
A magazine of ACCU ISSN: 1354-3172

Writing Senders
Lucian Radu Teodorescu describes

how to implement senders.

C++26: Erroneous Behaviour
Sandor Dargo explains how and why uninitialised reads
will become erroneous behaviour in C++26, rather than
being undefined behaviour.

constexpr Functions:
Optimization vs Guarantee
Andreas Fertig explores the use of constexpr functions
and when a constexpr expression might not be
evaluated at compile time.

UML Statecharts Formal Verification
Aurelian Melinte demonstrates how to model
statecharts in Promela.

P271828R2: Adding mullptr to C++
Teedy Deigh attempts to help the evolution of C++ by
sharing her proposal for a new state for pointers.

accu
professionalism in programming

To find out more, visit accu.org

Monthly journals

Annual conference

Discussion lists

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

April 2025 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

April 2025
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Barry Nichols
barrydavidnichols@gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Daniel James.
Paper lanterns at a Korean
Buddhist temple.

Copy deadlines
All articles intended for publication in Overload 187 should be submitted by
1st May 2025 and those for Overload 188 by 1st July 2025.

 4 Writing Senders
Lucian Radu Teodorescu describes how to
implement senders.

 10 C++26: Erroneous Behaviour
Sandor Dargo explains how and why uninitialised
reads will become erroneous behaviour in
C++26, rather than being undefined behaviour.

 12 constexpr Functions: Optimization vs Guarantee
Andreas Fertig explores the use of constexpr
functions and when a constexpr expression might
not be evaluated at compile time.

	14	 UML	Statecharts	Formal	Verification
Aurelian Melinte demonstrates how to model
statecharts in Promela.

 19 P271828R2: Adding mullptr to C++
Teedy Deigh attempts to help the evolution of
C++ by sharing her proposal for a new state for
pointers, which may not get traction, but might
make you smile.

FRAnCES BuOntEmPOEditORiAl

2 | Overload | April 2025

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

self->doubt
A lack of self-confidence can be incapacitating. Frances Buontempo
considers why it’s important to acknowledge your doubts and
remind yourself of the things that you can manage.

Do you ever freeze up and fail to get something
done, because you’re not certain how to proceed?
For example, writing an editorial. I suspect you have
noticed I frequently don’t know how to proceed,
making excuses every time for the lack of editorial.
Imagine if you never had this problem. You could

carry on with no stumbling blocks. Nothing would stop you. If you found
yourself in a deep hole, you would carry on digging forever. If you were
‘refactoring’ a code base you would plough on for days, without wasting
time trying to build the code and run the tests. Nothing could possibly go
wrong, right? Hmm, maybe some self-doubt from time to time is a good
thing. Perhaps a balance between freezing up and continuing regardless
is what’s needed.

I got stuck while writing my talk for ACCU. I mentioned my grand plan
in the last Overload [Buontempo25a]. I intend to get my machine to play
Snake, learning how via reinforcement learning. I revisited my proposal
to see what I promised. I said will “start with a std::vector and
progress from there” [Buontempo25b], so previous me had been helpful
to current me. Starting simple is a good idea. I have managed to get a
blob to move right or left, corresponding to a position in a vector. It can
learn to go to the end, and get a reward. With the one-dimensional case
working, I could move on to the two-dimensional case. Pleased to report
I have a mini-game of snake working on a five by five grid. I represented
the snake with a +, an apple with an O, and show a * when/if the snake
crashes. It can manage to eat a few apples, but still tends to crash into
itself:

In this example, instead of going down and eating the O, it
went up and hit itself. But, the snake had eaten a few apples
first. Finding a simpler starting place made the problem
seem less overwhelming.

Andrew Drakeford spoke at CppOnline [Drakeford25] the other week.
He talked about Data-Oriented design, using data layouts and better
algorithms and similar to optimize a program. He reminded me about
George Pólya’s book How to solve it: A new aspect of mathematical
method. Pólya gave four steps:

1. Understand the problem,
2. Devise a plan,
3. Carry out the plan,
4. Look back and check your work.

If this fails, Pólya suggests [Wikipedia-1]:
If you cannot solve the proposed problem, try to solve first some
related problem. Could you imagine a more accessible related

problem?

Trying a one dimensional version of snake first
helped me to start thinking. Well, I say snake.
There was no snake, and no apples to eat to

make the snake grow. However with no apples, I can claim the single
square is a hungry snake, and it does move from side to side. I still have
doubts that this will extend to a proper game, but I might just about have
enough to wire together to give a talk. I still have lots to learn about
reinforcement learning. But I have managed something. You may well
have found yourself in a similar situation, not being sure how to achieve a
task. If you can break it down into smaller steps, or try a simpler proof of
concept, you might manage to progress. As a Chinese proverb reminds us,
“A journey of a thousand miles begins with a single step” [Wikipedia-2].

Now, solving a different problem is no guarantee you will actually be able
to solve the harder problem. And a proof of concept doesn’t prove much,
at least in mathematical terms. Both can be helpful, at least by giving you
more information, and maybe sparking a few thoughts about the wider
problem. We often don’t get much proof in code. We can write some
tests, but might not think of all the edge cases. We can use property-based
testing, getting your computer to generate values for you. If you’re not
familiar with property-based testing, listen to Steve Love’s talk [Love24].
On the face of it, the testing framework generates random values to try,
but the randomness is actually guided, trying to flush out the smallest
possible examples that fail tests. The tests are written as properties, like
“nothing is negative”. You can regard property-based testing as a subset
of fuzzers, though these are often used to try to code, looking for potential
vulnerabilities. Maybe the property tests are not certainty, but they can
increase confidence.

You can use other tools too, like sanitizers and linters to try to find
potential problems. Recently, many people have been advocating use of
constexpr and similar to attempt to eliminate undefined behaviour in
C++. I believe the standard [C++] says:

An expression E is a core constant expression unless the evaluation
of E … would evaluate … an operation that would have undefined
behavior.

Of course, there is a ‘but’. There is an example on Stack Overflow
of calling a library with a core constant expression that did not get a
diagnostic [stackoverflow]. Although this example was actually a bug
(now fixed) in GCC [GCC], using constexpr can find problems. Šimon
Tóth wrote a ‘Daily bit(e) of C++’ on Medium and posted about this
[Tóth24]. He gave an example of a naïve attempt at midpoint:
 constexpr int midpoint(int a, int b) {
 return (a + b)/2; // can overflow,
 // int overflow is UB
 }

With input just smaller than std::numeric_limits<int>::max(),
this can overflow. His example uses:
 constexpr int a =
 std::numeric_limits<int>::max();
 constexpr int b = a - 2;
 constexpr int c = a - 1;

| ++*+|
| ++ |
| O |
| |

FRAnCES BuOntEmPO EditORiAl

April 2025 | Overload | 3

Using a static_assert:
 static_assert(midpoint(a, b) == c);

gives a compile error:
 error: overflow in constant expression
 [-fpermissive]
 5 | return (a + b)/2; // can overflow,
 // int overflow is UB

The constexpr has helped find UB. Nice. As warned by the Stack
Overflow link, there will be exceptions, but the use of static_assert
can provide less doubt.

Eliminating uncertainty is a great aspiration. However, sometimes you
can’t remove all doubt. There are always unknown unknowns, and often
known unknowns. Making these more apparent can be useful. Seb Rose
talked about this in his ‘User Stories and BDD’ series. In particular he
said [Rose23]:

We feel deeply uncomfortable with uncertainty and will do almost
anything to avoid having to admit to any level of ignorance. Rather
than focus on what we know (and discreetly ignore what we’re
unsure of), we should actively seek out our areas of ignorance.

Kevlin Henney dug into this in ‘The Uncertainty Principle’ [Henney13].
He encouraged us to see uncertainty as part of the solution rather than
a problem. He suggested structuring your code so the decision doesn’t
matter. For example (my example), you can introduce an interface and
switch between a database or lookup table. The code using the data
won’t need to change, then. Having more than one idea can be a good
thing. Being certain there’s only one solution is suboptimal, at least, and
delusional at best.

Is confidence overrated? Maybe. It is often misunderstood. You may be
familiar with confidence intervals from statistics. If someone claims to
be 100% confident, they are either analyzing a simple problem, like the
probability of a coin toss being a head or a tail, or they have missed the
point. Claims are sometimes made that, assuming a normal distribution,
a hypothesis is valid at a 95% confidence interval. This means an
observation falls between the mean minus 1.96 standard deviations and
the mean plus 1.96 standard deviations. If the data is normally distributed,
and the mean and standard deviation have been calculated accurately,
95% of the observations would lie within these bounds. Confidence might
be a misleading word to use at this point. Sometimes other disciplines
use different words, for example medicine might say a ‘reference range’
[BMJ], which allows you to talk about ‘normal’ or ‘abnormal’. Be
careful with the word ‘normal’, though. I’ve previously written about
this being misleading too [Buontempo21]. Saying ‘abnormal’ to refer to
measurements is useful, but be careful when discussing anything non-
numeric, like people.

Statistics are fundamentally imprecise. Actually, they are very precise,
but always start with phrases like ‘assuming a normal distribution’or
similar. If you provide stats, for example when benchmarking, it’s useful
to provide a mean as well as a standard deviation or variance. This
provides more information. The sample size can be useful too. If you use
n=1, I’ll doubt your results. This is equivalent to saying, “It works on my
machine.” OK, fine, but it might not work elsewhere. Providing more
than one number is important for statistics, and having more than one
result or perspective is useful. In fact, getting someone else to run your
code often reveals potential improvements, or might help pin down the
cause of a problem more quickly. Sharing is caring, as they say.

Now, my title, ‘self->doubt’, could suggest a member function. Whether
it is a getter or setter is unclear. In fact, you can cause yourself doubt,
calling your own setter as it were, if you’re not careful. And that can
become a negative feedback loop. On a computer, you would get a stack
overflow. For a human, you can end up in a state of despair or burn out.
If this chimes with you at the moment, take a moment if something
doesn’t seem to be working. Remind yourself what’s gone OK – maybe
you have some tests that pass. If you can narrow down the problems,
either as tests or as a TODO list, you might end up with smaller, easier to
solve problems. Or maybe you won’t, but you have still learnt something.

It’s OK to abandon a problem. You might be able to form a Plan B and
solve the actual problem in a different way. Experiments that fail are still
informative. However, sometimes the self-doubt comes from imposter
syndrome [Wikipedia-3]. Despite evidence that you can do something, or
are knowledgeable about a subject, you might feel like a fraud. Knowing
you still have much to learn is a good thing. The Dunning-Kruger
effect reminds us “people with limited competence in a particular domain
overestimate their abilities” [Wikipedia-4]. Conversely, people who know
their stuff may underestimate their abilities. Imposter syndrome goes
beyond this underestimation. It can lead to anxiety, neurotic behaviour
and depression. If you find yourself feeling like this, find some good
friends to talk to. It’s OK to say you need support.

