the precedence it is
easy to see what is going on. Indeed, it might
be argued that the chained assignment with-

out parentheses offers more scope for confu-
sion.

2. This is well defined: a is assigned the value
of b, and then a is overwritten by an assign-
ment from c. Again, pointless, but certainly
well defined.

3. It is also secure — no problems with dan-
gling pointers, corrupting memory, etc.

4. You have to force the precedence to get this
code fragment, so such code is unlikely to be
produced by accident. I don’t know about
you, but my typos are normally quite simple:
I have yet to accidentally enclose a well
formed expression with balanced parenthe-
ses — and not notice!

5. In the light of what I mentioned earlier I
would expect this example to compile
cleanly.

6. If a, b and c are iterators or containers, this
code conforms to the signature requirements
for assignment laid out by the STL for con-
tainers and assignable iterators.

The only problem I was able make out was that
the authors of the guide were uncomfortable
with C and C++! If they wish to break a de facto
(bordering on de jure) standard, they will have to
do better than one contrived and weak example.
By this, I do not mean that many weak and con-
trived examples will strengthen their case ;-)

The Ellemtel guide even states, inadvertently,
why you should ignore their recommendation:

Designing a class library is like design-
ing a language! If you use operator
overloading, use it in a uniform manner;
do not use it if it can easily give rise to
misunderstanding.

I have already described the uniform manner
above. In other words, a non-const reference
returned from an assignment is not a problem but
an expectation: the absence of a problem does
not require a solution, but expectations should be
met.

Kevlin Henney

kevlin@wslint.demon.co.uk

 Overload – Issue 7 – April 1995

 Page 18

operator= and const – a reply
by Mats Henricson and Erik Nyquist

We are pleased to see Kevlin Henney so thor-
oughly scrutinising one of the recommendations
in our public domain document. We are prepared
to change this in our forthcoming book “Indus-
trial Strength C++”.

The document was last updated in 1992, and at
that time there were quite a few writers that ad-
vocated a const reference to this as return value.
Actually, we got the idea from Scott Meyers af-
ter a speech at USENIX C++ 1991 in Washing-
ton. Also, Rob Murray’s widely acknowledged
book, “C++ Strategies and Tactics” recommends
this (page 32, 2.2.1 Return value of operator=):

Assignment operators should return a
constant reference to the assigned-to ob-
ject.

One reason why a const reference might actually
be of least astonishment is that this is the way it
works in C. Try this in your favourite C com-
piler:

int main()
{
 int x = 1;
 int y = 2;
 int z = 3;

 (z = y) = x; /* From Sun C
compiler:
 illegal lhs of assignment
operator
 */

 return 0;
}

In C++, on the other hand, this code is legal
since by default the result of an assignment ex-

pression is a non-const reference of the object
assigned to. This is the motivation as to why a
non-const reference is appropriate as return
value for overloaded assignment operators.

Why have this incompatibility between C and
C++? We really don’t know! Maybe Bjarne had
a bad day in the early eighties when he decided
to change this? ;-)

Mats Henricson

mats.henricson@eua.ericsson.se

Erik Nyquist

eny@alv.teli.se

I asked Bjarne Stroustrup about this gratui-
tous difference between C and C++ and got
the following response – Ed.

Why make the change? Why not? The value of:

(a = b)

is a which is an lvalue. Also, we have found real
examples of the general form:

T& f(T& a, const T&) { return a=b; }

Bjarne Stroustrup

bs@research.att.com

Whilst putting this issue together, I was read-
ing Scott Meyers’ column in The C++ Re-
port, January 1995, where he talks about
writing max and min functions. He notes that
maintaining const-correctness is very diffi-
cult with templates and I can now see a par-
allel between that and the assignment
operator. Like Mats and Erik above, I may
well change my view on this – Ed.

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

In this issue, I report on the Austin WG21/X3J16 committee meeting from March 1995.

The Casting Vote
by Sean A. Corfield

The standards process has now reached a very
interesting stage. In my last column I said we
would know the result of the Committee Draft
Registration (CDR) ballot and whether we would

be progressing to the ballot that produces a Draft
International Standard. The result of the CDR
ballot was as follows: 8 countries voted to regis-
ter the draft with no comments, 5 countries voted
“yes with comments” and 2 countries voted
“no”. This means that we will register the CD
and proceed into the next ballot bringing an In-
ternational Standard much closer. According to

 Overload – Issue 7 – April 1995

 Page 19

the current schedule, the Draft International
Standard will be produced at the end of 1995.

What of the comments, though? France and the
Netherlands voted “no” because the standard is
too large and complex and the library is too large
and not yet stable. Both Australia and New Zea-
land made similar comments but voted in favour.
So is the draft really too big? Judge for your-
self – we are shortly to enter the ANSI public
review: send a mail message to

c++std-notify@research.att.com

and when the public review starts you will be
notified with details of how to make comments
to X3J16 (the U.S. C++ committee). You can
also make comments on the draft through your
national standards body and for those of you in
the UK, you can send your comments to

c++comments@maths.warwick.ac.uk

and a member of the UK C++ panel will collate
them so that the panel can review them and feed
them into the standards process. How will you
get access to the Committee Draft? The
c++std-notify list will tell you – the draft
will be available by anonymous ftp in PostScript
and probably PDF formats from both U.S. and
UK sites. The review period is not very long so
it is imperative you get your comments in as
soon as possible.

In the meantime, committee business was con-
ducted pretty much as usual in Austin.

Exception safety

Various concerns about exception handling were
addressed in Austin. One concern was memory
leaks when placement new throws an exception:

char buffer[SIZE];
X* p = new (buffer) X;
// if X::X() throws an exception,
// no cleanup is done

For the simple example above, the lack of
cleanup is not a problem – the placement new
used does not allocate memory. If placement
new is, say, a pool allocator, then any memory
allocated will not be deleted if the constructor
throws an exception. The solution to this was
proposed by Bill Gibbons and adopted in Austin:
define a placement delete that is called auto-
matically in such circumstances. For each op-
erator new you define, you will now be able to
define a matching operator delete that will be

called by the implementation if an exception is
thrown by the constructor:

void* operator new(size_t, bool);
void operator delete(void*, bool);
X* p = new (true) X;
// if an exception is thrown by X’s
// constructor, operator delete will be
// called as:
operator delete(p, true);

Another exception-related issue is constructor
initialisers – with the existing language defini-
tion, there is no way to catch an exception
thrown by a member initialiser or base class ini-
tialiser. This is a problem if you delegate work to
a library object and don’t want your users to see
the exceptions thrown by that library:

class X
{
public:
 X() : libObj() { }
private:
 LibObj libObj;
};

If the LibObj constructor throws an exception, it
will propagate to users of class X. This lack of
encapsulation led to a proposal to add a try
block that encloses the initialisers:

X::X() throw (XException)
try
: libObj()
{
}
catch (LibException)
{
 throw XException();
}

For symmetry, this syntax is also allowed on or-
dinary functions.

As I note elsewhere in this issue, the fact that
new throws an exception on failure is a problem
in itself. In Austin, the committee decided that
the previous “implementation-defined” hack of
allowing set_new_handler to restore the old be-
haviour – returning zero on failure – was pre-
cisely that: a hack. The solution adopted was
originally proposed by John Skaller, I believe,
and is extremely elegant: simply provide a
placement new form that guarantees no excep-
tions will be thrown. The exact details still need
some work, but essentially you will be able to
write something like:

X* p = new (nothrow) X;

and guarantee that if new fails, it returns zero
instead of throwing an exception. This almost
allows you to compile your code with:

-Dnew='new (nothrow)'

 Overload – Issue 7 – April 1995

 Page 20

and keep your old behaviour. Almost? Well,
you’ll have to #include the appropriate header to
get the definition of nothrow (no, I don’t know
where it will end up) and it will break any exist-
ing placement new’s you may have. The com-
mittee did not add a symmetric placement delete
but this may yet appear.

More template extensions

At the San Diego meeting in March 1994 the
committee added member templates to the lan-
guage and some library proposals adopted since
have relied on this new feature. Quite a few im-
plementors have expressed concern that member
templates are very hard, or even impossible, to
implement. In many cases, an alternative to
member templates would be the ability to par-
tially specialise a template, e.g., given a generic
list class, it would be desirable to be able to spe-
cialise this for all pointer types. This facility has
now been added for both functions and classes:

template<class T> void f(T); // #1
template<class T> void f(T*); // #2
int i;
int* p;
f(i); // calls #1 void f<int>(int)
f(p); // calls #2 void f<int>(int*)

This is a combination of specialisation and over-
loading. If #1 and #2 had been declared in sepa-
rate translation units, this probably worked on
many implementations. For template classes the
situation is somewhat more complicated:

template<class T> class X { ... };
template<class U> class X<U*> { ... };

The second declaration specialises the first for
all pointer types. It doesn’t declare a template,
despite its appearance, but instead specifies a
more specialised form of the first template decla-
ration. The partial specialisation can appear to
have more template arguments:

template<class T, class C> class X<T
C::*>
{ };

which specialises X for all pointers to members.
Similarly, specialisations can appear to have
fewer template arguments:

template<class A, class B> class Y { ...
};
template<class P> class Y<P, P*> { ...
};

The second declaration is a specialisation of the
first – the template Y still has two arguments. I
don’t know about you, but I thought this was
sufficiently confusing to vote against the pro-

posal. Unfortunately, the majority of the com-
mittee did not share my concerns and adopted
partial specialisation.

Returning briefly to member templates, the
committee resolved a syntactic problem with
explicit qualification of member function tem-
plate calls. There are circumstances where syn-
tax analysis cannot know whether an identifier is
a template or not:

template<class T>
class Strange
{
...
 int odd()
 {
 return T::f<1>(2);
 }
...
};

Since we don’t know what f is (other than it be-
ing a member of T), we don’t know whether this
is an explicit qualification of a template member
function of T or a double comparison:

class Static
{
public:
 static int f;
};
class Member
{
public:
 template<int n> void f(int);
};
Strange<Static> ss; // (Static::f < 1)
> 2
Strange<Member> sm; // Member::f<1> (2
)

In a similar decision to the use of typename to
identify member types in dependent names, the
committee decided to allow the use of template
to identify a member template:

template<class T>
class NotSoStrange
{
...
 int odd()
 {
 return T::template f<1>(2);
 }
...
};

Here, the identifier f is always treated as a tem-
plate name and the <1> means explicit qualifica-
tion (as in Strange<Member> above). Without
the keyword template, the example would mean
a double comparison of a static member (as in
Strange<Static> above).

