
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 19
April 1997

Editorial: Subscriptions:
Alan Griffiths David Hodge
CCN Group Limited 2 Clevedon Road
Nottingham Bexhill-on-Sea
Notts East Sussex
NG1 5HF TN39 4EL
overload@octopull.demon.co.uk 101633.1100@compuserve.com

£3.50

 Overload – Issue 19 – April/May 1997

 Page 2

Contents
Editorial 3
Software Development in C++ 4
Observations on the Design of an Address Class - By Mark Radford 4
The Uses and Abuses of Inheritance - Roger Lever & Mark Radford 6
The Problem of Self-Assignment - By Francis Glassborow 8
Borland C++ Builder for expert programmers - by Eric Richards 10
Make a date with C++: In the Beginning... by Kevlin Henney 12
The Draft International C++ Standard 15
C++ Committee Draft 15
The Casting Vote - by Sean A. Corfield 15
New Keywords For…by The Harpist 17
C++ Techniques 22
OOD again: Some light, some shadows - by Graham Jones 22
A model for backsolving by Richard Percy 24
Corrections - Overload 17/18 30
editor << letters; 30
News & Product Releases 32
The UML/OMT User Group 32
ACCU and the ’net 33

 Overload – Issue 19 – April/May 1997

 Page 3

Editorial
Hello…

Its been a while since I submitted an article for
Overload or C Vu so you may not remember me. I
claim the distinction (in Overload 7) of being the only
person to provoke Sean into writing a commentary on
an Overload article that was as long as the article
itself. Surprisingly, in view of the provocative nature
of the article Sean’s commentary reached much the
same conclusions by a different route. (That C++
placed heavy demands on the developer skills and
that this was not widely recognised. We differed in
that I considered this a problem with C++ and Sean
with the expectations of management1) Little has
changed and Sean and I have been debating again -
but more on that later.

When I offered to edit this issue of Overload it was
on the strict understanding that it would be for one
issue only. This is not because I wouldn’t like the
job, its just that there are too many demands upon my
time at present. Perhaps in a few years when the
children are older. Circumstances conspired to make
this issue possible for me, meanwhile more long term
plans have been put into place.

…and goodbye…

I’m sure that I speak for the whole C++ SIG when I
say “thank you” to Sean, he has transformed
Overload during his time as editor and made it into an
important resource for C++ programmers. In the
nature of things there will be changes. We cannot
expect to find another editor with Sean’s grasp of the
C++ language and ability to communicate it.

…and hello…

There is now a new editor waiting to take over now -
John Merrells who will be editing Overloads 20, 21
and 22. (Unlike me he hasn’t set a limit here, but this
is all he’s committed to at present.)

I’ll let John introduce himself next issue, for now I’ll
explain the debate that has arisen between editors old,
current and new. (Oh, yes! And Francis).

1 Sean seems to have shifted ground in the last two
years. “I'm increasingly disillusioned with C++ as a
reasonable tool to implement OO designs. That's why
I've expanded my horizons. I think it would be pro-
fessionally irresponsible to discourage others from
doing the same.”

…and what do you want?

The highest priority for the future is that Overload
keeps coming on a regular basis. We know from
experience that if it is uncertain when (or if) the next
issue will appear then the supply of articles
disappears.

What is in currently in question is the nature of the
material that should be incorporated, Overload’s
relationship with C Vu and what constitutes an
acceptable standard of material.

• It will be very difficult to maintain the current
standard throughout future issues. It could pos-
sibly be done by having articles reviewed before
publication, but this would create delays, addi-
tional work, and would be hard to manage in a
voluntary organisation.

• Overload is the journal of the C++ SIG. I feel
that this limits the amount of non-C++ material it
is appropriate to publish. In particular any C ma-
terial goes to C Vu and by analogy this should
apply to (for instance) Java.

Sean feels that Overload should not restrict itself
to C++, and has expressed a desire to submit arti-
cles on both Java and Smalltalk. (I for one would
like to see them, but as editor for Overload would
hesitate before accepting them for publication
without a mandate from the membership.)

• At present the C++ SIG does nothing except pro-
duce and, presumably, read Overload. Should it
do anything else? If so what? (The idea of a
code library appears to be outdated, but the stan-
dard library has some notable holes that it would
be nice to plug with de facto standard compo-
nents.)

In any event I’m certain that John will be more
confident of the way to take Overload forwards if a
you write in and let him know what you want from
Overload.

Similarly (since I was elected C++ SIG organiser at
the AGM) I’d love to hear your ideas for what the
C++ SIG can do for its members.

Alan Griffiths
overload@octopull.demon.co.uk

 Overload – Issue 19 – April/May 1997

 Page 4

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development tools, the soft-
ware process and discussions about the good, the bad and the ugly in C++.

Observations on the Design of an Address Class - By Mark Radford

Introduction

In his article in Overload 17/18 [1], Francis posed
questions about the quality of the design of his
Address class. He stated that one member of the
Address and Address_Data classes is poorly
designed and implemented, challenging readers to put
the fault right. He also asked if readers agreed that the
functions in the (surrogate) Address class were
simple enough to be inline. This article presents my
answers to these questions (which I have verified with
Francis).

Question 1

The function which is badly designed and
implemented is

make_address_data(
 const String& country)

The design problem is that the country is passed as a
String, which is error prone because of the
possibility of miss-spellings or even a country which
is not catered for being passed (returning a null is not
good enough given that such mistakes can, and
should, be trapped at compile time!). (It should also
be mentioned here that the String class is not
standard. The forthcoming standard library provides a
typedef string. See [2(i)])

The implementation problem is in expressions of the
form

if (!strcmp(country, "UK")) {
 //
}

This highlights one of the many bad design features
of the standard C library (by the way, I assume here
that String supports a conversion to const char*,
which is also bad; for an explanation see [2(ii)]). This
expression (although it will work) is very misleading,
as it looks like we're checking that they're not the
same! Better would be

if ("UK" == country) {
 // ...
}

if String supports a suitable identity operator, (I’d
expect a conversion constructor for String to take
“const char*” - Alan) but if it doesn't, then

if (0 == strcmp(country, "UK")) {
 //
}

At least this doesn't encourage assumptions. This
however, is speculation, as it doesn't help put the
functions design right.