If you find yourself doubting your knowledge or ability, don’t panic. Some
self-doubt can be better than overconfidence or downright arrogance.
Some things are hard, and we all get stuck from time to time. A maths
lecturer once told me to relax and enjoy a problem if I got stuck. He
was probably quoting someone. However, the point is reframing feeling
stuck as having something challenging to think about is helpful. It’s
much better than saying “Keep calm and carry on.” If you’re digging a
hole, don’t carry on. Stop, think and consider sharing the problem with
someone. It might help. Maybe write a blog or article about a problem you
are stuck on. That might help you get your thoughts
straight and reveal what you do actually know. Doubt
yourself from time to time. But allow yourself some
confidence too. You’re doing great.

References
[BMJ] ‘Statements of probability and confidence intervals’ at

https://www.bmj.com/about-bmj/resources-readers/publications/
statistics-square-one/4-statements-probability-and-confiden

[Buontempo21] Frances Buontempo, ‘It’s not normal’ in Overload
166, December 2021, available at https://accu.org/journals/
overload/29/166/buontempo/

[Buontempo25a] Frances Buontempo, ‘All the information is on the
Task’, Overload 185, Feb 2025, available at https://accu.org/
journals/overload/33/185/overload185.pdf

[Buontempo25b] Frances Buontempo, ‘An introduction to reinforcement
learning: Snake your way out of a paper bag’ (abstract), available
at https://accuconference.org/2025/session/an-introduction-to-
reinforcement-learning-snake-your-way-out-of-a-paper-bag

[C++] ‘Constant expressions’ in Working Draft: Programming
Languages – C++, available at https://eel.is/c++draft/expr.const#5

[Drakeford25] Andrew Drakeford, ‘Date Oriented Design’ (abstract),
available at https://cpponline.uk/session/2025/data-oriented-design/

[GCC] GCC bug report: https://gcc.gnu.org/PR105844
[Henney13] Kevlin Henney ‘The Uncertainty Principle’, in Overload

115, June 2013, https://accu.org/journals/overload/21/115/
henney_1854

[Love24] Steve Love, ‘Beyond Example Based Testing in .NET
(dotnet), nor(DEV):con 2024, available at:
https://www.youtube.com/watch?v=RgDGsZXPK3Y

[Rose23] Seb Rose ‘User Stories and BDD – Part 2, Discovery’ in
Overload 178, December 2023 available at https://accu.org/journals/
overload/31/178/rose/

[stackoverflow] ‘Undefined behavior allowed in constexpr -- compiler
bug?’ at https://stackoverflow.com/questions/72494618/undefined-
behavior-allowed-in-constexpr-compiler-bug

[Tóth24] Šimon Tóth ‘Daily bit(e) of C++ | Constexpr vs Undefined
Behaviour’ available at https://medium.com/@simontoth/daily-bit-e-
of-c-constexpr-vs-undefined-behaviour-39330bd42906

[Wikipedia-1] ‘How to solve it’: https://en.wikipedia.org/wiki/How_to_
Solve_It

[Wikipedia-2] Chinese proverb: https://en.wikipedia.org/wiki/A_
journey_of_a_thousand_miles_begins_with_a_single_step

[Wikipedia-3] ‘Imposter syndrome’: https://en.wikipedia.org/wiki/
Impostor_syndrome

[Wikipedia-4] ‘Dunning-Druger effect’: https://en.wikipedia.org/wiki/
Dunning%E2%80%93Kruger_effect

https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/4-statements-probability-and-confiden
https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/4-statements-probability-and-confiden
https://accu.org/journals/overload/29/166/buontempo/
https://accu.org/journals/overload/29/166/buontempo/
https://accu.org/journals/overload/33/185/overload185.pdf
https://accu.org/journals/overload/33/185/overload185.pdf
https://accuconference.org/2025/session/an-introduction-to-reinforcement-learning-snake-your-way-out-of-a-paper-bag
https://accuconference.org/2025/session/an-introduction-to-reinforcement-learning-snake-your-way-out-of-a-paper-bag
https://eel.is/c++draft/expr.const#5
https://cpponline.uk/session/2025/data-oriented-design/
https://gcc.gnu.org/PR105844
https://accu.org/journals/overload/21/115/henney_1854
https://accu.org/journals/overload/21/115/henney_1854
https://www.youtube.com/watch?v=RgDGsZXPK3Y
https://accu.org/journals/overload/31/178/rose/
https://accu.org/journals/overload/31/178/rose/
https://stackoverflow.com/questions/72494618/undefined-behavior-allowed-in-constexpr-compiler-bug
https://stackoverflow.com/questions/72494618/undefined-behavior-allowed-in-constexpr-compiler-bug
mailto:https://medium.com/@simontoth/daily-bit-e-of-c-constexpr-vs-undefined-behaviour-39330bd42906
mailto:https://medium.com/@simontoth/daily-bit-e-of-c-constexpr-vs-undefined-behaviour-39330bd42906
https://en.wikipedia.org/wiki/How_to_Solve_It
https://en.wikipedia.org/wiki/How_to_Solve_It
https://en.wikipedia.org/wiki/A_journey_of_a_thousand_miles_begins_with_a_single_step
https://en.wikipedia.org/wiki/A_journey_of_a_thousand_miles_begins_with_a_single_step
https://en.wikipedia.org/wiki/Impostor_syndrome
https://en.wikipedia.org/wiki/Impostor_syndrome
https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect
https://en.wikipedia.org/wiki/Dunning%E2%80%93Kruger_effect

luCiAn RAdu tEOdORESCuFEAtuRE

4 | Overload | April 2025

Writing Senders
Senders/receivers can be used to introduce
concurrency. Lucian Radu Teodorescu
describes how to implement senders.

in the December issue of Overload [Teodorescu24], we provided a
gentle introduction to senders/receivers, arguing that it is easy to
write programs with senders/receivers. Then, in the February issue

[Teodorescu25a], we had an article that walked the reader through
some examples showing how senders/receivers can be used to introduce
concurrency in an application. Both of these articles focused on the end
users of senders/receivers. This article focuses on the implementer’s side:
what does it take to implement senders?

After a section explaining some details about the execution model
of senders/receivers, we have three examples in which we build three
different senders, in increasing order of complexity. The examples are
purposely kept as simple as possible. We didn’t bother much about using
std::move when we should, we didn’t consider noexcept functions
in depth, we reduced the amount of metaprogramming we needed to
do, we didn’t showcase the extra complications needed to implement
the pipeable notation, and we didn’t delve into advanced topics like
environments and cancellation. This is meant to be an introductory article
for library implementers who are writing senders.

All the code is available on GitHub [Teodorescu25b]. While last time
we used the stdexec library [stdexec], this time we are going to use the
execution library that is part of the Beman project [Beman]. This shows
that there are multiple valid implementations of the senders/receivers
framework, and there is a relatively large implementation experience.

Receivers and operation states
If people are just using frameworks based on std::execution,
they mainly need to care about senders and schedulers. These are user-
facing concepts. However, if people want to implement sender-ready
abstractions, they also need to consider receivers and operation states –
these are implementer-side concepts. As this article mainly focuses on
the implementation of sender abstractions, we need to discuss these two
concepts in more detail.

A receiver is defined in P2300 as “a callback that supports more than
one channel” [P2300R10]. The proposal defines a concept for a receiver,
unsurprisingly called receiver. To model this concept, a type needs to
meet the following conditions:

	� It must be movable and copyable.

	� It must have an inner type alias named receiver_concept that
is equal to receiver_t (or a derived type).

	� std::execution::get_env() must be callable on an object of
this type (to retrieve the environment of the receiver).

A receiver is the object that receives the sender’s completion signal,
i.e., one of set_value(), set_error(), or set_stopped(). As

explained in the December 2024 issue [Teodorescu24], a sender may
have different value completion types and different error completion
types. For example, the same sender might sometimes complete with
set_value(int, int), sometimes with set_value(double),
sometimes with set_error(std::exception_ptr), sometimes
with set_error(std::error_code), and sometimes with
set_stopped(). This implies that a receiver must also be able to
accept multiple types of completion signals.

The need for completion signatures is not directly visible in the
receiver concept. There is another concept that the P2300 proposal
defines, which includes the completion signatures for a receiver:
receiver_of<Completions>. A type models this concept if it also
models the receiver concept and provides functions to handle the
completions indicated by Completions. More details on how these
completions look will be covered in the example sections.

We say that a sender can be connected to a receiver if the receiver accepts
at least the completion signals advertised by the sender. Formally, we can
connect a sender s to a receiver r if std::execution::connect(s, r)
is well-formed and returns an object of a type that fulfils the requirements
of an operation_state concept. For a type to match this concept, the
following requirements must be met:

	� It must have an inner type alias of type operation_state_t (or a
type derived from it) that is named operation_state_concept.

	� std::execution::start() must be callable on a reference of
this type.

If a sender describes an asynchronous task, an operation state object
encapsulates the actual work, including the receiver’s role in the
entire process. Executing start() for an operation state triggers the
asynchronous operation. The lifetime of the asynchronous operation
corresponds to the duration of the start() execution.

There are a few conditions that must apply to an operation state, in
addition to the requirements encoded in the corresponding concept:

	� The object must not be destroyed during the lifetime of the
asynchronous operation.

	� The object must not be copied or moved after it has been created by
connecting a sender.

These requirements guarantee that implementations can safely use
pointers to operation states during the asynchronous operation’s lifetime,
as the objects remain valid.

We’ve just provided technical details on what it means to be a receiver
and an operation state, but we have not yet given such details on what it
means to be a sender. Previous articles didn’t cover these details either,
as they are not important for end users. A sender is a type that models (at
least) the sender concept. A type models this concept if:

	� It is movable and copyable.

Lucian Radu Teodorescu has a PhD in programming languages
and is a Staff Engineer at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

luCiAn RAdu tEOdORESCu FEAtuRE

April 2025 | Overload | 5

	� Either it has an inner type alias named sender_concept of type
sender_t (or derived), or it is an awaitable (in a special way,
compatible with senders).

	� std::execution::get_env() can be called on an object of
this type (to retrieve the environment parameters of the sender).

In addition to the sender concept, the proposal also defines the
sender_in concept (to check whether a sender can create an
asynchronous operation in a given environment) and sender_to (to
check whether the sender can be connected with a given receiver type).

The relationship between senders, receivers, and operation states is
depicted in Figure 1.

A just example
Let’s try to implement a very basic sender. Probably the simplest sender
in P2300 is the one created by just(). We will attempt to create a
simplified version of this. More specifically, our sender will always
complete with an int value.
Listing 1 shows the main implementation of our sender.