 Overload – Issue 7 – April 1995

 Page 21

And now, for something
completely...

...awful. Namespaces provide a way to parcel up
components in a way that avoids name pollution
but they have introduced many problems for
name lookup. Consider the following program:

#include <iostream.h>
int main()
{
 cout << "Hello world!\n";
}

At the moment this works because operator<<
is either a member function (of ostream) or a
global function. With namespaces, this would
become:

#include <iostream>
int main()
{
 std::cout << "Hello world!\n";
}

This only works, under the current rules, if op-
erator<< is a member function for the char*
operand (it is). What if the operand is of a dif-
ferent type?

#include <iostream>
#include <complex>
int main()
{
 std::complex<double> unity(1, 0);
 std::cout << unity << '\n';
}

Perhaps surprisingly, this will not work because
the necessary operator<< is in the namespace
std and will not be found by name lookup be-
cause that scope is not searched under the cur-
rent rules. The proposed solution was to
additionally look in the namespace of the types
of the operands, which would solve the above
problem (by searching std), but I noted that this
would not be sufficient:

#include <iostream>
#include <complex>
namespace MyLib
{
 class MyComplex
 : public std::complex<double>
 {
 // ...
 };
}
int main()
{
 MyLib::MyComplex unity(1, 0);
 unity + unity;
}

Here, operator+ is defined in std and the oper-
and types are both defined in MyLib. The “obvi-
ous” answer was to extend the name lookup to

also search base class namespaces. This leads to
the following possibilities for finding an opera-
tor:

1. a member function (found by existing rules),

2. a global operator (found by existing rules),

3. a built-in operator (found by existing rules),

4. an operator declared in the namespace of the
types of the operands (new rule),

5. an operator declared in the namespace of any
base class of the types of the operands (new
rule).

This is the change I alluded to in my comment at
the end of George Wendle’s article. In the above
example:

 unity + unity;

the search proceeds as follows:

1. look for a member function of
MyLib::MyComplex (there isn’t one)

2. look for a global operator+ (may find some
but assume we don’t)

3. look for a built-in operator+ (find several
dealing with built-in types)

4. look in the namespaces of the operands
(MyLib has no operator+ declarations)

5. look in the namespaces of the base classes of
the operands (std certainly has a suitable op-
erator+)

These are all thrown in the pot for overload reso-
lution where, we hope, std::complex opera-
tor+(std::complex, std::complex) wins!

As I said – awful. The UK did not support this
but it does seem to solve the problem. Hopefully,
someone can come up with examples that have
undesirable behaviour under these rules and we
can revisit the issue.

Out, out, implicit int!

At a previous meeting the committee voted to
ban implicit int in a couple of places and depre-
cate it everywhere else. This meant that a future
standard may consider removing the feature.
However, the C standard is undergoing revision
and it seems likely that WG14 (the ISO C com-
mittee) will deprecate, or possibly ban, implicit
int. In this light, the C++ committee revisited
their decision and decided to ban implicit int
everywhere in the language.

 Overload – Issue 7 – April 1995

 Page 22

Name injection

Although no vote was taken on this subject, it is
a bubbling cauldron for many members of the
committee. Here is an example that highlights
the problem:

class A
{
 friend void f(); // injected
 //
immediately
};
template<class T> class B
{
 friend void g(); // injected
 // only at instantiation
};
void h()
{
 f(); // fine – injected
by
 // declaration of A
 g(); // error – no such
 // name in scope
 B<int> b; // causes injection
of
 // friend g()
 g(); // fine – name
 // injected by
 // instantiation of
B
}

This may not seem too outrageous but consider
this example:

template<class T> class C
{
 friend void injected();
};
template<class U> void t(U)
{
 C<U> c;
}
void innocent()
{
 injected(); // error – no such
 // name in scope
 t(1); // call t<int>(1)
and
 // instantiate
C<int>
 // which injects
 // injected()
 injected(); // fine – name has
 // been injected
}

Somehow this seems more insidious than the
previous example as no explicit template class
has been used that could inject the name. What
about the following?

void confused()
{
 t(1), injected(); // valid?

}

It becomes important exactly when an instantia-
tion occurs. The Extensions WG were particu-
larly uncomfortable with this example as it leads
to the idea of instantiation sequence points (i.e.,
madness).

The German delegation are very concerned
about this and, in my opinion, rightly so. The
potential for confusion is high. In Austin, I sug-
gested that instantiation be done in a synthesised
scope so that injected names could not affect the
original scope. In the example above, that would
mean that the injection of injected() due to the
use of C<int> would occur only local to
t<int>(1) and would not affect the innocent()
function. This seemed to gain support amongst
the Extensions WG and we agreed to investigate
this further. I hope that we can cap the problems
of name injection at the next meeting.

Future meetings

The next ISO/ANSI meeting takes places in July
‘95 so The Casting Vote will next appear in the
August issue – Overload 9. In the meantime, the
public review will have begun so I hope to have
many articles from you, the public, about the
Committee Draft.

An aside

Because the general public feeling is that we (the
committee) should not be adding to language, in
Austin we took the decision to disband the Ex-
tensions WG – its members will now turn their
attention to core language issues such as the
“One Definition Rule”...and the many extensions
that have been voted into the core language over
the last few years.

Sean A. Corfield

sean@corf.demon.co.uk

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

 Overload – Issue 7 – April 1995

 Page 23

Ian Horwill begins a series that examines C++ features from a beginner’s point of view and in three re-
lated articles, The Harpist, Ulrich Eisenecker and Roger Lever look at object relationships and how multi-
ple inheritance may or may not fit in.

Wait for me! – copying and as-
signment

by Ian Horwill

I am fortunate enough to (a) enjoy programming
and (b) make my living by programming. Unfor-
tunately, I am currently making it in C. I am
therefore trying to get up to speed in C++ in
some spare time. In this article I would like to
present some of the interesting little features of
C++ that I have encountered along the way.
Anyone who is not a beginner should probably
skip ahead to one of the more advanced articles
in this issue!

A bug?

Imagine my surprise at finding a widespread bug
in the Borland OWL 2.0 class library! In virtu-
ally every class, two functions had been declared
with no corresponding definitions to be found
anywhere.

The declarations were of the following format:

X(const X&);
X& operator=(const X&);

A little investigation revealed that a bug report
to Borland would not be necessary. As you are
no doubt aware, the first declaration is for a con-
structor for class X that takes a reference to an
existing object of class X. It can be used as fol-
lows:

void print_cheque(
 const Cheque& addressed_cheque,
 Value amount
)
{
 Cheque
new_cheque(addressed_cheque);

 new_cheque.set_value(amount);
 new_cheque.set_date(today.date);
 new_cheque.print();
}

new_cheque is constructed as a copy of ad-
dressed_cheque – i.e., the constructor
Cheque(const Cheque&) (called a ‘copy con-
structor’) is called to initialise the new object
from the value of an existing object.

A couple of points to note here. First, the pa-
rameter to a copy constructor is passed by refer-
ence and not by value. Passing by value would

result in an infinitely recursive succession of
calls to the copy constructor to take a copy of its
own parameter.

Secondly, had the declaration of new_cheque
been as follows:

Cheque new_cheque = addressed_cheque;

it is still the copy constructor that would have
been called, not operator=, because we are still
constructing a new object rather than assigning
to an existing one.

To complete the definition of a copy constructor,
it is any constructor that can take a single argu-
ment of its class type, e.g.,

X(const X&, int = 42);

is also a copy constructor for class X because a
default value is provided for the int parameter.

Now for operator=(). To recap, C++ allows us
to define functions named after the built-in op-
erators such as *, +, << and of course =. The
‘name’ of such functions is the symbol itself pre-
ceded by the keyword operator. For example,
we could define the operator+= to concatenate
one string to another:

String& String::operator+=(
 const String& s2
)
{
 String& s1 = *this;
 // Code to append s2 to s1
 return s1;
}

void my_function()
{
 String s1("Remember, remember,");
 String s2(" the Fifth of
November");
 s1 += s2;
 // Could also write:
 // s1.operator+=(s2); but it
rather
 // ‘defeats the object’ :-)
}

Therefore, operator=() could be used as fol-
lows:

void print_cheque(
 const Cheque& addressed_cheque,
 Value amount)
{
 Cheque new_cheque; // initialise
 // with default constructor

 new_cheque = addressed_cheque;
 new_cheque.set_value(amount);
 new_cheque.set_date(today.date);

 Overload – Issue 7 – April 1995

 Page 24

 new_cheque.print();
}

Here, operator=() is called to change the value
of one existing object (new_cheque) based on
the value of another (addressed_cheque).

Well this is all very interesting, but the problem
is the compiler generates a default copy con-
structor and a default operator=() for every
class that doesn’t have explicit versions. These
default versions initialise or assign to each
member of the class, using that member’s ex-
plicit or default copy constructor or assignment
function. For example:

class A
{
public:
 A& operator=(const A&);
};

class B
{
 ...
private:
 A a;
 char* p;
};

void f()
{
 B b1, b2;
 ...
 b1 = b2;
}

In this example, b2.a is assigned to b1.a using
the operator=() defined for class A and b2.p is
assigned to b1.p using normal (memberwise)
assignment.

The problem arises if you don’t want users of
your class (or member functions of the class it-
self) to be able to make extra copies. For exam-
ple, if your class object monitors a physical
resource, it probably doesn’t make sense to have
multiple copies of the resource monitor being
passed around and getting out of step with each
other. However, unless you declare a copy con-
structor and assignment operator, the default ver-
sions will allow extra copies of class objects to
be made willy-nilly.

The solution? You do declare a copy constructor
and an assignment operator. However, you don’t
have to define them! The mere fact of having
declared them prevents the compiler from gener-
ating default versions. Of course, you can define
them if you want to – you will still be in control
of the copying.

If you put the declarations in the private section
of the class declaration, the compiler will reject

attempts to call them from outside the class it-
self. Inadvertent calls within member functions
will cause the linker to complain that it can’t
find the required definitions.