First, in all our examples, we include the execution.hpp header
from the Beman libraries. This allows us to utilise and extend the
std::execution framework. Additionally, we use ex as a shorthand
for the beman::execution namespace, which is the implementation
of what C++26 will provide in the std::execution namespace.

Similar to the algorithms in P2300, we provide an algorithm that can
create our sender; the implementation is straightforward. The important
part to focus on is the definition of just_int_sender, the actual
sender type. Probably the most important aspect of this type, which is not
directly visible, is that it models the ex::sender concept.

We define an inner type sender_concept that aliases ex::sender_t
to explicitly indicate to the senders/receivers framework that this
is intended to be a sender type. This is simply how the framework is
designed to work.

Secondly, we define a completion_signatures inner type that
specifies how the sender is expected to complete. In our case, we indicate
that the sender can only complete with a set_value(int) signal. We
will see more complex completion signature definitions later, but the
reader can observe that the framework makes it straightforward to declare
a sender’s completion signatures.

A sender needs to have an environment, but in our case, there is no
environment to provide. So we simply provide an empty environment,
which is literally defined as:
 struct empty_env {};

The implementation of the operation state type is given in Listing 2.

Figure 1

#include <beman/execution/execution.hpp>

namespace ex = beman::execution;

struct just_int_sender {
 // The data of the sender.
 int value_to_send_;

 // This is a sender type.
 using sender_concept = ex::sender_t;

 // This sender always completes with an 'int'
 // value.
 using completion_signatures =
 ex::completion_signatures
 <ex::set_value_t(int)>;

 // No environment to provide.
 ex::empty_env get_env() const noexcept {
 return {};
 }
 // Connect to the given receiver, and produce
 // an operation state.
 template <ex::receiver Receiver>
 auto connect(Receiver receiver) noexcept {
 return detail::just_int_op{value_to_send_,
 receiver};
 }
};
auto just_int(int x) {
 return just_int_sender{x}; }

listing 1

namespace detail {
template <ex::receiver Receiver>
struct just_int_op {
 int value_to_send_;
 Receiver receiver_;

 // This is an operation-state type.
 using operation_state_concept =
 ex::operation_state_t;

 // The actual work of the operation state.
 void start() noexcept {
 // No actual work, just send the value
 // to the receiver.
 ex::set_value(std::move(receiver_),
 value_to_send_);
 }
};
}

listing 2

the important part to focus on is the
definition	of	just_int_sender, the

actual sender type

luCiAn RAdu tEOdORESCuFEAtuRE

6 | Overload | April 2025

Following the same pattern used for senders, an operation state must
declare an inner type named operation_state_concept, which
must be ex::operation_state_t (or a type derived from it). Besides
this, the only other required operation for an operation state is start().
This is called to actually execute the asynchronous operation described
by the sender, while also sending the completion signal to the receiver.

The reader should note that an operation state needs to store the receiver
object connected to the sender so that it knows which object should
receive the completion signal. The actual completion signal invocation
is expressed as:
 ex::set_value(std::move(receiver_),
 value_to_send_);

The set_value call is marked as noexcept, meaning the user does
not need to check for exceptions (or potentially invoke set_error); this
simplifies the entire process.

The reader should take a few moments to observe the interaction between
the sender, the receiver, and the resulting operation state, and how the
entire flow works. There are no advanced concepts or concurrency
concerns in this example. Pretty easy, right?

With this sender, the user might write something like
 ex::sender auto work = just_int(13)
 | ex::then([] (int x) { printf(
 "Hello, world! Here is a received value: %d\n",
 x); });

to declare a sender that, when executed, will print a message containing
value 13.

And then, another example
Now, let’s discuss a slightly more complex example. This time, we want
to implement a then sender – a simpler version of the sender with the
same name in the P2300 proposal [P2300R10].

The main code for this sender is presented in Listing 3.

Here, there are three key differences compared to the previous example:
using a preceding sender, defining slightly more complex completion
signatures, and implementing connect in a different way.

then is a sender adapter. That is, it takes a previous sender and chains
some extra work on top of it to create a new sender. More specifically,
in this case, it executes the given invocable after the previous sender
completes. The invocable receives the value produced by the previous
sender. In our case, the previous sender must complete with an int value
if it completes successfully (as we will see shortly).

In P2300, all sender adapters have two equivalent forms: one that takes
the previous sender as an argument and one that is pipeable. For example,
ex::then(ex::just(), f) and ex::just() | ex::then(f)
both generate the same sender value. To achieve the pipeable form, we
need a different overload for the then function – one that returns an
expression template that can be combined via operator | with another

sender. For simplicity, we leave out the implementation of the pipeable
sender. Implementing such a form can be a good exercise for the reader.

Unlike our previous example, we now advertise multiple completion
signatures: a successful completion with an int value, an error
completion with an exception, and a stopped completion. The
completion_signatures helper from the senders/receivers
framework easily accommodates specifying multiple completion
signatures.

In this example, we simply assume that the value completion signature
needs to be int. However, more generic implementations might deduce
this from the result of the given invocable. Furthermore, such generic
implementations would likely ensure that the value completion signals
of the previous sender match the type of the invocable and would also
conditionally add support for error and stopped completions. This easily
turns into a metaprogramming exercise. For simplicity, we leave these
details out.

Finally, we need to explain the implementation of the connect method.
In this example, we take a different approach to implementing it and
returning an appropriate operation state. Instead of defining the actual
resulting operation state, we define the receiver that needs to be connected
to the previous sender and place our logic inside that receiver. This
intermediate receiver establishes the connection between the previous
sender and the receiver connected to our sender.

template <ex::sender Previous,
 std::invocable<int> Fun>
struct then_sender {
 Previous previous_;
 Fun f_;

 using sender_concept = ex::sender_t;
 ex::empty_env get_env() const noexcept {
 return {}; }

 using completion_signatures =
 ex::completion_signatures<
 ex::set_value_t(int),
 ex::set_error_t(std::exception_ptr),
 ex::set_stopped_t()>;

 template <ex::receiver Receiver>
 auto connect(Receiver receiver) noexcept {
 return ex::connect(previous_,
 detail::then_receiver{f_, receiver});
 }
};

template <ex::sender Previous,
 std::invocable<int> Fun>
then_sender<Previous, Fun> then(Previous prev,
 Fun f) {
 return {prev, f};
}

listing 3

an operation state needs to store the
receiver object connected to the sender
so that it knows which object should
receive the completion signal

luCiAn RAdu tEOdORESCu FEAtuRE

April 2025 | Overload | 7

The code for this receiver is shown in Listing 4. The implementation is
relatively straightforward. First, we declare that this is a receiver type by
using the receiver_concept inner type; this follows the same pattern as
for senders and operation states. Then, in addition to storing the necessary
data, we implement the methods that will receive the completion signals
from the previous sender – in our case: set_value(), set_error(),
and set_stopped(). All these methods must be marked as noexcept.

When connecting the previous sender to this receiver, the framework
will check that all the advertised completion signals of the sender have
a corresponding method in the receiver and that the types match. This
means that if the previous sender successfully completes with a value that
is not of type int, it cannot be connected to our sender.

The set_error() and set_stopped() cases are straightforward: we
simply forward the signal to the next receiver. The main logic is handled
in the set_value() method. Here, after receiving the value from the
previous sender, we call the given invocable and pass the result to the next
receiver. Since the call to f_ can throw, we need to catch any exceptions
and pass them as errors to the next receiver– this is a common pattern in
implementing senders.

And that’s it. As this example demonstrates, implementing sender
adaptors is not particularly complicated. Most of the complexity arises
from making the implementation generic: detecting the completion
signals of the previous sender, ensuring they match the signature of
the invocable, generating appropriate completion signatures, handling
r-value objects, and so on.

A serializer example
In this section, we have shown an example of implementing a sender that
addresses some concurrency concerns. We aim to implement a serializer

context and a corresponding sender that ensures only one work item can
be executed at a given time within the context. The context is similar to
std::mutex, and the sender is similar to std::lock_guard, which
can be obtained from the mutex.

Having such a facility would allow users to migrate more easily to
senders/receivers without significantly altering their business logic. In
terms of resource usage, the serializer will typically be more efficient than
a mutex: it won’t block any threads and will always ensure the optimal
execution of work items. This is not a new idea (see, for example, [Intel]
and [Kohlhoff23]), and my hope is that it will be standardised in the next
release cycle (C++29).

Let’s first look at a usage example. The code in Listing 5, without such
a serializer, will likely execute work1, work2, and work3 concurrently
(work1, work2, and work3 are senders). Listing 6 shows how the code
can be modified using our serializer to ensure that work1, work2, and
work3 cannot be executed concurrently; at most, one of them will be
executed at a given time.

Listing 7 (on next page) shows a simple implementation of the
serializer_context class. It has two public methods: one that is
called when new work needs to be executed within the context, and one
that notifies the context when the work is done.

When on_serializer wants to start some work, it may be that the
context is already in the process of executing something. This means
that the work needs to be delayed. Thus, we need to store the work
for later. The way we do this is by encapsulating the work inside a
std::function<void()> object.

When enqueuing work, we have two scenarios: one where there is no
ongoing work, and one where work is already being executed on the
serializer. In the first case, we execute the work immediately, and in the
second, we store the work for later execution in a vector. Of course, we

namespace detail {
template <ex::receiver Receiver, typename Fun>
struct then_receiver {
 Fun f_;
 Receiver receiver_;

 using receiver_concept = ex::receiver_t;

 void set_value(int value) noexcept {
 try {
 ex::set_value(std::move(receiver_),
 f_(value));
 } catch (...) {
 ex::set_error(std::move(receiver_),
 std::current_exception());
 }
 }
 void set_error(std::exception_ptr e) noexcept {
 ex::set_error(std::move(receiver_), e); }
 void set_stopped() noexcept {
 ex::set_stopped(std::move(receiver_)); }
};
}

listing 4

ex::sender auto branch1 = ex::schedule(sched)
 | let_value([]{ return work1; });
ex::sender auto branch2 = ex::schedule(sched)
 | let_value([]{ return work2; });
ex::sender auto branch3 = ex::schedule(sched)
 | let_value([]{ return work3; });
ex::sync_wait(ex::when_all(branch1, branch2,
 branch3));

listing 5

serializer_context ctx;
ex::sender auto branch1 =
 on_serializer(ex::schedule(sched), ctx, work1);
ex::sender auto branch2 =
 on_serializer(ex::schedule(sched), ctx, work2);
ex::sender auto branch3 =
 on_serializer(ex::schedule(sched), ctx, work3);
ex::sync_wait(ex::when_all(branch1, branch2,
 branch3));

listing 6

implementing sender adaptors is not
particularly complicated – most of the

complexity arises from making the
implementation generic

luCiAn RAdu tEOdORESCuFEAtuRE

8 | Overload | April 2025

need to synchronise access to the vector and to the flag that indicates
whether execution is currently in progress.