Well that about wraps it up. Editor willing, next
issue’s article will be about perhaps the most
confusing keyword in C++ – virtual. I’d be de-
lighted to hear about any C++ issues that make
you feel ‘left behind’. Be warned that my an-
swers will be based on “The Annotated C++
Reference Manual” (1991). I’ll leave it to the
likes of Sean to correct me on the latest devel-
opments.

Ian Horwill

100441.3700@compuserve.com

I’m willing, so get writing! :-) – Ed.

Related objects
by The Harpist

I sent Francis an article to forward to Sean Cor-
field about some uses of multiple inheritance. He
read it and returned it with the suggestion that it
was really the tag end of a much larger topic. So
here is the first of what I intend to be a two part
article on the way objects are related and can be
used as components.

In the beginning there were the built-in types
inherited from C. There were also a number of
derived types, pointers, arrays (perhaps more
correctly, vectors) and structs. C and C++ added
type qualifiers – one each, C++ added const and
then C added volatile. In C, type qualifiers were
just that and nothing more. They represented two
simple concepts, read only access and unreliable
memory (memory that could change at the most
inconvenient moment by intervention from out-
side the program).

C++ added references

None of this would have mattered had not over-
loading been introduced into C++. That changed
the rules out of all recognition. The type system
was invoked to support overload resolution and
suddenly types started to sprout in all directions.
For example we now have not one but eight fla-
vours of int (int, const int, volatile int, const
volatile int, int&, const int&, volatile int&,
const volatile int&). Are all the flavours actu-
ally different? Well yes, and no. It all seems to

 Overload – Issue 7 – April 1995

 Page 25

depend on the context. For example when an
int& goes out of scope, the underlying memory
almost always remains.

Almost always – why not always? Well it might
be a reference to a temporary. Now that leads to
the interesting question for language lawyers
“What is the difference between a local variable
and a local reference bound to a temporary?”
You don’t know? Well don’t ask me, because I
haven’t the vaguest notion.

(When the language lawyers have finished with
that question, perhaps they will turn their minds
to what sort of type a mutable int is? I guess
you cannot have a mutable const int, but can
you have a mutable volatile int? These are
really tough questions, and need not concern
most of us but they highlight the problems that
are caused by even apparently sensible minor
extensions to the language.)

Whereas const and volatile are cv-qualifiers
and, hence, modify the type, mutable is ‘only’
a storage-class-specifier and does not affect
the type. Members of a const object are not
normally modifiable (e.g., inside a const
member function) without casting away
const – mutable was provided to obviate the
need for the cast in certain well-defined cir-
cumstances – Ed.

So far all we have in C++ is C things turned into
types. Actually we can do quite a bit with this,
particularly when we add in class concepts and
conversions, both via constructors and via opera-
tors. The fun starts when we add in the next
layer: derivation.

At its simplest, derivation just allows us to reuse
code even when we do not have access to the
original. If it stopped there we wouldn’t have
much of a problem, but we also wouldn’t have
the tools for object oriented programming.

This form of derivation often has a sense of re-
finement or improvement. Its like taking the ba-
sic concept of a screw and adding the idea of a
cross-head to it. It often suffers from the same
problems, something simple and utilitarian be-
comes more specialised and complicated to use.
We can – at a stretch – use a knife on an old
plain screw. Knives do not work on machine
screws – worse, we need just the right sort of
cross head screwdriver if we are not to damage
our high-tech screw.

Hidden inside the concept of derivation for reuse
is the concept that a derived type is a replace-
ment for the original. To understand what is
happening we have to step back and see that the
concept of derivation gives us another way to
build new types.

The old method is called aggregation or layering.
We assemble a new type by wrapping up a num-
ber of earlier types into a single package. Aggre-
gation is a little like using Lego®: you start with
a number of building blocks, push them all to-
gether and finish up with something useful
though more complicated. It is like building a
computer from components, motherboard, power
supply etc.

The new method allows us to start with an object
and then add modifications to it. That gives us a
decision to make. Should we cram a whole lot of
bits together (aggregation) or should we modify
an existing type (derivation).

Upgrading your computer

Even at this level we can have problems. Is re-
placing the video card in our computer deriva-
tion or aggregation or neither? Think very
carefully because I do not think that even this
simple real world action can be properly mod-
elled with simple C++ technology.

When we designed our computer class we al-
lowed for replacement video cards because we
provided a ‘pointer to video card’ onto which we
could attach a specific instance of a subtype of
video card. But how do we provide for the en-
hanced functionality that our new card provides?

Perhaps we should have provided a function
pointer for our video driver. Yes, that is obvi-
ously the answer. Have fun. Going fully object-
oriented can take an awful lot of time.

Note that you cannot derive your SVGA com-
puter from your old VGA one even though the
former is a VGA machine because you are re-
placing a data item and over-riding functionality.

Inheritance versus aggregation

The mythology of object-orientation gives us a
simple rule of thumb to decide which approach
to use. We are supposed to ask if ‘X is a Y’ or
does ‘X have a Y’?

I deliberately used the term mythology because
this question is simplistic and misleading. It
doesn’t work. It is a lousy criterion and conceals

 Overload – Issue 7 – April 1995

 Page 26

some really serious problems with object-
orientation. Problems so serious that I can find
no answers within the C++ type system. Let me
give you two examples:

A circle and an ellipse

I can remember Francis drumming into us in
maths lessons that ‘a circle is an ellipse’. Mathe-
matically a circle has all the properties of an el-
lipse. Mathematically a circle is a specialised
ellipse.

Now let us look at an ellipse from a C++ type
point of view. We sit and list all the functions
that we want to apply to an ellipse. One of these
functions will involve change of eccentricity
either explicitly or through some other change
such as magnification in only one dimension.

Actually change of eccentricity is a rather good
function to consider – what happens if the eccen-
tricity goes negative? Exactly! The ellipse stops
being an ellipse. You see, our names for various
conics deal with specific constraints that we can
apply to one or more defining properties.

The OO concept of ‘is a’ requires that the de-
rived object can substitute for the original in all
cases. In the case of circles and ellipses this is
not true. In fact, I know of no way of represent-
ing the relationship between a circle and an el-
lipse in terms of the C++ type system.

Some will claim that I have simply taken a
pathological case and that most things fit the
type system quite happily. I think that this will
be seen to be just about as true as the Victorian
attitude to what we now call fractal curves. The
unnatural case is not the fractal one but those
shapes that have an integral dimension.

Complex numbers and reals

Scott Meyers gives this as another example of ‘is
a’ breaking down. He isn’t strictly correct be-
cause mathematically a real isn’t a complex
number (with a zero imaginary part). However
there is an isomorphism (one to one mapping of
both data and operations) between reals and the
subset of complex numbers with a zero imagi-
nary part.

It is virtually impossible to represent this rela-
tionship in an object-oriented fashion. It makes
no difference whether you try to derive complex
from real, real from complex or provide a con-
version operator; the relationship simply does

not fit. The best we can do is to consider whether
it is worth providing semi-intelligent division
(and perhaps multiplication) to cope with cases
where complex operands degenerate to reals.

It is worth noting that most implementations of
complex numbers you find in books and maga-
zines completely ignore efficiency in this area.
Division of a complex by a real, multiplication
of a real by a complex and of a complex by a
real should be provided directly and not by con-
verting a real to a complex.

I have written about reals here because I am
looking at this from a mathematical view but it is
worth noting that there are no reals in comput-
ing, only rationals.

Polymorphism

Where a number of sub-types share functionality
but differ in implementation of that functionality
it makes sense to design an abstract base class
that declares the functionality with (pure) virtual
functions which will be defined in the derived
classes. But if this is what you are doing you
should think very carefully before adding func-
tionality in a derived class. If you do so, it will
only be available directly through that sub-type.
This seems to be an error to my way of thinking.

A cluster of polymorphic types should be inter-
changeable, whatever one can do the others
should be able to do as well, though by a differ-
ent mechanism.

Perhaps that last paragraph overstates the issue,
but I wrote it because so many texts seriously
understate it.

Take the example of your Shape hierarchy. The
purpose in providing such a hierarchy is pre-
cisely because you will not know at compile
time what specific shapes will be used. You can
only use generic shapes in your program so pro-
viding any special feature for a specific shape
will be a complete waste – you will not be able
to use it.

Inheritance for modification

Though based on substantially the same lan-
guage mechanisms this use of inheritance is
completely different. We are not trying to model
a cluster of functionally related objects with dif-
ferent implementations. What we are trying to do
is to reuse an earlier implementation by changing
or enhancing it.

 Overload – Issue 7 – April 1995

 Page 27

In this situation I can accept suppression of func-
tionality in the derived class, addition of func-
tionality and even quite radical modification.
Some will argue that private bases should be
used in such cases. I do not agree. I see nothing
wrong with taking table and deriving a folding
table from it. You can even use your folding ta-
ble as a table. However if you want the property
of folding you will need to use it as it really is.
We are not using polymorphism, we must know
that we have a folding table before we can use it
as such.

I think that the main motive for RTTI (run time
type information) is to try to cater for this double
view of inheritance so you can have polymor-
phism and modification at the same time. Next
time you will see that I think such duality is best
implemented via multiple inheritance.

Template classes

These add an entire new dimension to the possi-
bilities. They deal with the cases of things that
are usually functionally identical, down to im-
plementation detail, but based on unrelated
types. Inheritance deals with multiple refine-
ments and specialisations from a single base
class. Template classes deal with similarities for
distinct, unrelated types.

For example, for type safety a container class
needs to be coded for the type of object that it is
containing. We need separate linked lists of ints,
floats, Shapes etc. We need these because we
will often need type specific declarations for
variables, parameters and return types even
though the functionality is identical.

Polymorphism deals with “same data sets, dif-
ferent implementation details” while template
classes deal with “same implementation details,
different data sets”.

I oversimplify because sometimes a template
class will need a specialisation to provide an im-
plementation tuned to a specific data set. But it
is the principle that concerns me here.

Summary, different types

• Built-in types, sometimes called scalars.

• Qualified and derived built-in types (point-
ers, const, reference etc.)

These two groups are related both within each
group and between groups by built-in conver-
sions. Any attempt to summarise the rules is

about as complicated as simply listing the con-
versions.

Simple user defined types: enums, unions,
structs and classes. The relationships between
these are governed by built-in rules (e.g., those
for enums) and by user provided specifications
(single parameter constructors and conversion
operators).