When a chunk of work has finished executing on the serializer, we again
have two cases: one where there is no pending work on the serializer, and
one where there is pending work. In the first case, we should simply exit,
marking the serializer as not busy. In the second case, we need to start
executing the next work item.

The implication of this strategy is that one scheduler may queue up a
significant amount of work to be executed, which is not always desirable.
To address this issue, one might add a scheduler to the context and always

execute pending work on this scheduler. We leave this as an exercise for
the reader.

Moving on, the code that implements the actual sender is presented
in Listing 8, and its intermediate receiver in Listing 9. The sender
code doesn’t contain anything particularly noteworthy. It simply
follows the same pattern we’ve seen before: sender_concept,
completion_signatures, get_env(), and connect.

As in the previous example, the key logic happens in the set_value()
method of the intermediate receiver. Here, we enqueue a lambda into the
serializer context that must perform three actions: execute the given work,
notify the context when the work is done, and signal the final receiver
with a completion signal.

For the first two actions, we create a sender that will execute them;
we name this sender work_and_done. This is a straightforward
composition of the original work and an ex::then with a lambda that
calls on_done on the context. Then, to cover the third action, we connect
this sender to the final receiver object, storing the resulting operation
state in the variable op. We then call start on this operation state to
actually execute everything. To summarise, this will first execute the
work_and_done sender, which will first execute the given work, then
call on_done on the context, and finally trigger a completion signal to
the final receiver.

The start() call will last as long as this operation needs to execute.
This means that the lifetime of op is slightly longer than this operation.

struct serializer_context {
 using continuation_t = std::function<void()>;
 // Called when new work needs to be enqueued
 void enqueue(continuation_t cont) {
 {
 std::lock_guard<std::mutex>
 lock{bottleneck_};
 if (busy_) {
 // If we are busy, we need to enqueue
 // the continuation
 to_run_.push_back(std::move(cont));
 return;
 }
 // We are free; mark ourselves as busy,
 // and execute continuation inplace
 busy_ = true;
 }
 cont();
 }
 // Called when the work completes
 void on_done() {
 continuation_t cont;
 {
 std::lock_guard<std::mutex>
 lock{bottleneck_};
 assert(busy_);
 if (to_run_.empty()) {
 // Nothing to run next, we are done
 busy_ = false;
 return;
 }
 // We have more work to do; extract the
 // first continuation
 cont = std::move(to_run_.front());
 to_run_.erase(to_run_.begin());
 }
 if (cont) {
 cont();
 }
 }
private:
 bool busy_{false};
 std::vector<continuation_t> to_run_;
 std::mutex bottleneck_;
};

listing 7

template <ex::sender Previous, ex::sender Work>
struct on_serializer_sender {
 Previous previous_;
 serializer_context& context_;
 Work work_;

 using sender_concept = ex::sender_t;
 using completion_signatures =
 ex::completion_signatures<
 ex::set_value_t(),
 ex::set_error_t(std::exception_ptr),
 ex::set_stopped_t()>;
 ex::empty_env get_env() const noexcept {
 return {}; }

 template <ex::receiver Receiver>
 auto connect(Receiver receiver) noexcept {
 return ex::connect(previous_,
 detail::on_serializer_receiver{context_,
 work_, receiver});
 }
};
template <ex::sender Previous, ex::sender Work>
on_serializer_sender<Previous,
 Work> on_serializer(Previous prev,
 serializer_context& ctx, Work work) {
 return {prev, ctx, work};
}

listing 8

the implication of this strategy is that
one	scheduler	may	queue	up	a	significant	
amount of work to be executed, which is
not always desirable

luCiAn RAdu tEOdORESCu FEAtuRE

April 2025 | Overload | 9

This is a common pattern when implementing code that manually runs
operation states. It is also well aligned with the requirement we have
for operation states, which forbids copying and moving operation state
objects while the asynchronous operation is running (see above).

Depending on the workload of the context, this lambda might be executed
immediately or deferred to a later execution. In both cases, we uphold the
guarantees of the serializer and the expectations of senders.

Conclusions
In this article, we presented three examples to demonstrate that writing
senders is not very complicated and can be done relatively easily by regular
C++ engineers. There are a few concepts that need to be understood (we
covered the basics in the first part of the article), but once one is familiar
with those concepts, writing new senders is not difficult. Of course,
senders that deal with complex concurrency concerns are harder to write,
as they require extra care on the concurrency side, but this is inherent to
the problem being solved.

Through these examples, we also reinforced the idea presented in the
previous two articles ([Teodorescu24], [Teodorescu25a]) that the senders/
receivers framework has great composability features.

If the first two articles in this series conveyed the message that senders
are easy to use but probably harder to implement, this article aims to
show that senders are also easy to implement. However, there is a caveat:
while it is easy to implement regular senders, implementing fully generic
senders can be more challenging. That said, most users will not need to
implement fully generic senders. Thus, for most programmers, writing
senders should be a straightforward task.

Senders/receivers are not complicated. People just need to spend some
time getting acquainted with how they work. They are often compared
to the introduction of iterators for generic programming: they may not be
the first tool a novice programmer reaches for, but after some practice,
their value is inestimable. I truly believe that the same description applies
to senders/receivers. �

References
[Beman] Dietmar Kühl and other Beman project contributors, execution,

available at: https://github.com/bemanproject/execution
[Intel] Intel, ‘Local Serializer’ in Intel® oneAPI Threading Building

Blocks Developer Guide and API Reference, available at: https://
www.intel.com/content/www/us/en/docs/onetbb/developer-guide-
api-reference/2021-12/local-serializer.html

[Kohlhoff23] Christopher M. Kohlhoff, ‘Strands: Use Threads Without
Explicit Locking’, boost C++ Libraries, available at:
https://www.boost.org/doc/libs/1_87_0/doc/html/boost_asio/
overview/core/strands.html

[P2300R10] Michał Dominiak, Georgy Evtushenko, Lewis Baker,
Lucian Radu Teodorescu, Lee Howes, Kirk Shoop, Michael
Garland, Eric Niebler, Bryce Adelstein Lelbach, P2300R10:
std::execution, 2024, available at: https://wg21.link/P2300R10

[stdexec] NVIDIA, ‘Senders - A Standard Model for Asynchronous
Execution in C++’, available at: https://github.com/NVIDIA/stdexec

[Teodorescu24] Lucian Radu Teodorescu, ‘Senders/receivers: An
Introduction’, Overload 184, December 2024, available at:
https://accu.org/journals/overload/32/184/teodorescu/

[Teodorescu25a] Lucian Radu Teodorescu, ‘Using Senders/Receivers’,
Overload 185, February 2025, available at: https://accu.org/journals/
overload/33/185/teodorescu/

[Teodorescu25b] Lucian Radu Teodorescu, overload186_sr_examples
(code for the article) available at: https://github.com/lucteo/
overload186_sr_examples

namespace detail {
template <ex::receiver Receiver, ex::sender Work>
struct on_serializer_receiver {
 serializer_context& context_;
 Work work_;
 Receiver receiver_;

 using receiver_concept = ex::receiver_t;

 void set_value() noexcept {
 context_.enqueue([this] {
 ex::sender auto work_and_done =
 work_ | ex::then([this] {
 context_.on_done(); });
 auto op = ex::connect(work_and_done,
 std::move(receiver_));
 ex::start(op);
 });
 }
 void set_error(std::exception_ptr e) noexcept {
 ex::set_error(std::move(receiver_), e); }
 void set_stopped() noexcept {
 ex::set_stopped(std::move(receiver_)); }
};
}

listing 9

the requirement we have for operation
states … forbids copying and moving

operation state objects while the
asynchronous operation is running

https://github.com/bemanproject/execution
https://www.boost.org/doc/libs/1_87_0/doc/html/boost_asio/overview/core/strands.html
https://www.boost.org/doc/libs/1_87_0/doc/html/boost_asio/overview/core/strands.html
https://wg21.link/P2300R10
https://github.com/NVIDIA/stdexec
https://accu.org/journals/overload/32/184/teodorescu/
https://accu.org/journals/overload/33/185/teodorescu/
https://accu.org/journals/overload/33/185/teodorescu/
https://github.com/lucteo/overload186_sr_examples
https://github.com/lucteo/overload186_sr_examples

SAndOR dARGOFEAtuRE

10 | Overload | April 2025

C++26: Erroneous Behaviour
C++’s undefined behaviour impacts safety.
Sandor Dargo explains how and why uninitialised
reads will become erroneous behaviour in C++26,
rather than being undefined behaviour.

if you pick a random talk at a C++ conference these days, there is a
fair chance that the speaker will mention safety at least a couple of
times. It’s probably fine like that. The committee and the community

must think about improving both the safety situation and the reputation
of C++.

If you follow what’s going on in this space, you are probably aware that
people have different perspectives on safety. I think almost everybody
finds it important, but they would solve the problem in their own way.

A big source of issues is certain manifestations of undefined behaviour.
It affects both the safety and the stability of software. I remember that a
few years ago when I was working on some services which had to support
a 10× growth, one of the important points was to eliminate undefined
behaviour as much as possible. One main point for us was to remove
uninitialized variables which often lead to crashing services.

Thanks to P2795R5 by Thomas Köppe, uninitialized reads won’t be
undefined behaviour anymore – starting from C++26. Instead, they will
get a new behaviour called ‘erroneous behaviour’.

The great advantage of erroneous behaviour is that it will work just by
recompiling existing code. It will diagnose where you forgot to initialize
variables. You don’t have to systematically go through your code and let’s
say declare everything as auto to make sure that every variable has an
initialized value. Which you probably wouldn’t do anyway.

But what is this new behaviour that on C++ Reference is even listed
on the page of undefined behaviour? [CppRef-1] It’s well-defined, yet
incorrect behaviour that compilers are recommended to diagnose. Is
recommended enough?! Well, with the growing focus on safety, you can
rest assured that an implementation that wouldn’t diagnose erroneous
behaviour would be soon out of the game.

Some compilers can already identify uninitialized reads – what nowadays
falls under undefined behaviour. For example, clang and gcc with
-ftrivial-auto-var-init=zero have already offered default
initialization of variables with automatic storage duration. This means
that the technique to identify these variables is already there. The only
thing that makes this approach not practical is that you will not know
which variables you failed to initialize.

Instead of default initialization, with erroneous behaviour, an uninitialized
object will be initialized to an implementation-specific value. Reading
such a value is a conceptual error that is recommended and encouraged
to be diagnosed by the compiler. That might happen through warnings,
run-time errors, etc.

 void foo() {
 int d; // d has an erroneous value
 bar(d); // that’s erroneous behaviour!
 }

So, looking at the above example, ideally int d; should be already
diagnosed at compile-time as a warning. If it’s ignored, at some point,
bar(d); will have an effect during program execution, but it should
be well-defined, unlike undefined behaviour where anything can happen.