Derived user defined types. For cv-qualification,
etc, user defined types follow the same rules that
apply to built-ins. Those derived from bases
have both a language-provided relationship be-
tween base and derived as well as a conceptual
relationship. The conceptual relationship can
include polymorphism.

Template types (classes) raise another question.
What part, if any, do they play in the type sys-
tem? Before you dismiss this as a trivial question
answered with ‘none’, stop and consider the im-
pact of partial specialisation. For example:

template<class T1, class T2> sometype
{...};
template<class T> sometype<int, T>
{...};
template<class T> sometype<T, int>
{...};
sometype<int, int> s;

What happens to this declaration of s?

It should be ambiguous but maybe we’d bet-
ter wait to see the exact wording in the work-
ing paper, since such partial specialisations
were only added in Austin – Ed.

Even before we consider multiple inheritance
(next issue) we have a rich range of choice. Mix-
ing single inheritance with template classes is
really fun.

The problem is that we need to have a very clear
idea about the strengths and weaknesses for each
method for developing new user defined types.
The classic ‘is a’ and ‘has a’ relationships are
completely inadequate. As we have seen they do
not relate to much of our formal experience in
mathematics. The excuse that attempting to de-
rive a square from a rectangle shows failure to
analyse the problem domain correctly is a cop
out. Show me how to do it properly!

What is the relationship between single and dou-
ble precision maths? (not just floats and doubles,
but complex floats and complex doubles, quater-
nion varieties, polynomial ones etc.) This would
seem to be the domain of template classes even

 Overload – Issue 7 – April 1995

 Page 28

though there will probably be only two (perhaps
three with long double) types of each. How do I
provide conversions between types based on the
same template? To be honest, I do not know. For
many the answers are of no importance but for
those working in computationally intense areas it
matters a lot.

Theoretically, by using member template con-
version operators...if anyone can ever get
them to work properly – Ed.

Conclusion

I started out to write about multiple inheritance
(mixins and addins). Francis persuaded me to
think again on the grounds that there was much
more to the story. On reflection, I have to agree
that he was right though the problem is that
much of the rest is like the old maps annotated
with ‘Terra Incognita’.

Before we even begin to think about MI, we
need a much better understanding of how to use
the C++ type system to develop objects that map
the relationships found in the real world.

The Harpist

Related addendum
by Francis Glassborow

I have given a lot of thought to the problem ex-
emplified by the relationship between circles and
ellipses. One of the most unfortunate features is
that polymorphism is so often explained in terms
of Shape and draw(). To get that inheritance
graph right requires a deeper understanding of
problem domains and OO than is possessed by
most.

What is needed is a mechanism for providing
polymorphic objects rather than polymorphic
types. In other words we need an object that is
sometimes a circle exhibiting circle functionality
and is sometimes an ellipse with elliptical behav-
iour. The same object, but two behaviours. I
think I can do it but before I write it up for the
next issue, I’d be interested to hear your ideas on
the subject.

Exercise

Write up a C++ implementation of the relation-
ship between circles and ellipses. Send it in and
I’ll collate the results and then provide my own
answer.

That will be easy because it takes a mind that
thinks round corners to tackle the problem and
most (if not all) of you will leave it to someone
else.

Francis Glassborow

francis@robinton.demon.co.uk

I hope that quite a few of you will prove
Francis wrong :-) – Ed.

Multiple inheritance in C++ –
part I

by Ulrich W. Eisenecker

This is the first in a series of articles. This part is
about the basics of multiple inheritance such as
syntax and multiple base classes and their ini-
tialisation. As an introduction, I will summarise
details of inheritance and virtual functions.

A review of inheritance and late bind-
ing

Inheritance is mainly a technique for reusing a
description of an existing class to describe a new
class. If Derived inherits from Base it means,
that in some respect Derived is like Base. Nor-
mally one would add further data members or
methods to Derived. It is even possible to substi-
tute an inherited method with a new implementa-
tion. This may be a complete substitution or an
extension, in the sense that there is new code
which calls the old implementation. From this
point of view it is adequate to speak of a class
hierarchy. To illustrate this relation it may be
helpful to think of Derived having a Base subob-
ject (Fig. 1). This relationship is not to be con-
fused with a has-part relationship.

Base

Base

Derived

Fig. 1: Inheritance between classes

Another important aspect is that, by default,
method calls are resolved at compile time (stati-

 Overload – Issue 7 – April 1995

 Page 29

cally). Consider a method m in Base, which is
over-ridden in Derived. If a pointer to Derived is
assigned to a pointer to Base, invoking m for
that pointer will execute Base::m(). Actually, in
most circumstances the execution of De-
rived::m() is wanted. To achieve this, so called
late binding is needed, which takes place at run-
time. To specify late binding for a method, its
declaration in a class is qualified by the keyword
virtual. This needs to be done only once (in
Base) to be effective for all descendants of Base,
but it is not an error to repeat it when declaring a
method over-riding m. In the example below,
screen output is marked by a preceding “>”.

class Base
{
public:
 virtual void hello()
 { cout << "Base::hello()\n"; }
};

class Derived : public Base
{
public: // Next use of "virtual" is not
 // necessary!
 virtual void hello()
 { cout << "Derived::hello()\n"; }
};
...
Base* p = new Base;
p->hello();
p = new Derived;
p->hello();
...
>Base::hello()
>Derived::hello()

In C++, inheritance can be controlled by access
specifiers, namely public, protected and pri-
vate. With public derivation an instance of De-
rived can always be used when an instance of
Base is expected. From this point of view one
may speak of a type hierarchy. If inheritance is
protected or private, the described assignment
and execution of inherited methods no longer
works.

class Base
{
public:
 virtual void hello() {}
};

class public_Derived : public Base
{
public:
 virtual void hello() {}
};

class protected_Derived : protected Base
{
public:
 virtual void hello() {}
};

class private_Derived : private Base
{

public:
 virtual void hello() {}
};
...
Base* p;
p = new public_Derived; // ok
p = new protected_Derived; // error
p = new private_Derived; // error

This simply means that in C++, a class hierarchy
does not necessarily coincide with a type hierar-
chy. And, in contrast to many other object-
oriented programming languages, C++ provides
language constructs to explicitly express differ-
ences between those hierarchies and therefore to
control them.

The need for multiple inheritance

Multiple inheritance is a simple extension of
single inheritance in so far as a class can inherit
directly from more than one class. Multiple in-
heritance is often said to be unnecessary. This is
not true for at least two reasons:

1. There are cases when modelling using mul-
tiple inheritance preserves more of the prob-
lem-specific semantics.

2. Due to the inheritance-based polymorphism
in C++, multiple inheritance is essential for
accessing combined objects by pointers.

Let us look at an example, which is taken from
[EIS93], where a phone and a TV form a new
device. We start with the following classes:

class Phone
{
public:
 virtual void dial(char* number)
 {
 cout << "Dialling " << number
 << "...\n";
 }
};

class TV
{
public:
 virtual void switchOn()
 { cout << "TV switched on.\n"; }
};

A first approach to building a two-in-one device
could be to make either a TV or a Phone part of
a new device called PhoneTV. In either instance
you must forward specific requests to the em-
bedded device:

class PhoneTV : public TV
{
 Phone aPhone;
public:
 virtual void dial(char* number)
 { aPhone.dial(number); }
};

 Overload – Issue 7 – April 1995

 Page 30

TV

Phone

TV

PhoneTV

Fig. 2: PhoneTV with single inheritance

An instance of a PhoneTV can be switched on
and can be used for dialling a number:

PhoneTV aPhoneTV;
aPhoneTV.switchOn();
aPhoneTV.dial("073127174");

But what happens if a pointer to a TV is initial-
ised with a dynamically created object of type
PhoneTV?

TV* aPhoneTV = new PhoneTV;
aPhoneTV->switchOn();
aPhoneTV->dial("073127174");

At least BC 4.0 issues the error “'dial' is not a
member of 'TV'”. That is because there is no
method dial defined for TV, and the information
about the availability of dial is lost when assign-
ing a pointer to PhoneTV to a pointer to TV. If,
instead, we try:

Phone* aPhoneTV = new PhoneTV;

the compiler complains that it “Cannot convert
'PhoneTV *' to 'Phone *'”. The reason is that
PhoneTV is not a descendant of Phone.

Without explicit type conversion, pointers to a
more specialised class may only be assigned in
C++ to a pointer to a public ancestor of this class
(i.e., all inheritance provided by public deriva-
tion).

This means that polymorphism in C++ works
only along the inheritance graph. This can be
different in other object-oriented languages. For
instance, polymorphism in Smalltalk is signa-
ture-based. A Smalltalk-object receiving a mes-
sage checks whether the signature (message
name plus parameters) of the message is known
to the object’s class or to any of its ancestors. If
so, the first method found is executed. Using this
technique, called forwarding, (fig. 2) is a com-
mon procedure for combining the behaviour of
two classes in Smalltalk. Signature-based poly-
morphism means that there is no need for multi-
ple inheritance in Smalltalk, even though

combining classes in this way can be conceptu-
ally dirty.

The way to solve the problem with phones and
TVs in C++ with only single inheritance is to
introduce a common superclass for Phone and
TV, which has abstract methods dial and
switchOn. But this is not a good design, since
the devices which will be combined in future are
unknown. That implies the need to change the
definition of this superclass whenever another
method is needed. This implies many problems:
the source code must be available, recompilation
is necessary, the semantics of derived classes
may be affected, name conflicts may occur if a
derived class already has a method with the same
name, and so on. Classes, and especially abstract
classes, should always be designed to be stable
and only be altered as a last resort. The problem
of overloaded root classes is well known in lan-
guages without multiple inheritance but provid-
ing polymorphism through inheritance. See the
early versions of C++ (e.g., in The Annotated
Reference Manual).

Syntax of multiple inheritance

So all that is necessary is multiple inheritance,
and the syntax is quite simple. The classes from
which the derived class inherits are listed, sepa-
rated by commas:

class PhoneTV : public Phone, public TV
{};

TV

TV

Phone

Phone

PhoneTV

Fig. 3: PhoneTV with multiple inheritance

Now all works as expected:

PhoneTV* aPhoneTV = new PhoneTV;
Phone* aPhone;
TV* aTV;
aPhoneTV->switchOn();
aPhoneTV->dial("0731-27174");
aPhone = aPhoneTV;
aPhone->dial("0731-27174");
aTV = aPhoneTV;
aTV->switchOn();

Of course it is possible to mix public, protected
and private derivation deliberately.