It’s worth noting that undefined behaviour and having erroneous values
is not possible in constant expressions. In other words, constexpr
protects from it.

Initializing an object to anything has a cost. What if you really want to
avoid it and initialize the object later? Will you be able to still do it without
getting the diagnostics? Sure! You just have to be deliberate about that.
You cannot just leave values uninitialized by accident, you must mark
them with C++26’s new attribute, [[indeterminiate]].

We must notice in the example, that d doesn’t have an erroneous value
anymore. Now its value is simply indeterminate [CppRef-2]. On the other
hand, if we later use that variable still without initialization, it’s undefined
behaviour!

Above, we’ve only talked about variables with automatic storage duration.
That’s not the only way to have uninitialized variables. Moreover,
probably it’s not even the main way, think about dynamic storage duration,
think about pointers! Also, if any member is left uninitialized, the parent
object’s value will be considered either indeterminate or erroneous. See
Listing 1.

Not only variables variables but function parameters can also be marked
[[indeterminate]]. See Listing 2 (next page).

At the point of writing (January 2025), no compiler provides support for
erroneous behaviour.

Sandor Dargo is is a passionate software craftsman focusing on
reducing maintenance costs by applying and enforcing clean code
standards. He loves knowledge sharing, both oral and written. When
not reading or writing, he spends most of his time with his two
children and wife in the kitchen or travelling. Feel free to contact him
at sandor.dargo@gmail.com

struct S {
 S() {}
 int num;
 std::string text;
};

int main() {
 [[indeterminate]] S s1; // indeterminate value
 std::cout << s1.num << '\n'
 // this is UB as s1.num is indeterminate

 S s2;
 std::cout << s2.num << '\n'
 // this is still UB, s2.num is an
 // erroneous value
}

listing 1

SAndOR dARGO FEAtuRE

April 2025 | Overload | 11

Conclusion
C++26 introduces erroneous behaviour in order to give well-defined, but
incorrect behaviour for reading uninitialized values. Soon, compilers will
be recommended to diagnose every occurrence of reads of uninitialized
variables and function parameters.

Also, if something is not initialized at a given moment on purpose, you
can mark it with the [[indeterminate]] attribute following the don’t
pay for what you don’t need principle.

This new behaviour is a nice step forward in terms of C++’s safety. �

References
[CppRef-1] ‘Undefined behavior’ on cppreference.com, available at

https://en.cppreference.com/w/cpp/language/ub
[CppRef-2] ‘C++ attribute: indeterminate’ on cppreference.com,

available at https://en.cppreference.com/w/cpp/language/attributes/
indeterminate

This article was previously published on Sandor Dargo’s Blog on 4
February 2025, and is available at https://www.sandordargo.com/
blog/2025/02/05/cpp26-erroneous-behaviour

struct S {
 S() {}
 int num;
 std::string text;
};

void foo(S s1 [[indeterminate]], S s2)
{
 bar(s1.num); // undefined behavior
 bar(s2.num); // erroneous behavior
}

listing 2

Soon, compilers will be recommended to
diagnose every occurrence of reads of

uninitialized variables and function parameters

https://en.cppreference.com/w/cpp/language/ub
https://en.cppreference.com/w/cpp/language/attributes/indeterminate
https://en.cppreference.com/w/cpp/language/attributes/indeterminate
https://www.sandordargo.com/blog/2025/02/05/cpp26-erroneous-behaviour
https://www.sandordargo.com/blog/2025/02/05/cpp26-erroneous-behaviour

AndREAS FERtiGFEAtuRE

12 | Overload | April 2025

constexpr Functions:
Optimization vs Guarantee
Constexpr has been around for a while now, but many don’t fully
understand its subtleties. Andreas Fertig explores its use and when
a constexpr expression might not be evaluated at compile time.

the feature of constant evaluation is nothing new in 2023. You have
constexpr available since C++11. Yet, in many of my classes, I see
that people still struggle with constexpr functions. Let me shed

some light on them.

What you get is not what you see
One thing, which is a feature, is that constexpr functions can be
evaluated at compile-time, but they can run at run-time as well. That
evaluation at compile-time requires all values known at compile-time is
reasonable. But I often see that the assumption is once all values for a
constexpr function are known at compile-time, the function will be
evaluated at compile-time.

I can say that I find this assumption reasonable, and discovering the truth
isn’t easy. Let’s consider an example (Listing 1).

The constexpr function Fun divides 42 by a value provided by the
parameter v u. In v, I call Fun with the value 6 and assign the result to
the variable f.

Last, in w, I return the value of f to prevent the compiler optimizes
this program away. If you use Compiler Explorer to look at the resulting
assembly, GCC with -O1 brings this down to:
 main:
 mov eax, 7
 ret

As you can see, the compiler has evaluated the result of 42 / 6, which, of
course, is 7. Aside from the final number, there is also no trace at all of
the function Fun.

Now, this is what, in my experience, makes people believe that Fun
was evaluated at compile-time thanks to constexpr. Yet this view is

incorrect. You are looking at compiler optimization, something different
from constexpr functions.

Let’s remove the constexpr from the function first (Listing 2).

The resulting assembly, again GCC and -O1 is the following:
 Fun(int):
 mov eax, 42
 mov edx, 0
 idiv edi
 ret
 main:
 mov eax, 7
 ret

Okay, that looks more like proof that constexpr helped before. You
now can see the function Fun, but the result is still known in main. Why
is that?

The reason is that constexpr implies inline! Try for yourself, make
Fun inline, and you will see exactly the same assembly output as when
the function was constexpr.

Because of the implicit inline, the compiler understands that Fun never
escapes the current translation unit. By knowing that there is no reason to
keep the definition around. Then, Fun itself is reasonably simple to the
compiler, and the parameter is known at compile-time. An invitation for
the optimizer, which it happily accepts.

You can alter the code even more, and the optimizer will still be able to
produce the same result. Have a look at the changes I made to the original
code in Listing 3.

constexpr auto Fun(int v)
{
 return 42 / v; u
}
int main()
{
 const auto f = Fun(6); v

 return f; w
}

listing 1

auto Fun(int v)
{
 return 42 / v; u
}
int main()
{
 const auto f = Fun(6); v

 return f; w
}

listing 2

Andreas Fertig is a trainer and lecturer on C++11 to C++20,
who presents at international conferences. Involved in the C++
standardization committee, he has published articles (for example, in
iX) and several textbooks, most recently Programming with C++20.
His tool – C++ Insights (https://cppinsights.io) – enables people to
look behind the scenes of C++, and better understand constructs. He
can be reached at contact@andreasfertig.com

inline auto Fun(int v) u
{
 return 42 / v;
}

int main()
{
 int val{6}; v
 auto f = Fun(val); w

 return f;
}

listing 3

https://cppinsights.io

AndREAS FERtiG FEAtuRE

April 2025 | Overload | 13

Fun is now inline as u shows. The input to Fun is now a non-const
variable var v, and the result of the call to Fun in w is stored in a
non-const variable. All just run-time code. Except that the compiler
can still see that the input to Fun is always 6. With this knowledge the
compiler gets its friend the optimizer onboard and the result is the same
as with the initial code that looked way more constant then this version.

What you see here is still an optimization. Yes, if you are interested in
a small binary footprint, you will be happy. But, constexpr can give
you more! You can get guarantees from constexpr. Let’s explore that.

Ways to enforce constant evaluation
The current code does not force the compiler to evaluate Fun at compile-
time in a manner that could cause compile-time evaluation to fail. The
evaluation could silently fail for integral data types declared const,
which isn’t allowed with constexpr. Essentially, you must force the
compiler into a compile context for the evaluation. You have roughly four
options for doing so:

	� assign the result of Fun to a constexpr variable;

	� use Fun as a non-type template argument;

	� use Fun as the size of an array;

	� use Fun within another constexpr function that is forced into
constant evaluation by one of the three options before.

In Listing 4, you find the four cases in code.

Enforcing constant evaluation
So far, I have done neither of the four variants, time to change this. Let me
make the variable f constexpr (Listing 5).

Once you look at the resulting assembly, you see ... no change compared to
the initial example. Remember that I started by stating that distinguishing
optimization from the guarantee is difficult?

My example now comes with the guarantee that Fun is evaluated at
compile-time. However, since there is no difference between the former
version in the resulting assembly, what is my point?

Well, time to start talking about the guarantee.

What if, and please don’t be shocked, I replace 6 with 0 in my call to
Fun? Urg, yes, that will result in a division by zero. Who, aside from
Chuck Norris, can divide by zero? At least, I can’t, and neither can any
of the compilers I use.

But the initial example, despite the fact that Fun is constexpr, compiles
just fine. Well, this little warning about the division by zero aside. Ah,
yes, and the result is, well, potentially the result to expect if one of us
could divide by zero.

the guarantee
Make the variable f in v constexpr, or choose another way to force
the compiler into constant evaluation. The result? If you make the change,
your compile will fail, and the compiler tells you the obvious: a division
by zero does not produce a constant value. This is what constexpr
functions bring you: an evaluation free of undefined behavior!

Putting constexpr on a function only gives you a small part of
constexpr. Only by using a constexpr function in a context requiring
constant evaluation will you get the full benefits out of it, no undefined
behavior.

I hope this article helps you better understand what constexpr can offer
and how to distinguish the guarantee from a compiler’s optimization. �

References
The code listings are available on godbolt:

	� Listing 1: https://godbolt.org/z/chG8oe3TG

	� Listing 2: https://godbolt.org/z/85W5Mdv4T

	� Listing 4 (with the extra needed for it to compile):
https://godbolt.org/z/ddrGrYr3M

	� Listing 5: https://godbolt.org/z/4Y5nraeYG

constexpr auto Other(int v)
{
 return Fun(v);
}

int main()
{
 constexpr auto f{Fun(6)};
 int data[Fun(6)]{}; // Please prefer
 // the std::array solution
 std::array<int, Fun(6)> data2{};
 constexpr auto ff{Other(6)};
}

listing 4

constexpr auto Fun(int v)
{
 return 42 / v; u
}

int main()
{
 constexpr auto f = Fun(6); v

 return f; w
}

listing 5

This article was published on Andreas Fertig’s blog on 6 June
2023, and is available at: https://andreasfertig.com/blog/2023/06/
constexpr-functions-optimization-vs-guarantee/

Remember that i started by stating that
distinguishing optimization from the

guarantee	is	difficult?

https://godbolt.org/z/chG8oe3TG
https://godbolt.org/z/85W5Mdv4T
https://godbolt.org/z/ddrGrYr3M
https://godbolt.org/z/4Y5nraeYG
https://andreasfertig.com/blog/2023/06/constexpr-functions-optimization-vs-guarantee/
https://andreasfertig.com/blog/2023/06/constexpr-functions-optimization-vs-guarantee/

AuREliAn mElintEFEAtuRE

14 | Overload | April 2025

uml Statecharts
Formal	Verification
Formal verification can be applied to UML
statecharts. Aurelian Melinte demonstrates
how to model statecharts in Promela.