 Overload – Issue 7 – April 1995

 Page 31

Initialisation of base classes

As always in C++, there is something going on
behind the scenes! Let us add default construc-
tors and destructors to TV and Phone:

class Phone
{
public:
 Phone()
 { cout << "Phone\n"; }
 virtual ~Phone()
 { cout << "~Phone\n"; }
 virtual void dial(char* number)
 {
 cout << "Dialling " << number
 << "...\n";
 }
};
class TV
{
public:
 TV()
 { cout << "TV\n"; }
 virtual ~TV()
 { cout << "~TV\n"; }
 virtual void switchOn()
 { cout << "TV switched on.\n"; }
};

Now it can be shown that the order in which the
base classes are declared determines the order in
which constructors and destructors of the base
classes are called. In the next examples screen
output is again marked by a preceding “>”:

class PhoneTV : public Phone, public TV
{ };
...
PhoneTV();
...
>Phone
>TV
>~TV
>~Phone

class PhoneTV : public TV, public Phone
{ };
...
PhoneTV();
...
>TV
>Phone
>~Phone
>~TV

This ordering can not be overridden by explicitly
calling the constructors of base classes in a dif-
ferent order:

class PhoneTV: public Phone, public TV
{
public:
 PhoneTV() : TV(), Phone()
 {}
};
...
PhoneTV();
...

>Phone

>TV

>~TV
>~Phone

Disambiguation of name conflicts

What if both Phone and TV have a method mute
introduced? For Phone, mute means that trans-
mission of speech is interrupted, until mute is
pressed again. When mute is sent to an instance
of TV, the speaker volume is set to zero. Press-
ing mute again, restores volume to its original
value. For the purpose of demonstration, the
methods just print out their names. All works
fine until the moment mute is called. Then it is
necessary to resolve the conflict. This is done by
qualifying mute with the name of the desired
class followed by two colons:

class Phone
{
public:
 virtual void dial(char* number)
 {
 cout << "Dialling " << number
 << "...\n";
 }
 virtual void mute()
 { cout << "Phone::mute\n"; }
};
class TV
{
public:
 virtual void switchOn()
 { cout << "TV switched on.\n"; }
 virtual void mute()
 { cout << "TV::mute\n"; }
};

class PhoneTV : public Phone, public TV
{};
...
PhoneTV().Phone::mute();
PhoneTV().TV::mute();
...

A nice challenge is modelling a twin-phone.
What about simply deriving it twice from a
phone?

class TwinPhone : public Phone, public
Phone
{};

Phone

Phone Phone

TwinPhone

Fig. 4: An impossible TwinPhone

 Overload – Issue 7 – April 1995

 Page 32

As this new class now incorporates two phones,
it also has two methods dial. The mechanism
introduced above to resolve ambiguities will not
work here, because there is no way to distinguish
one phone from the other. This is the reason that
C++ forbids direct derivation from the same
class more than once. However, a class may in-
directly inherit a base class any number of times.
Conflicting names can then always be disam-
biguated by providing suitable class scope quali-
fiers using the :: notation.

Next issue

In the next article, I will introduce virtual base
classes using an example from mathematics –
combinations, and a program to generate them.

References

[EIS93] Eisenecker, Objektorientierung und
Wiederverwendbarkiet. In: unix/mail
6/93, pp420-429.

Ulrich W. Eisenecker

eisenecker@dbag.ulm.DaimlerBenz.com

On not mixing it...
by Roger Lever

The articles in Overload 6 by Francis Glass-
borow (Friends – who needs them?) and Graham
Kendall (Putting Jack in the Box) were very in-
teresting, but I wasn’t entirely comfortable with
the concepts being put forward. So I decided that
I would put pen to paper.

Before I put forward a rationale for an alterna-
tive approach allow me to establish my creden-
tials – I have none! I work as an Analyst
Programmer using mainly Visual Basic, MS Ac-
cess and Plexus (a 4GL specialising in imaging).
My personal interest is in C++ and my experi-
ence to date is at the ‘toys’ level, but I take my
toys very seriously!

The section entitled “Mixins and printable”
(pp10-11) takes an approach with which I am not
entirely comfortable. I can see the rationale and
it offers a certain elegance but public inheritance
should be used to mirror the problem domain
and express one of the two (now) classic rela-
tionships of:

1. is-a e.g., a car is-a type of, or kind of vehicle

2. has-a e.g., a car has-a engine (also known as
composition)

However, the article uses mixin classes (Print-
able and Storable) and creates an inheritance
hierarchy for Record that does not express this
is-a or has-a relationship. The article points out
that the alternative approach of using has-a fails
because:

• You can’t instantiate an ABC (i.e., Printable
or Storable)

• Late (or dynamic) binding requires an inheri-
tance hierarchy

I shall come back to this thread later, for now I
want to move onto a later article within Over-
load 6.

The section entitled “An answer from the Harp-
ist” (pp22-25) stresses the difference between
Object Based Programming (OBP) and Object
Oriented Programming (OOP). However, the
solution to the problem “Putting Jack in the
Box” seems overly complex, in particular the use
of contents and container as part of the inheri-
tance hierarchy. The inheritance hierarchy again
does not map onto the is-a relationship but is
used as a mechanism to enable a polymorphic
solution. I’m in favour of an alternative design:

1. The container view of the problem should be
expressed with templates

2. The inheritance hierarchies should only use
is-a / has-a – like Person

If a solution can be expressed simply then it
should be, so opportunities to simplify multiple
inheritance should be examined. An example of
simplifying a multiple inheritance hierarchy is in
section 12.2.2 of Bjarne Stroustrup’s C++ Pro-
gramming Language 2e (pp404-407). More gen-
erally, Tom Cargill’s C++ Programming Style
also offers excellent general advice with a chap-
ter dedicated to unnecessary inheritance.

Both of the articles use inheritance incorrectly
when using the strict is-a or has-a interpretation.
The mixin approach appears to offer a simple
solution to providing printer and disk services
and the alternative of using composition fails on
the two items quoted above. At least that was the
author’s contention – I’m not so convinced, but
then again I do fall into the category of inexperi-
enced! Everything has a cost, so what are some
of the costs with the mixin style?

• The complexity of the software rises (OK!
Very subjective :-)

 Overload – Issue 7 – April 1995

 Page 33

• is-a and has-a inheritance are subverted to
use / add a mixin style

• Multiple inheritance is invoked very quickly
and also subverted

• Virtual base classes become almost a neces-
sity

• The potential impact of ambiguity (collision
of names) rises

• Recompilation costs are increased by the
inheritance lattice

My objective is to show an alternate to the mixin
design, which uses ‘proper’ inheritance. In the
process I also hope to provide an answer to the
two quoted objections to using composition.

The key to design is to find the right abstractions
for the problem. The two abstractions here are
record and device where device could be the
screen, printer or hard disk. The important point
is that the services required, “printable” and
“storable”, have been abstracted into a Device.
Device can therefore be an ABC, or the base
class of an inheritance hierarchy if we want the
benefits of dynamic binding. This approach does
not subvert is-a as a Printer (or Disk) is-a De-
vice.

Lattice 1 Lattice 2
 Screen Printer Disk Printer
Disk

 |_______|______| |_______|
 | |
 Device(ABC)
Device(Screen)

If Device is an ABC (Lattice 1 above) then it
cannot be instantiated (and the compiler gives an
error). However, this would be the preferred ap-
proach as it defines the interface for all objects
derived from it. However, I started with the sec-
ond version! (Lattice 2 above) The reason is that
I started with just a Device, printing to the
screen, and Record. I ran across a number of
problems before arriving at this solution. Code
implementing this lattice is shown at the end of
this article. There is plenty of scope to improve
this code, such as using an ABC to define a
minimal but complete interface for Device, add-
ing exception handling etc.

The code given below uses the C++ version of
multiple polymorphism and also uses a buffer to
reduce the coupling between Record and Device.
If readers are interested in how exactly I arrived
at this point I could be persuaded to bore you
some more!

Roger Lever

rnl16616@ggr.co.uk

It would probably be quite educational to see
the earlier, discarded, designs that led you to
this one – Ed.

// Compiled using Borland 4, Output to a DOS Standa rd EXE file
// No special code used or Borland specific librari es. Organised into
// two files record.h and main.cpp. All classes wer e defined inline in a
// single module – this is only suitable as an exam ple.
// Complete listing of the working code which can b e cut and pasted into
// a project for experimentation. Starts from here. ..
// record.h-- ---------------------
#include <strstrea.h> // provide the buffer serv ice for output
#include <fstream.h> // provide the ofstream ex tensions to device

// Device default output is to the screen member fu nctions are
// virtual as inheritance will be used to extend th is class to
// different types of devices, such as disk, printe r, optical...
class Device {
public:
 Device(void) { cout << "Device born\n"; }
 virtual ~Device(void) { cout << "Device dies\n"; }
 virtual void output(ostrstream& os) const {
 cout << os.str();
 }
};

// Very basic record class inspired by Overload 6. It is declared
// after the Device class since output() takes a De vice parameter
// Functions are declared virtual since a derived c lass will want
// to exploit the polymorphic behaviour especially buildOutput()
class Record {
public:
 Record(void) { cout << "Record born\n"; }
 virtual ~Record(void) {
 cout << "Record dies\n"; strm.rdbuf()->freeze(0);
 }

 Overload – Issue 7 – April 1995

 Page 34

 virtual void output(Device* dev) { dev->output(str m); }
 virtual void buildOutput(void) {
 strm << "Build Record output\n" << '\0';
 }
protected:
// Protected to enable derived classes to access st rm but not
// provide public access to it
 ostrstream strm;
};

// Very basic extension of the Record class to demo nstrate
// dynamic binding within a derived class which use s the
// inherited interface item output()
class ExtendRecord : public Record {
public:
 ExtendRecord(void) { cout << "ExtendRecord born\n" ; }
 virtual ~ExtendRecord(void) {
 cout << "ExtendRecord dies\n";
 }
// Override what the derived class wishes to send t o output
// but there is no need to override the behaviour o f output
 virtual void buildOutput(void) {
 strm << "Build ExtendRecord output\n" << '\0';
 }
};