How difficult is it to model an UML statechart in Promela [Spin] for
formal verification? There seems to be very little information on
how to do it.

Some notes about the Promela code
At its core, Promela is a modelling language, not a programming one.
Even though it looks like C, the differences are significant. As such,
you might find it lacks the constructs you would normally expect as a
programmer and the goto, define and inline (with a very specific
semantics) are ruling the field.

There are a few keywords that are not what you usually expect:

	� process: a process is Promela’s idea of modelling a parallel
execution task. It is not an operating system process. A process
executes a special proctype function. Processes exchange
messages via channels (chan artefacts) and can reference global
data.

	� state: Promela turns both the model you describe with the
language, and the linear temporal language formula (LTL)
describing the desired behaviour of the model in time, into Büchi
automatons [Wikipedia] – these automatons’ states are the ones that
Promela will report about. To avoid confusion with the states of the
statechart, I will explicitly name these as UML-states. Plain ‘states’
are Promela/Büchi ones.

	� timeout: Promela has no notion of measurable time (though you
can force one in). timeout is a variable that is set true when the
verification has not yet run to completion yet the Büchi automaton
does not know which state to transition to next and the verification
has to stop. It could be a genuine timeout, a dead lock or something
else, depending on what the model is about. Thus, you can check for
timeout conditions in the model and act on accordingly.

It is important to note that statements are generally blocking statements:
the process is stopped at a statement until the statement become
executable. Some statements are unconditionally executable (think
printf or assert and plain variable assignments) but most of them
become executable only when meeting the appropriate condition (e.g.
var == true becomes executable only when var is set to true; until
this happens, the process trying to execute that statement is awaiting on
the condition).

The unusual looking if construct is more akin to a C switch statement. It
is a selection statement awaiting for statements to become executable. An
:: option sequence starts executing when its first statement (the ‘guard’)
becomes executable. And if more than one option becomes executable,
the verification will explore all these paths ‘non-deterministically’. If

none is executable, the selection blocks until at least one option becomes
executable.

The curious end labels you see in the models are there to inform the
verification engine that it is normal for that process to end the verification
in that particular state. Otherwise, the verification will report it as an error.

Side note: do use the iSpin GUI coming with spin; or some other GUI.
The insights offered into the model are really worth it.

Statechart modelling notes
There are (at least) two things to pay special attention to when modelling:

	� run to completion (RTC): an event entering the statechart should be
fully processed before a next event is considered for processing. This
is key, as having multiple events propagating quasi-simultaneously
through the statechart will end up with the wrong events processed
by the wrong UML-states. The side effects of an event propagating
through will start being visible as the event processing is progressing
and but this is good: the statechart, supposedly, lives in a multi-
threaded environment and you want to check for race conditions that
the actions on enter/exit/transitions are asynchronously effecting
changes on shared resources.

	� transition execution order: the canonical order when transitioning
from UML-state A to UML-state B is: execute on-exit actions of
A then execute the actions associated with the transition itself then
execute the on-entry actions of B. Some statechart implementations
[QP] might have a different execution order (e.g. transition then on-
exit A then on-exit B). You may want to model for the specifics of
the statechart engine that the model will be implemented in.

A	finite	state	machine	(FSM)
Modelling a plain FSM should be a rather straight-forward task: one
process for the whole statechart should suffice. Figure 1 (next page) is
one easy FSM to model: a double-switch light: the light is on only when
both a wall switch and an on-lamp switch are turned on. Listing 1 (also
next page) shows the relevant parts of the model [Milente-1]. goto aside,
it is quite readable and a rather direct translation of the UML chart.

The statechart gets its events from a model-global
_stateMachineChannel channel. This channel needs only a one-
message capacity as the statechart processes events one at a time. There
is a _stateMachineReady flag to let the events flow into the statechart
once it has reached the proper initial state. And there is an _isLightOn
ghost variable cum-lightbulb for verification purposes.

To verify it, Promela needs a ‘closed environment’: that is, we need to add
code to exercise the statechart – a family of test scenarios. We also need
to tell Promela what the expected behavior is for the given test scenarios:
an LTL formula to verify. These are in Listing 2.

The verification is only as useful as the closed environment is elaborate
enough to match the reality that the statechart will be subjected to in its
real implementation. And only as useful as the LTL formula expresses the

Aurelian Melinte Aurelian acquired his programming addiction in
late 90s as a freshly-minted hardware engineer and is not looking
for a cure. He spends most of his spare time reading and exercising.
Feel free to contact him at ame01@gmx.net

AuREliAn mElintE FEAtuRE

April 2025 | Overload | 15

expected behavior. One other process will be environment injecting the
events into the statechart. The TestEnvironment flips one switch then
another to get the light on then flips both again to get back to the initial
state. It should start injecting events only when the provided clause
holds true, which happens when the statechart reached its initial state.

Hence TestEnvironment offers four possible execution paths – four
scenarios – to verify. In all four cases, the LTL should hold true. The LTL
can be expressed with plain-English operators or more cryptic ones –
both possibilities are shown here.

A hierarchical state machine
Now onto the main dish: how to model HSMs. There are at least two
approaches.

Flattening
One approach could be flattening. Theoretically, any HSM can be
‘flattened’ into an equivalent FSM by hoisting the transitions table from
a substate into the composite states owning it. Start with the lowest leaf
states – flattening will eliminate these much like all four UML-states are
expressed into the one FSM Switch above. Repeat until you reach the

LampSwitch

LampSwitch

LampSwitch

WallSwitch
WallSwitchWallSwitch

LampSwitch LampOff

WallOff

BothOff

LightOn

WallSwitch

Switch

Figure 1

#define idx_unknown -1
#define idx_state_BothOff 0
#define idx_state_LampOff 1
#define idx_state_LightOn 2
#define idx_state_WallOff 3

mtype = { event_LampSwitch, event_WallSwitch }

typedef event {mtype evId};

chan _stateMachineChannel = [1] of {event};
bool _stateMachineReady = false;
bool _isLightOn = false;

inline send_event(evt)
{
 local event evtSend;
 evtSend.evId = evt;
 _stateMachineChannel!evtSend;
}

proctype Switch()
{
 xr _stateMachineChannel;
 local event evtRecv;
 local short currentState = idx_unknown;

/* initial state idx_state_BothOff[*/
entry_BothOff: //0
 /* execute on-entry BothOff actions if any */
 currentState = idx_state_BothOff;
 _stateMachineReady = true;
end_Switch:
body_BothOff:
 if
 :: (evtRecv.evId == event_LampSwitch) ->
 /* execute on exit state BothOff then
 transition actions*/
 goto entry_WallOff;

 :: (evtRecv.evId == event_WallSwitch) ->
 /* on exit BothOff &
 transition actions here */
 goto entry_LampOff;
 fi
/*]state idx_state_BothOff*/

/* state idx_state_LampOff[*/
...
/*]state idx_state_LampOff*/

listing 1

/* state idx_state_LightOn[*/
entry_LightOn: //2
 _isLightOn = true;
 currentState = idx_state_LightOn;

body_LightOn:
 if
 :: (evtRecv.evId == event_LampSwitch) ->
 _isLightOn = false;
 goto entry_LampOff;

 :: (evtRecv.evId == event_WallSwitch) ->
 _isLightOn = false;
 goto entry_WallOff;
 fi
/*]state idx_state_LightOn*/

/* state idx_state_WallOff[*/
...
/*]state idx_state_WallOff*/
} // Switch

Listing	1	(cont’d)

proctype TestEnvironment() provided
 (_stateMachineReady)
{
 assert(Switch:currentState ==
 idx_state_BothOff);
 if
 :: true ->
 send_event(event_WallSwitch);
 send_event(event_LampSwitch);
 :: true ->
 send_event(event_LampSwitch);
 send_event(event_WallSwitch);
 fi
 (_isLightOn == true);
 assert(Switch:currentState ==
 idx_state_LightOn);

 if
 :: true ->
 send_event(event_LampSwitch);
 send_event(event_WallSwitch);
 :: true ->
 send_event(event_WallSwitch);
 send_event(event_LampSwitch);
 fi
 (_isLightOn == false);
 (Switch:currentState == idx_state_BothOff);
} // TestEnvironment

ltl { always/*[]*/ eventually/*<>*/
 ((Switch:currentState ==
 idx_state_BothOff && _isLightOn == false)
 implies/*->*/ (Switch:currentState ==
 idx_state_LightOn && _isLightOn == true)
 implies/*->*/ (Switch:currentState ==
 idx_state_BothOff && _isLightOn == false)
)}

listing 2

AuREliAn mElintEFEAtuRE

16 | Overload | April 2025

top. If you have to do it manually (I know of no tool to do it for Promela), I
doubt it can work with sizeable statecharts, given the resulting goto ping-
pong code. Good luck keeping the Promela model true to its UML spec.