// Extend device to support generic harddisk servic es. This class
// should ideally support more options especially f ilename and
// file access mode
class Disk : public Device {
public:
 Disk(void) {
 cout << "Disk device created with default hardcod ed name\n";
 }
 virtual ~Disk(void) { cout << "Disk dies\n"; }
 virtual void output(ostrstream& os) const {
 cout << "Disk writes to rubbish.txt\n";

 ofstream out("rubbish.txt", ios::app);

 out << "Disk output to a file:-" << os.str();
 }
};

// Extend Device to support generic printer service s. This class
// would need to encapsulate the horrible details o f dealing with
// hardware. For example the ‘print-stream’ may be fine but the
// desired result may not be achieved because the p rinter is
// disconnected, out of paper...
class Printer : public Device {
public:
 Printer(void) { cout << "Printer born\n"; }
 virtual ~Printer(void) { cout << "Printer dies\n"; }
 virtual void output(ostrstream& os) const {
 cout << "Printer output echo to screen\n";
 ofstream cprn(4, os.str(), os.pcount());
 cprn << os.str();
 }
};

// main.cpp-- ----------------------
#include "record.h"
int main() {
// Uncomment one of the following three devices to show dynamic
// binding in action. Use device for a generic devi ce which prints to the
// screen. This device is extended to include disk and printer services
// Device* pdev = new Device;
 Device* pdev = new Disk;
// Device* pdev = new Printer;

// Create an arbitrary record and output to the req uired device
 Record a;
 a.buildOutput();
 a.output(pdev);
// Create an extended version of record and output to the required device
 ExtendRecord b;
 b.buildOutput();
 b.output(pdev);
// Clean up the new’d item, destructors will cleanu p the record objects

 Overload – Issue 7 – April 1995

 Page 35

 delete pdev;
 return 0;
}
// End -- -----------------------

editor << letters;
Hi Sean!

Well although I am a member of the C++ SIG, I
admit that I am not an accomplished C++ pro-
grammer, and at the moment program in C. The
reason for this letter is, I realise that although as
a Special Interest Group the majority of mem-
bers are probably fairly competent C++ pro-
grammers, the reason that I joined the SIG was
to learn more C++. So, would it be possible to
have some kind of “beginners’ corner” or some
kind of series running to introduce C++ in an
efficient manner. I’m not saying “start from
scratch”, but maybe show the advantages of C++
over C and where it can be used to great effect.
Maybe some kind of project where a final prod-
uct is produced and people would contribute
ideas. If it started off from a fairly basic level,
this could introduce basic C++ and also allow
people to offer ideas and thoughts. It would also
be possible to ‘teach’ program design and the
use of methodologies and the project may high-
light limitations of certain methods, some people
could probably offer new, or modified, ideas as
regards program design, or show the way for-
ward when everyone is baffled. This may well
make the SIG more accessible, but my percep-
tion of what its function is may differ from other
people’s ideas.

I realise I’ve only put forward an idea, but why
not put it to the SIG and see what people say?
And that a lot of extra work would need to be
done in order to get something like this started.
Unfortunately I’m nearing the end of my final
year and so can only say I’ll try something after
I’ve finished. It probably would be hard to keep
the more experienced programmers from ‘throw-
ing their weight’ around, but they could lend a
hand when things go wrong or basically didn’t
go forward. It would also probably need an ac-
complished and dedicated programmer to control
the whole idea.

Phil Shotton

SP134@greenwich.ac.uk

I completely agree with Phil – it’s all
very well getting advanced C++ articles

from many of the accomplished pro-
grammers in the membership but novices
need a hand too. CVu caters for those C
programmers interested in C++ but
Overload should cover everyone moving
beyond that. From the various responses
I’ve had to Overload 6, I think I can
safely say that there will be a broader
mixture of articles in future issues – Ian
Horwill’s article in this issue is a good
example.

Dear Sean,

Welcome to your new post as Editor. Best of
luck!

FWIW & IMHO (this was sent by e-mail, after
all!), some comments on Overload 6:

First of all, the level of expertise from your con-
tributors is impressive. I feel there is a lot to
learn about C++ programming and this is a good
place to do it. I also love being able to read about
what’s going on at the standards meetings.

The ubiquitous Francis has come up trumps with
his article on friends and how to get rid of them.
This is just the sort of removing of wool from
eyes that we could do with more of. However, I
find it interesting that Francis can talk with the
same vehemence about leaving the return value
out of main, and adding return; to the end of
void functions; surely this is of far less practical
importance!

Moving on, I find myself disagreeing with
George Wendle on the evils of allowing over-
loading on const. If we were worried about lan-
guage features letting us do stupid things, we’d
be programming in Ada, not C / C++! It’s valid
to point out the pitfalls and, forewarned, press
on. Let good programming continue to come
from understanding, not restrictions (which ap-
proach never works anyway).

Well done to Kevlin for submitting his proposal
to the ISO committee. I hope it gets through.
wchar_t looks too much like a user type for my
liking. With regard to operator= returning a

 Overload – Issue 7 – April 1995

 Page 36

const or non-const reference, currently we have
the choice (i.e., X& operator=(const X&) vs.
const X& operator=(const X&)) so what’s the
problem? Please don’t promote language restric-
tions to force people to write ‘good’ code.

I loved the combined article from Graham Kend-
all and the Harpist on “Putting Jack in the Box”.
This style of article is extremely informative. I
hope you will continue to feature such articles,
even if they have to be contrived (to overcome a
shortage of people humble enough to submit
‘trivial’ problems that in fact are held to be
common by many).

Overall a thought-provoking issue! Well done
and good luck for the future.

Ian Horwill

100441.3700@compuserve.com

Thanx for the encouragement, Ian! Not
sure about your comment regarding
Ada – seems to me that even Ada gets
the ‘subset’ treatment to prevent the un-
wary making mistakes :-) Please note
that Ian also contributed a beginner’s
eye view of copy and assignment – Wait
for me! elsewhere in this issue – I would
strongly encourage other beginner / in-
termediate C++ programmers to write
articles about their experiences.

Sean,

I much enjoyed Overload 6 and was interested to
read the “Putting Jack in the Box” question from
Graham Kendall and the excellent answer to the
problem from the Harpist. I thought the Harpist
hit the nail on the head by differentiating be-
tween object-based and object-oriented pro-
gramming, and also saying that “one problem
with OOP is that you do need to get the design
right to start with”. I couldn’t agree more. But, at
the risk of muddying the waters, I wonder if
there are further aspects to the “Putting Jack in
the Box” problem.

Finding objects to model one’s first object inter-
actions is not as easy as might appear. Firstly,
you have to design them. That presumably
means discovering or inventing abstractions that
are relevant to the problem. That in itself brings
on a problem – being aware of what you’re mod-
elling. In a recent JOOP article [1], Steve Cook
and John Daniels sublimely state the obvious

when they say that “Software isn’t the real
world”. They go on to explain that when captur-
ing candidate abstractions which are to be the
basis of your classes and objects, you’re not
modelling the real world but your system. In
other words, your model represents a determinis-
tic system, not the probabilistic real world.

Selecting the objects to model can be made diffi-
cult by the sort of object you choose. The
Model-View-Controller paradigm has been
around a long time and was recently described
by Jim Rumbaugh [2]. This approach suggests
that objects of a system are either Model objects
(the objects directly traceable to the problem
domain), View objects (e.g., the GUI objects) or
Controller objects (objects that contain the
“rules” of the system). I suggest it’s much easier
to concentrate on domain objects in your early
modelling – and preferably in a problem domain
you’re comfortable with. If it’s banking, try Cus-
tomer and Account; if it’s traffic management
systems, try Car, Truck and Bus. “Putting Jack
in the Box” might prove a little tricky since
we’re modelling the association of Jack, a do-
main object, with Box, an interface object. The
issue has to be resolved at some stage of course,
but maybe later.

So, for people getting to grips with these issues
for the first time, perhaps the problem of “Jack
in his Box” is soothed by understanding that it’s
a system you’re modelling rather than the real
world, and picking domain objects from a do-
main with which you’re comfortable. Hopefully
then the object relationships are more tangible,
can be modelled and coded more quickly and
easily, and convey to the person a sense of satis-
faction at progress achieved rather than frustra-
tion at thorny issues unresolved.

[1] “Software isn’t the real world”, Cook and
Daniels, Journal of Object-Oriented Program-
ming, vol. 7, no. 2, May 1994, pp22-28.

[2] “Modelling Models and Viewing Views”,
Jim Rumbaugh, Journal of Object-Oriented Pro-
gramming, vol. 7, no. 2, May 1994, pp14-19.

Christopher Simons

I agree that identifying the correct ob-
jects can be one of the hardest parts of
designing a system. I’m reminded of an
OOA/D seminar I attended where the
presenter gave the example of an oil re-
finery and showed how the “obvious”

 Overload – Issue 7 – April 1995

 Page 37

objects (tanks, valves etc) did not give
the most flexible design. He then turned
the design around so that the connec-
tions became the objects – the most im-
portant attribute was the topology of the
refinery – and this made the model eas-
ier to adapt and extend. Very thought
provoking!

Dear Sean,

One of most common functions in almost any
class is the function that returns the value of a
private member variable:

class fred
{
public:
 int getAttribute()
 { return attribute; }
private:
 int attribute;
}

Is there a better way of doing this? I can only
assume that there isn’t, as all the C++ code I’ve
ever seen is always littered with getThis(), get-
That() and getTheOther(). It would be so much
more elegant if there were some way of defining
a member variable as being private for writing,
but public for reading, or even – hold on to your
hats ANSI committee – how about allowing the
overloading of variable and procedure names:

class fred
{
public:
 int attribute()
 { return attribute; }
private:
 int attribute;
}

Dave Midgley

100117.2522@compuserve.com

I suppose this is why member data often
gets an artificial name:

class fred
{
public:
 int attribute()
 { return attribute_; }
private:
 int attribute_;
}

I don’t much care for this (nor any other
prefix or suffix convention) but it’s
probably too late in the standards proc-
ess to do much about it. I rather like

functions to have names of the form
“verb” or “verb object” so getAttrib-
ute() seems fine to me. What do other
readers think about this?

Sean,

Just a letter to thank you and Mike Toms for
Overload 6. With any luck this letter is appear-
ing in Overload 7. My last letter took the slow
boat to the letters page, missing an issue and
dropping from my memory – I wondered why I
agreed with so much of what it said :-)

Thanks to a typo the price of my opinion was
cheap: only 1 cent. To make up for this, and also
to fall in line with the unfortunate pound for dol-
lar pricing adopted by most companies pedalling
their computer wares on both sides of the pond,
the opinions here are hopefully worth the full
two pennies worth.

I admit that I was a little surprised when I read
Francis’ EXE article last year on reducing the
space and time overhead for returning large ob-
jects. I could not see why the method he em-
ployed was better than a copy-on-write reference
counting technique. As it turns out, when push
came to shove neither could Francis, as he re-
vealed in last issue’s “Blindspots”. Given the
bristling armoury / stable / toolbox (depending
on your attitude to development) of techniques a
competent C++ programmer should possess,
blindspots are inevitable.

Handle classes are useful in their place. They are
well described in Coplien’s C++-must-have,
“Advanced C++ Programming Styles and Idi-
oms”, and I made use of them in my “Strings
Attached” series in CVu. However, some words
of warning in case you should get carried away
with this technique. It is an optimisation, and
hence a measured response to a performance or
resource usage problem. Like any other optimi-
sation, it should not affect the correctness of the
program’s run time.

Multi-threading makes the expression of certain
ideas simple, whilst making mincemeat of some
previously correct code. For instance, blocking
on I/O whilst carrying out a background task is
trivial, whilst any use of static data is an open
invitation to corrupt data. I have never been a
great fan of non-const static data: it invites back
many of the problems associated with global

 Overload – Issue 7 – April 1995

 Page 38

data, including the possibility for interrupted
write access and thus incoherent state.

When creating a threaded object the initialisation
of the thread’s members occurs before the thread
is actually spawned, hence there are no problems
with mutual exclusion. On the other hand, refer-
ence counting allows two separate objects to
transparently reference the same state. Unless a
copy can be forced, e.g., with an en-
sure_unique() member, these two objects could
accidentally end up sharing state between two
different threads. If one thread pre-empts the
other part way through an operation on the refer-
ence counted part to perform its own update, the
behaviour of your program will become unde-
fined. This is a classic race condition and will be
hard to track down.

Yet if you do not use reference counting this
problem will never occur. This is a situation
where such an implementation is anything but
transparent – the class implementation violates
the abstract type. You might suggest making the
body part of the object thread-safe, ensuring that
each operation on it is a mutex-guarded critical
region. Leaving aside the problem of how many
mutexes your system has available versus the
number of strings you anticipate using, the effi-
ciency loss will be quite dramatic: every access
on a fine grained object like a string is locked
and unlocked by a pair of system calls. Such
heavy use of resources and reduction in per-
formance is not an ‘optimisation’ in anybody’s
book!

Another blindspot I found interesting was the
use of anonymous enums for constants in C. I
have used for class compile time constants in
C++, but it was only when teaching someone
else some C after doing so much C++ work that I
realised, like the Harpist and Francis, it was gen-
erally applicable. It was a kind of “aha” moment
when I was comparing the two languages – again
showing that learning C++ retrospectively im-
proves your understanding of C and how best to
use it. Hopefully C9X will sort out some of the
shortcomings of const in C.

Referring to Graham’s letter in the last issue
over the use or otherwise of NULL in C++, I saw
an interesting post in comp.std.c++ from Scott
Meyers (of “Effective C++” fame) on how to
write a user defined null pointer. It went some-
thing like

class null

{
public:

 template<class type>
 operator type*() const
 { return 0; }
};
const null nil;

So any use of nil in the context of a pointer will
return a correctly cast null pointer for that type.
This basic class can be elaborated to make nil
behave more like a built-in null pointer. Tem-
plate members are still not widely supported and
so I cannot test this code out. However, I can’t
say I’m in any hurry to replace 0 with nil as I am
personally not allergic to well defined raw val-
ues.

Kevlin Henney

kevlin@wslint.demon.co.uk

The C++ committee have considered
some standard form of null pointer like
this but there are subtle problems. In the
example given, every use of nil relies on
a user-defined conversion. Consider the
following code:

class A
{
public:
 A(const char*);
};
void f(const A&);
f(0); // actually f(A(0))
f(nil); // fails – only one
UDC
 // allowed

The only solution to a portable null
pointer would appear to be adding a
new keyword that behaved ‘magically’,
but could everyone agree on how to
spell it?

Your comments about multi-threading
code make me wonder whether I could
persuade you (or perhaps some other
reader) to contribute an article on the
pitfalls of writing MT-safe code? I’m
sure it would provide food for thought
and it is likely to become a very impor-
tant topic as increasingly more parallel
machines appear.

Dear Sean,

Inspired by John Smart’s article “A Text Format-
ting Class” in Overload 6, I thought that it was
about time that I entered the fray here with some

 Overload – Issue 7 – April 1995

 Page 39

comments about C++ streams versus C’s printf
style output. Let me begin by saying that I have
recently made the painful transition from C to
C++, and have become a big fan of C++ and ob-
ject orientation. I am currently engaged in a large
C++ project using OOP techniques. Hence I can
see that C++ output streams, using the over-
loaded << operator, are extremely elegant, and I
appreciate the type safety that they offer. How-
ever, I find C++ streams rather limiting in real
world situations (or my version of the real world
anyway :-) and I have come to the conclusion
that there are many situations in which printf
style formatting offers distinct advantages. Let
me explain further.

What I miss with C++ streams is the ability to
express the formatting information for a message
in a single call to a user defined function with a
printf style signature. The truth is that I very
rarely want to send simple formatted output to
stdout, which is what the examples in the books
tend to show. I find this especially so in the
brave new world of visual environments ;-) In
the past, in the course of several large C projects,
I have made extensive use of functions that take
printf style argument lists, for things like error
messages or paginated output. Inside the func-
tion, the argument list is decoded using
<stdarg.h> (or the pre-ANSI <varargs.h>), and
formatting of the message is done using vprintf
(or vsprintf or whatever). It can then basically do
whatever it wants to with the formatted data.
Some of the advantages of this approach that
spring to mind are:

1. The actual destination of the message can be
encapsulated inside the function, and can be
changed without modifying the calling pro-
gram. Thus for example an error message
function can be defined, without the calling
program needing to know the actual destina-
tion of the messages, which may well change
during the evolution of a project.

2. Messages can be routed to more than one
destination, e.g., the operator’s console and a
log file. Again, this can be encapsulated in-
side the function, and the calling program
remains the same.

3. The destination doesn’t have to be an actual
device, e.g., messages could be sent to a
window, or deposited in a memory buffer.
The point is that the calling program doesn’t
need to know any different.

4. The function can manipulate the formatted
data on its way to the destination, e.g., it
could count newlines and insert a page head-
ing at the appropriate places, or a time stamp
could be added to messages.

5. The function can have side effects, e.g., an
error function might set an error flag, or per-
form some other action, as well as outputting
an error message.

6. Pointers to functions with a printf style sig-
nature can be passed around to specify
where messages should be sent, including
functions which do some of the things in
items 1 to 5, i.e., not necessarily straight I/O.
This is particularly useful in library func-
tions, to avoid embedding application specif-
ics in the library code.

7. Additional parameters can be supplied to the
function along with the message formatting
information.

8. The function can provide a return value, e.g.,
the message could be a prompt for a dia-
logue, with the response being decoded by
the function and returned as an enumerated
value or a boolean.

Of course, the down side of the above approach
is the lack of type safety due to the “...” in the
printf signature. I guess many would consider
that an overriding factor, and indeed I am veer-
ing towards that view myself. But right now my
feeling is that the convenience outweighs the
lack of type safety.

Some, but not all, of what I want to achieve
could be done with C++ streams if I could set up
an ostream object to which I could direct my
messages, but rather than being attached to an
output device the formatted data would be deliv-
ered to a user defined function, preferably on a
line by line basis. I think this could probably be
achieved by deriving from the streambuf class,
but this does not seem to be well documented,
not for the general user anyway, and would cer-
tainly not be easy, plus delving into the internals
of the class would make me nervous about port-
ability. I would be interested to hear from any-
one who has some ideas on how to do this.

On a slightly different subject, something that I
don’t like about C++ streams is that the notation
tends to become rather verbose when using any-
thing other than the default formatting parame-
ters. Also the behaviour of different formatting

 Overload – Issue 7 – April 1995

 Page 40

parameters does not seem to be consistent. For
example, say I want to output an unsigned char
as a 2-digit, zero-filled hexadecimal value. In C
this is done easily and succinctly using:

printf("%02x\n",uc);

and everything is fine. In C++ I innocently write:

cout << setfill('0') << setw(2) << hex
 << (unsigned int)(uc) << '\n';

which appears to work fine except that I sud-
denly find that all subsequent integral values are
being output in hex. Yes, I know that the pro-
gram should set the format back to dec after-
wards (or ideally save the format flags before
and restore them afterwards), but my point is
that it’s not consistent in that setfill and setw
only remain in effect for the one inserter,
whereas the effect of hex is permanent. And I
certainly wouldn’t want to have to output too
many values in this format using the long-
winded C++ notation!

To sum up, I guess the conclusion I have come to
is that C++ streams are fine for simple formatted
output, but for anything even a little bit complex
good old printf style output seems to come into
its own, despite its recognised shortcomings in
type safety. On the other hand, having made the
transition to C++ and object orientation in most
other respects, I feel like maybe I should be us-
ing C++ style input / output in new projects, de-
spite everything. What is the status of stdio and
printf style formatting in the C++ standard any-
way? Is it deprecated, or is it even supported at
all?

Bob Firth

Troika Associates Limited

firth@troika.demon.co.uk

The whole of the ISO C library, includ-
ing the printf family, has been incorpo-
rated into the draft C++ standard. The
committee recently decided to remove
stdiostream, which was previously in-
tended as a bridge from stdio to
streams – fstream now does the same
job, only better. If it’s any consolation
Bob, I find streams almost completely
impenetrable and would dearly love
someone to write a clear and simple ar-
ticle on how to derive new classes from
parts of the streams library – any tak-
ers?

And finally, Nicholas Rutland asks of Overload
6:

Does ‘transitional’ always mean ‘missing pp6 &
35’?