A process per uml-state
Another approach is to use one process per UML-state and a maze of
channels to move events between these. Despite the growing complexity
of the model, the translation of the UML spec is rather mechanical, and
it keeps the transition tables local to each process-cum-UML-state. It can
scale, at least as a mental effort. We can think of the double-switch as if

being an HSM and model it accordingly: the switch itself can be looked at
as a composite UML-state with four substates. See the relevant snippets
of this model [Melinte-2] in Listing 3 (supporting code), Listing 4 (a
sample state implementation out of four) and Listing 5 (switch HSM) for
the model; and Listing 6 (next page) for the closed environment.

mtype = { event_ExitState, event_EnterState,
 event_LampSwitch, event_WallSwitch, }
typedef event {mtype evId; short toState};

chan _stateMachineChannel = [1] of {event};
chan _stateMachineInternalChannel = [3] of
 {event};
short _currentState = idx_unknown;
bool _stateMachineReady = false;
bool _isLightOn = false;

inline send_internal_event(evt, toState)
 // sorted order
{
 _stateMachineInternalChannel!evt(toState);
}
inline send_event(evt, toState)
{
 empty(_stateMachineInternalChannel);
 _stateMachineChannel!evt(toState);
}

listing 3

proctype StateLightOn(chan superChannel;
 chan eventProcessedChan)
{
 local event evtRecv;

entry_LightOn:
 _currentState = idx_state_LightOn; //2
 _isLightOn = true;

body_LightOn:
 superChannel?evtRecv;
 // Send event to substates/regions for
 // processing (none here). If substates did not
 // processed the event: attempt to process the
 // event per our transition table below

 atomic {
 if
 :: (evtRecv.evId == event_ExitState &&
 evtRecv.toState == idx_state_LightOn) ->
 eventProcessedChan!true;
 goto exit_LightOn;

 :: (evtRecv.evId == event_LampSwitch) ->
 send_internal_event(event_EnterState,
 idx_state_LampOff);
 eventProcessedChan!true;
 goto exit_LightOn;

 :: (evtRecv.evId == event_WallSwitch) ->
 send_internal_event(event_EnterState,
 idx_state_WallOff);
 eventProcessedChan!true;
 goto exit_LightOn;

 :: else -> assert(false);
 skip;
 fi

 goto body_LightOn;
 } // atomic
exit_LightOn:
 _isLightOn = false;
}

listing 4

proctype Switch(chan superChannel)
{
 local event evtRecv;
 chan substateChannel = [1] of {event};

 chan eventProcessedChannel = [0] of {bool}
 bool eventProcessed = false;

entry_Switch:
 send_internal_event(event_EnterState,
 idx_state_BothOff); // enter initial state

body_Switch:
 if
 :: nempty(_stateMachineInternalChannel) ->
 _stateMachineInternalChannel?evtRecv
 :: empty(_stateMachineInternalChannel) ->
 end_Switch: superChannel?evtRecv;
 fi

 atomic {
 if
 :: (evtRecv.evId == event_EnterState &&
 evtRecv.toState == idx_state_BothOff) ->
 run StateBothOff(substateChannel,
 eventProcessedChannel);
 goto body_Switch;

 :: (evtRecv.evId == event_EnterState &&
 evtRecv.toState == idx_state_LampOff) ->
 run StateLampOff(substateChannel,
 eventProcessedChannel);
 goto body_Switch;

 :: (evtRecv.evId == event_EnterState &&
 evtRecv.toState == idx_state_LightOn) ->
 run StateLightOn(substateChannel,
 eventProcessedChannel);
 goto body_Switch;

 :: (evtRecv.evId == event_EnterState &&
 evtRecv.toState == idx_state_WallOff) ->
 run StateWallOff(substateChannel,
 eventProcessedChannel);
 goto body_Switch;

 :: (evtRecv.evId == event_ExitState) ->
 substateChannel!evtRecv;
 eventProcessedChannel?eventProcessed;
 goto body_Switch;

 :: else -> skip; // send to substates
 // for processing
 fi
 // Send event to substates/regions for
 // processing
 substateChannel!evtRecv.evId(_
currentState);
 eventProcessedChannel?eventProcessed;
 if
 :: (eventProcessed == true) ->
 goto body_Switch;
 :: else -> skip; // to the transition table
 // next
 fi
 // Attempt to process the event per our
 // transition table which is empty
 assert(false);
 goto body_Switch; // next event?
 } // atomic
exit_Switch:
} // Switch

listing 5

AuREliAn mElintE FEAtuRE

April 2025 | Overload | 17

A substate awaits events from its superstate via a dedicated
superChannel. If the event is about entering one of its own substates,
it spawns the appropriate process. If not, it first passes the event down
to its own currently executing sub-substate and awaits the result of. The
sub-substate reports back whether it processed or passed on the event via
an eventProcessedChannel rendez-vous (a zero-messages capacity)
channel. If the event was passed on, the substate checks its own transition
table and acts on the event or passes it accordingly. Finally, it informs its
superstate of the processing result in the same vein it was informed of the
processing status by the sub-substate.

There are a few changes to take notice of:

	� The atomic wrapping a bunch of statements are there to reduce the
number of verification states (it works: for this particular model the
reduction is about two thirds less Büchi states)

	� There is now a _stateMachineInternalChannel This is
needed to accommodate the RTC requirement: this channel will
accumulate event_EnterState and event_ExitState as
the HSM moves from one UML-state A to UML-state B. Manually
determine the least common ancestor (LCA) UML-state of A and
B and queue exit events then enter events into the internal channel
as you traverse from A to B. The state machine will first process
internal events (if any) then await for an external event. The capacity
of the stateMachineInternalChannel is twice of the longest
LCA path plus one for the transition itself.

	� The zero-sized eventProcessedChannel channel that is local
to each UML-state that is a composite state is a rendez-vous channel
for the substates to report back to their superstate how an event
that reached into that substate was processed (or passed on). The
superstate will block on it until the substate is done processing, thus
ensuring RTC.

	� _currentState is now a global. TestEnvironment and the
LTL have been changed accordingly. We avoid remote references
to processes’ internal variables for reasons that will get explained
below.

And here is a slightly modified test scenario and LTL formula in Listing 6.
Of note, the provided clause has been replaced with a plain statement:
(_stateMachineReady == true);. The change is explained below.

As stated above, TestEnvironment and the LTL are now referencing
the global _currentState.

Complexity and runtime notes
The FSM model has less than 300 states and the verification is done in a
few jiffies. The HSM has less than 4000 Büchi states and the verification
runs its course still as fast. The models are too small to infer anything
significant but, while the statechart model is rather fixed in size, the
environment counterpart can be made really complex. For instance we can
add a loop to inject 10 times or 100 times more events in the statechart:

HSm model Complexity Performance
Base case 4000 states; runtime less than 0.01 second

10x 52k states in 0.03 seconds

100x 270k in 0.13 seconds

On my low-end machine, the verification can churn through 4.5 million
states in two minutes. That seems like a huge margin allowing for very
complex models to be verified in a reasonable time.

Unless the model needs fairness. Fairness requires that ready-to-run
processes will not be starved: eventually such processes will get their
turn. This model does not need fairness to be functional but it might
happen you need it if the statechart does more than flip on/off a lightbulb
boolean. Nevertheless, let’s turn fairness on and have a panic moment:

HSm model Complexity Performance
Base case 625k states; runtime 0.3 sec

10x 4.7 million states in 50 seconds

100x Verification might not complete in this
lifetime

That makes an enormous difference. There still is a chance that you will
be able to hold your breath without passing out while the verification
completes: to let the verification use its partial-order reduction (POR)
algorithm. POR is active by default but it can be disabled by some
artefacts used in the model:

	� the provided clause. This is a too-strong synchronization
mechanism as it can suspend a process when the clause turns false.
A simple statement with its built-in execution semantics is enough
here to let events flow from TestEnvironment.

	� remote variable references: _currentState is now a global that
LTL can use instead of reaching directly into processes’ internal
variables. It is ugly to expose internals but ugly will save the day.

	� other constructs not discussed here such as _last, enabled.

	� finally, the rendez-vous channel mechanism had to be replaced.
Again, the synchronization offered by rendez-vous is too strong for
what we need (it changes states in two processes in one verification
step). Listing 7 and Listing 8 (both on next page) are code snippets
of the new model [Melinte-3] that replaces that channel with an
_eventProcessed global. More internal details exposed.

And look at the difference in performance with POR:

HSm model Complexity Performance
10x 130k states in 0.1 sec

100x 655k states in 0.13 sec

more modelling
What about orthogonal regions? Regions can be modelled as processes
akin to the other UML-state processes.

History states: one way to model these is to add a
_deferredEventsInternalChannel channel to the model for
transitions in/out of the history states. Events accumulated in this channel
should be processed first, before the _stateMachineInternalChannel
and the _stateMachineChannel channel.

Choice and junctions: see [Damjan17] for ideas.

proctype TestEnvironment()
{
 (_stateMachineReady == true);
 assert(_currentState == idx_state_BothOff);

 // unchanged code
 ...

 (_isLightOn == true);
 assert(_currentState == idx_state_LightOn);

 // unchanged code
 ...

 (_isLightOn == false);
 (_currentState == idx_state_BothOff);
} // TestEnvironment

ltl {[] <>
 ((_currentState ==
 idx_state_BothOff && _isLightOn == false)
 -> (_currentState ==
 idx_state_LightOn && _isLightOn == true)
 -> (_currentState ==
 idx_state_BothOff && _isLightOn == false)
)}

listing 6

AuREliAn mElintEFEAtuRE

18 | Overload | April 2025

tlA+
The equivalent FSM model has identical logic flow barring the differences
in syntax.

An equivalent HSM model will need significant adjustments because
TLA cannot dynamically ‘spawn’ processes-cum-UML-states. These
will have to be all created at-start and de/activated by events. But more
importantly: there is no algorithm in TLA that I know of that is equivalent
to POR and the verification engine is Java code: slower by an order of
magnitude or two from the get-go. Complexity could kill it. �

References
[Damjan17] Panisara Damjan and Wiwat Vatanawood ‘Translating

UML State Machine Diagram into Promela’ in Proceedings of
the International MultiConference of Engineers and Computer
Scientists 2017 Vol I, IMECS 2017, March 15 - 17, 2017, Hong
Kong, available at: https://www.iaeng.org/publication/IMECS2017/
IMECS2017_pp512-516.pdf

[Melinte-1] Promela SM Models – switch.promela: https://github.com/
melintea/upml/blob/main/doc/promela-sm-models/switch.promela

[Melinte-2] Promela SM Models – switch.hsm.promela:
https://github.com/melintea/upml/blob/main/doc/promela-sm-
models/switch.hsm.promela

[Melinte-3] Promela SM Models – switch.hsm.limites.promela:
https://github.com/melintea/upml/blob/main/doc/promela-sm-
models/switch.hsm.limits.promela

[QP] Quantum Products: https://www.state-machine.com/products
[Spin] ‘Verifying Multi-threaded Software with Spin’:

https://spinroot.com/spin/whatispin.html
[Wikipedia] ‘Büchi automaton’: https://en.wikipedia.org/wiki/

B%C3%BCchi_automaton

short _eventProcessed = idx_unknown;
proctype StateBothOff(chan superChannel)
{
 local event evtRecv;

entry_BothOff:
 _currentState = idx_state_BothOff; //0
 _stateMachineReady = true;

body_BothOff:
end_BothOff: // valid verification's end
 superChannel?evtRecv;

 //As before

 atomic {
 if
 :: (evtRecv.evId == event_ExitState &&
 evtRecv.toState == idx_state_BothOff) ->
 _eventProcessed = idx_processed_Processed;
 goto exit_BothOff;

 :: (evtRecv.evId == event_LampSwitch) ->
 /* execute transition actions then on exit
 state BothOff; not UML-compliant */
 send_internal_event(event_EnterState,
 idx_state_WallOff);
 _eventProcessed = idx_processed_Processed;
 goto exit_BothOff;

 :: (evtRecv.evId == event_WallSwitch) ->
 send_internal_event(event_EnterState,
 idx_state_LampOff);
 _eventProcessed = idx_processed_Processed;
 goto exit_BothOff;