I’d be interested in the missing pages. Email is
fine.

Nicholas Rutland

rutlandn@oldpaul.agw.bt.co.uk

Oh dear! I hope that Nicholas was the
only reader whose copy suffered such
gremlins...

Questions & Answers
Got a C++ problem? Not sure whether it’s you or the compiler? Send it in and Overload will try to sort
you out!

Phil Shotton asks:

If I was thinking of writing bespoke application
software (probably customer databases, maybe
also windows programming) would the package
Borland C++4.5 and Database Engine 2.0 be
good enough? (as an aside, as I’m a registered
user I can buy the two for £180 or thereabouts)
But I suppose money doesn’t really enter into the
question, as the initial outlay on a good envi-
ronment would be benefit by allowing quicker
product development.

Phil Shotton

SP134@greenwich.ac.uk

Unfortunately, as Francis notes else-
where in this issue, this is an almost im-
possible question to answer! I asked
Mike Toms, who knows much more
about Borland’s products than I do, and
his response was “well, you can’t an-
swer that question without knowing a lot
more about the intended applications –
maybe Visual Basic would be suitable?”

 Overload – Issue 7 – April 1995

 Page 41

Roger Lever asks:

Using BC 4.0 and the STL, as supplied on the
previous Overload disk, when I tried to add a list
item to my code the compiler generated errors in
the STL regarding:

• Duplicate definition of ‘max’ and ‘min’

• Incorrect structure operation of pointer in the
destructor code

If the exact message is required I can provide
that. The point is that STL wouldn’t compile a
list template for me. Presumably I need to set
options within BC4? Surely I do not need to edit
the STL itself?

More generally, are there any examples or docu-
mentation of how to use the STL?

Roger Lever

rnl16616@ggr.co.uk

I think I can guess what the problems
are as I had similar problems when I
first started porting STL to Symantec
C++ on the Mac.

STL defines max and min functions as
templates. The Symantec compiler also
defines max and min so they clash with
STL’s definitions. Borland very likely
does the same. The ‘solution’ is to com-
ment out the definition of both functions
in algobase.h in STL.

The destructor code error is due to code
that looks like this:

pointer->~T();

in defallloc.h (where T is a template pa-
rameter). A lot of compilers get this
wrong but you can also ‘solve’ this
problem by commenting the line out.

Development of STL is still progress-
ing – the version shipped with Overload
was current at the time. The most up-to-
date version can be obtained by anony-
mous ftp from

butler.hpl.hp.com

Look in the directory stl which contains
source and examples (you may need to
use the direct IP address instead which
is 192.6.19.31, I believe). If you have a
Web browser, you can also try:

http://www.cs.rpi.edu/~musser/stl.html

I will run an article on STL in a future
issue. Note that STL will not compile on
many compilers as it pushes their sup-
port for templates to the limit. Differ-
ences between BC4.0, 4.0.1 and 4.0.2
mean your mileage may vary.

Another question I have for Overload 7! One
problem I ran into was that I would like to have
used the syntax of:

Device& device = ...; // screen or
disk
device << "Output:" << obj.output();

Device would be a base class which could be
invoked polymorphically such that output()
would not know where it was actually outputting
to. So I tried to derive Device from a stream,
rather unsuccessfully. How do I achieve this?

Given my design approach I would simply em-
ploy overloaded operator<< as the derivation
from stream to Device would not be ‘proper’
inheritance. However, I am interested in finding
an answer to the above problem...

See both Roger’s article (On not mixing
it...) and my response to Bob Firth’s let-
ter in this issue.

++puzzle;
Since I didn’t get many questions to answer in this issue, I thought I’d set you a little puzzle! The question
is “What is the longest sequence of distinct keywords and reserved words possible in a valid C++ pro-
gram?” To get you started, here is a small example:

const volatile unsigned long int x; // 5 keywords

Answers to the editor by May 8th. I may even offer a prize...

 Overload – Issue 7 – April 1995

 Page 42

Books and Journals
I am still in the process of taking over Mike Toms’ editorial contacts with various publishers so it may be
some time before I have any books available for review. In the meantime, I would like to see thorough
reviews of books that are already on your shelves – books that you come back to, again and again, that you
would recommend.

Coming soon!

An exclusive preview of the forthcoming Hen-
ricson / Nyquist book “Industrial Strength C++”.
Following the success of their public domain
“Rules and Recommendations: Programming in
C++” made available by Ellemtel, Mats Henric-
son and Erik Nyquist are writing a book for
Prentice-Hall that will expand and revise the
public domain material. In Overload 8, Mats
Henricson will tell the story behind the book and
explain why it is taking so long...

The C++ Report

This almost monthly journal (it comes out nine
times a year) should be compulsory reading for
all professional C++ programmers. Regular col-
umns by Scott Meyers, Barton and Nackman,
Andrew Koenig, Tom Cargill and others, high-
light both the pitfalls and the power of C++. The
magazine covers analysis, design and implemen-
tation issues with additional features on project
management, tool support, ODBMS and a very
useful “best of” comp.lang.C++ (otherwise one
of the highest noise to signal ratios going). Al-
though it is not cheap – $104 per year for UK
subscribers – the information it contains could
save you a fortune! For more subscription infor-
mation, send an email request to:

P00976@psilink.com

News & Product Releases
This section contains information about new products and is mainly contributed by the vendors them-
selves. If you have an announcement that you feel would be of interest to the readership, please submit it
to the Editor for inclusion here.

Programming Research to dis-
tribute TestView

This information was taken from QA:News,
Programming Research’s bi-annual newslet-
ter – Ed.

PR:QA announced their UK distributorship of
TestView at the Software Development Show on
22 November 1994 in Birmingham, England.
TestView is an automated Graphical User Inter-
face (GUI) Testing Tool. The tool, developed by
Radview, is fully client / server aware and oper-
ates in a completely Object Oriented manner.
Radview, based in Israel, is part of the RAD
group who specialise in developing networking
tools.

The rapid growth of client / server applications
places new demands on software testing and

hence distributed testing introduces innovative
methods to meet these demands. With the aid of
an automated testing tool, testing can be carried
out frequently and thoroughly without additional
overhead, the software produced is more reliable
and of higher quality and the time to market is
greatly reduced by eliminating the testing bottle-
neck.

What does TestView do?
TestView is essentially a record / playback GUI
testing tool. Interactions with the application
under test are recorded in a maintainable script
form to be played back when the application un-
dergoes testing. Explicit tests can be built into
the test procedure, ensuring GUI components are
present, text fields are correct and even that bit-
maps are correct. The script language – Test
Management Language (TML) – that TestView
uses is remarkably C-like enabling user pro-
gramming with minimal fuss.

 Overload – Issue 7 – April 1995

 Page 43

Object-Oriented record, playback and verifica-
tion describes the user’s commands instead of
mouse actions. For example, when the OK but-
ton is clicked, TestView records the interaction
with that object and not the click at screen po-
sition X=123, Y=246. Hence if the OK button
is moved the test remains valid, as TestView is
not adversely affected by the objects position,
font or colour etc. That is, unless of course you
want to test these attributes...

TestView’s client server aspect allows specific
client server tests to be remotely executed on
multiple client workstations to simulate real life
application use. Distributed tests communicate
with each other using both synchronous and
asynchronous messaging. These remote tests can
be controlled and monitored from a single work-
station.

Complete test suites can be developed once and
reused across multiple software releases and de-
velopment platforms, saving time and eliminat-
ing repetitive labour intensive tasks.

TestView specifically ensures that General Pro-
tection faults (GPFs) are successfully handled in
a user defined way. When a GPF occurs Test-
View shuts down gracefully and captures the
GPF instead of just crashing. Testing continues
even if undesirable or unexpected events occur
for example, when running an unattended test, a
mail arrives, TestView handles this by clicking
on the ‘Read Later’ button and continues with
the test. In fact TestView is a very ‘open’ system
allowing user specific tests to be written and
then automatically incorporated into the tool.

Supported environments for TestView are MS
Windows 3.1, Windows NT (under develop-
ment) and an X-Windows (all major UNIX plat-
forms) version which should be available by
summer 1995.

Where to go from here?
PR:QA are holding seminars up and down the
country throughout the year in order for people
to gain a firm understanding of the tool’s many
benefits. Telephone Nicky Crooks on 01932 888
080 for more details.

Further to the seminar we offer a day’s training
for interested parties to gain experience of the
tool’s extensive functionality and ease of use.

Nicky Crooks

nicky_crooks@prqa.co.uk

NoBUG

The Norwegian Borland User Group recently
announced their formation on several news-
groups. Their aim is to promote and support the
Norwegian community of Borland product users.
In addition to Borland C++, the group covers
Pascal, Delphi, OWL etc. For more information,
send an email request to:

nobug@falcon.no

 Overload – Issue 7 – April 1995

 Page 45

Credits
Founding Editor

Mike Toms

miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield

sean@corf.demon.co.uk

Production Editor

Alan Lenton

yeti@feddev.demon.co.uk

Advertising

John Washington

john@wash.demon.co.uk

Subscriptions

Dr Pippa Hennessy

pippa@octopull.demon.co.uk

Distribution

Mark Radford

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

The copyright of all material published in Overload (except book and product reviews whose copyright is
the exclusive property of ACCU) remains with the original author. Except for licences granted to (a) Cor-
porate Members to copy solely for internal distribution (b) members to copy source code for use on their
own computers, no material can be copied from Overload without the prior written consent of the copy-
right holder.

Advertising Rates
Full A4 page £100, 1/2 A4 page £50, 1/4 A4 page £25. Advertising copy to be submitted to the editor with
payment (made out to ACCU) by the copy deadline for the issue in which the advert is to appear.

Next Issue
In the June issue, Software Development in C++ will continue “So you want to be a cOOmpiler writer?”
and provide an introduction to the Shlaer-Mellor OOD methodology by David Davies. The Draft Interna-
tional C++ Standard will look at Kevlin Henney’s proposal to provide construction-time discrimination
of const. C++ Techniques will continue the discussion of multiple inheritance and Kenneth Jackson will
show how to perform fine-grained MFC control validation. The Vendor Focus will be on Edison Design
Group. The rest is up to you!

Copy deadline
All articles intended for inclusion in Overload 8 (June) must be submitted to the editor by May 8th.