 :: else -> assert(false);
 _eventProcessed =
 idx_processed_NotProcessed;
 skip;
 fi

 goto body_BothOff;
 } // atomic
exit_BothOff:
 /* execute on exit BothOff actions */
}

listing 7

proctype Switch(chan superChannel)
{
 local event evtRecv;
 chan substateChannel = [1] of {event};

entry_Switch:
 send_internal_event(event_EnterState,
 idx_state_BothOff); // initial state

body_Switch:
 if
 :: nempty(_stateMachineInternalChannel) ->
 _stateMachineInternalChannel?evtRecv
 :: empty(_stateMachineInternalChannel) ->
 end_Switch: superChannel?evtRecv;
 fi

 atomic {
 _eventProcessed = idx_unknown;
 if
 :: (evtRecv.evId == event_EnterState &&
 evtRecv.toState == idx_state_BothOff) ->
 run StateBothOff(substateChannel);
 goto body_Switch;

 :: (evtRecv.evId == event_EnterState &&
 evtRecv.toState == idx_state_LampOff) ->
 run StateLampOff(substateChannel);
 goto body_Switch;

 :: (evtRecv.evId == event_EnterState &&
 evtRecv.toState == idx_state_LightOn) ->
 run StateLightOn(substateChannel);
 goto body_Switch;

 :: (evtRecv.evId == event_EnterState &&
 evtRecv.toState == idx_state_WallOff) ->
 run StateWallOff(substateChannel);
 goto body_Switch;

 :: (evtRecv.evId == event_ExitState) ->
 substateChannel!evtRecv;
 goto body_Switch;

 :: else -> skip; // send to substates for
 // processing
 // goto body_Switch;
 fi

 // send event to substates/regions for
 // processing
 _eventProcessed = idx_unknown;
 substateChannel!evtRecv.evId(_currentState);
 (_eventProcessed != idx_unknown);
 if
 :: (_eventProcessed == idx_processed_
Processed) -> goto body_Switch;
 :: else -> skip; // to the transition table
 // next
 fi

 // Attempt to process the event per our
 // transition table which is empty
 assert(false);

 goto body_Switch;
 } // atomic

exit_Switch:
} // Switch

listing 8

https://www.iaeng.org/publication/IMECS2017/IMECS2017_pp512-516.pdf
https://www.iaeng.org/publication/IMECS2017/IMECS2017_pp512-516.pdf
https://github.com/melintea/upml/blob/main/doc/promela-sm-models/switch.promela
https://github.com/melintea/upml/blob/main/doc/promela-sm-models/switch.promela
https://github.com/melintea/upml/blob/main/doc/promela-sm-models/switch.hsm.promela
https://github.com/melintea/upml/blob/main/doc/promela-sm-models/switch.hsm.promela
https://github.com/melintea/upml/blob/main/doc/promela-sm-models/switch.hsm.limits.promela
https://github.com/melintea/upml/blob/main/doc/promela-sm-models/switch.hsm.limits.promela
https://www.state-machine.com/products
https://spinroot.com/spin/whatispin.html
https://en.wikipedia.org/wiki/B%C3%BCchi_automaton
https://en.wikipedia.org/wiki/B%C3%BCchi_automaton

tEEdy dEiGH FEAtuRE

April 2025 | Overload | 19

P271828R2: Adding mullptr to C++
C++ evolves via proposals, which involve a lot of hard
work from all concerned. Teedy Deigh attempts to help
by sharing her proposal for a new state for pointers,
which may not get traction, but might make you smile.

Abstract

this proposal concerns the addition of a new feature to ISO C++. It
involves a new keyword and some semantic changes. [Question for
reviewers: Is this abstract enough? Should it be vaguer? Is specifying

‘ISO C++’ too concrete or should I instead replace it with something like
‘an existing programming language’?]

Rambling
The menagerie of programming languages is an overcrowded dog-
eat-dog, cat-eat-mouse, startup-eats-your-lunch farmyard. C++ needs
to both differentiate and integrate itself. Leaving aside the obviously
popular languages – C, C#, Java, JavaScript, and Python, plus a couple
of languages that are too young to drink or vote – C++ also needs to
compete with the likes of Haskell, a language that makes up for its lack of
mainstream presence by being a Millennial influencer.

In common with many other languages, C++ has exhibited – and, indeed,
acted on – its fair share of FP envy, often looking wistfully at the simplicity
and feature set of Haskell and other functional programming languages.
For example, compile-time computation in C++ follows functional
constraints and style more closely than the less pure runtime language,
especially in its original template metaprogramming form. TMP started –
and, some would contend, continued – as an accident, becoming anything
but temporary. Apart from the frustration induced by compiler messages
and the maintenance costs arising from code subtlety and obscurity, it has
no side effects. The last couple of decades have seen more concepts and,
of course, concepts added to both mitigate and amplify this. Whole
books and week-long training courses, for example, are now dedicated to
explaining C++’s ever expanding pantheon of const-related keywords,
semantics, and surprises. Creating and meeting this demand keeps the
C++ market vibrant and fizzbuzzing!

There are burgeoning opportunities for C++ compile-time programming
in future thanks to the increased focus on safety. Most bugs happen as
a result of side effects; ergo, eliminating side effects reduces bugs. As
runtime bugs are an artefact of the runtime, favouring compile-time over
runtime programming seems the logical conclusion. [Aside: Deprecating
the whole of runtime C++ is not the subject of this proposal. Rest assured,
however, once this proposal has been accepted, I will be working on a
paper to drop the runtime language. Such a possibility should, I hope, offer
a clear incentive to committee members as to how they should respond
to the current proposal. Rather than merely reducing the occurrence of
undefined behaviour in the C++ standard and, therefore, its incidence in
C++ code, removing the runtime-related parts of the standard will have
the benefit of eliminating undefined behaviour in C++, as well as radically
simplifying the language and library. I’m a little surprised no one has
suggested this before.]

Another example of FP envy is lambdas. These were adopted into C++11,
just missing the half century anniversary of their inclusion in Lisp and
jumping the footgun on their 80th birthday.

One area of FP that has received at most optional attention in C++ is
monads. Haskell, for example, has the IO monad to mark code with
side effects – in C++, this is equivalent to pretty much any C++ –
and the Maybe monad to indicate an optional value – in C++, this is
similar to std::optional, but with the added elegance of Haskell
and the full blessing of monadic goodness. [Question for reviewers:
Some readers of previous drafts have asked for clarification of the term
‘monad’, requesting a deeper explanation of the concept and its role in
programming. I thought it would be enough to say that a monad is just a
monoid in the category of endofunctors, but have been told that is neither
sufficient nor necessary. Suggestions?]

meandering
This proposal concerns itself with the issue of pointers and safety. Null
has been called a billion-dollar mistake. While this pales in comparison
to the int-busting cost of Crowdstrike’s unchecked off-by-one error, the
issue still warrants addressing. Similarly, one attempt to reduce undefined
behaviour in the language – for example, uninitialised pointers – has
been to rebrand and remarket much ‘undefined behaviour’ as ‘erroneous
behaviour’ and hope people buy it. I believe a less cynical and less critical
path can be taken.

This proposal pursues – and pounces on – a different approach. In addition
to pointing to valid memory or to null, a pointer can be in the mull state. A
mull pointer reflects an uncertainty and lack of commitment that Maybe
suggests, but without the intellectuality and clarity of monads. Squinted
at just right, the mull state can be considered the offspring of – or head-on
collision between – JavaScript’s undefined and IEEE 754’s NaN.

Whether dereferencing a mull pointer works or not is largely a matter of
consideration. What, after all, do we mean by ‘works’? Who are we to say
whether a piece of code is ‘correct’ or not? Is it not presumptuous for us to
judge? There are many opportunities for interpretation here that compiler
implementors may wish to ponder. Mulling implies that the program could
hang indefinitely. Or perhaps it captures the spirit of the conversation
between developers collectively CSI-ing a core dump, thus encouraging
software development to be a more social activity. Either way, it is left to
the implementor’s discretion rather than being left undefined.

As you can see, such a contemplative and reflective approach [Aside:
There has to date been no discussion on how – or even whether – this
should be integrated with reflection features and proposals.] sidesteps
and deftly dodges questions of safety. It also takes the edge off the
judgemental negativity of ‘erroneous behaviour’ and the formal snubbery
of ‘undefined behaviour’.

Teedy Deigh Like other members of Generation X, C++ isn’t
showing any signs of going away. Teedy has, therefore, decided to
help it be its best self. Bringing about such change typically demands
deep knowledge of the language, awareness of the standardisation
process, political acumen, sensitivity to other people’s opinions and
taste in matters of programming and design. Teedy, however, rarely
submits to the demands and expectations of others.

tEEdy dEiGHFEAtuRE

20 | Overload | April 2025

It is easy to see, with a little overthinking and overdesign, that introducing
the mull state into C++ offers many possibilities for future generalisation.
For example, in addition to truth and falsehood, bool could have a third
mull state, allowing C++ to better model indecision, three-valued logic
systems, and political discourse. For Unicode characters and strings the
mull state could be mapped to the shrug emoji. Heavy users of floating-
point numbers will surely be excited to have a new non-finite state that
is beyond compare. However, much as premature generalisation is a
favourite pastime of C++ developers, I will resist the temptation to dive
into that rabbit warren here. [Question for reviewers: That said, I do have
a fairly fully worked out preliminary draft of all these possibilities.[Aside:
And, indeed, may have got slightly distracted working on that rather than
this proposal, so apologies for the delay.] Please let me know if you would
like to see it. Also, as the current paper concerns pointers, there is no
reference section.]

Concrete
The mullptr keyword is a constant of the mull state that is implicitly
convertible to any pointer type, dumb or smart. Whether dereferencing a

mull pointer results in unspecified or implementation-defined behaviour
is not defined.

The declared type of mullptr is mull_t, which can be picked up as an
std (either namespace or module). No decision has yet been taken as to
what header mull_t should be defined in, but in keeping with existing
practice it will either be something quite obvious (e.g., <mull_t> or
<mullptr>) or somewhat surprising (e.g., <cstdint> or <any>). It
is intended that mull_t is to be pronounced mullet rather than mult or
multi.

Handwavium
It is customary to eventually include proposed wording changes for the
standard. This would be premature at this stage, but readers can be assured
that there will be words. [Aside: Especially if I have to go another round
with committee members who have suggested this feature is ‘frivolous’,
‘poorly thought out’, and ‘a waste of valuable committee time’.] �

Heavy users	of	floating-point	numbers will
surely be excited to have	a	new	non-finite	
state that is beyond compare

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

ACCU is a not-for-profit organisation.

Become a member and support your
programming community.

www.ACCU.org

To connect with
like-minded people

visit accu.org

accu

	Editorial: self->doubt
	Writing Senders
	C++26: Erroneous Behaviour
	constexpr Functions: Optimization vs Guarantee
	UML Statecharts Formal Verification
	P271828R2: Adding mullptr to C++