Question 2

 On the question of whether or not the Address
class functions should be inline because of their
simplicity: I believe it would be better if they were
not!

Putting it right

Correcting the make_address_data()
Function Design

One way is to delegate the instantiation of
Address_Data to an abstract factory class [3]:

class Address_Data_Factory {
public:
 virtual Address_Data*
 make_address_data(
 istream& data);
};

class UK_Address_Data_Factory :
public Address_Data_Factory {
public:
 virtual Address_Data*
 make_address_data(
 istream& data);
};

 Overload – Issue 19 – April/May 1997

 Page 5

class USA_Address_Data_Factory :
 public Address_Data_Factory {
public:
 virtual Address_Data*
 make_address_data(
 istream& data);
};

This will lead to a proliferation of classes but I don't
think that is a problem in this case. The classes are all
"weightless" and adding a new country is very simple.
The address constructor which was

Address::Address(
 String country,
 istream& init_data=cin)
: the_works(
 make_address_data(country,
 init_data)) {
}

now becomes

Address::Address(
 Address_Data_Factory& f,
 istream& init_data=cin)
: the_works(
 f.make_address_data(init_data))
{
}

Now, all clients have to do is instantiate the correct
factory, and pass it to the Address constructor: much
safer than using a String. By the way, I'm not
taking any account here of making
parameters/functions const; it's possible that the
factory class functions should be, but I'm not thinking
through that kind of detail.

You may wonder, why go to the trouble of using an
abstract factory; why not let the client code instantiate
the appropriate Address_Data class? The answer
takes us back to an important reason for using the
Address class in the first place: to hide the
implementation detail. Using the factories will not
expose any such details.

Inline Functions in the Surrogate Address
Class

I disagree with Francis' assertion that the Address
class functions can be implemented inline because of
their simplicity. Functions should only be inlined if it
proves necessary to achieve the required performance.
In other words, inlining should, in my opinion, be
treated as an optimisation technique, and
optimisations should only be applied to working code

which is not meeting it's performance targets. Some
observations about this case:

1. they only complicate the class definition, making
it harder to read

2. making them inline advertises implementation
details that clients need not be concerned with.

3. performance will not be a problem. The time
taken to call a wrapper function is insignificant
compared to the time to execute a function like
clone_address_data() (which will ulti-
mately allocate memory - an expensive operation).

4. Any change to the implementation of any of these
functions, requires recompilation of Address cli-
ents. Admittedly this is unlikely to be a problem:
the functions are little more than forwarding func-
tions.

Conclusion

Many aspects of class design are subjective. It is
important to remember that the above comments are
my views. It would be interesting if other people were
to follow this up and present theirs.

References

1. Francis Glassborow, "The Uses and Abuses of
Inheritance”, Overload 17/18.

2. Scott Meyers, “More Effective C++” (i) Item 35
“Familiarize yourself with the language standard”
(ii) Item 5 “Be wary of user-defined conversion
operators”, Addison-Wesley.

3. Gamma et al, “Design Patterns: Element of Reus-
able Object-Oriented Software” p87 “Abstract
Factory”, Addison-Wesley.

Mark Radford
mark@twonine.demon.co.uk

 Overload – Issue 19 – April/May 1997

 Page 6

The Uses and Abuses of Inheritance - Roger Lever & Mark Radford

The following questions were posed by Roger. I
asked Mark to address them as he had submitted the
above article on this subject. - Alan.

Having read Overload 17/18 and Francis
Glassborow’s article: “The uses and abuses of
inheritance” I must confess to having some questions
☺.

Copy Constructor and Assignment Operator

Is declaring a copy constructor private for an ABC
necessary? The author states that this, along with the
assignment operator, are removed in terms of
functionality “...because you cannot copy an
abstraction”. However, an ABC (a class with at least
one pure virtual function) is not instantiable, it cannot
be used as a return type or parameter or a reference
which requires the object to be instantiated.

It can be declared as a pointer. In short I do not see
why they are declared private (and not implemented).
In a concrete class I think that is good practice, and
would advocate it, but this is an ABC?

There is a need to do this with the assignment
operator (if the class had any data members you
would make it protected). The problem is
demonstrated by the following:

void copy_abstraction(
 Address_Data& to,
 const Address_Data& from) {
 to = from; // Oops!
}

Making the assignment operator virtual doesn’t help
either: it wouldn’t stop a USA_Address_data&
from being assigned to a UK_Address_Data&.

The copy constructor must be private if you wish to
prevent derived classes from generating their own
copy constructors (remember that sub-objects are
copied using their own copy semantics).

Is the Surrogate Really Needed?

make_address_data() seems very clumsy, is this a
better approach? The design put forward is clearly
trying to address design issues. However, it is not
clear to me what exactly the cost/benefit is and why
this is better than a straight polymorphic solution?
Using a class Address that is an ABC and deriving

UK, US... addresses which are handled
polymorphically seems fine.

There is a better approach: you decouple the
instantiation of the classes from the classes
themselves. See my article [above].

Note that Francis’ address class not only hides the
implementation detail, but also takes responsibility
for deleting it. You can create automatic instances
Francis’ address class and not have to worry about
managing pointers. Talking of automatic instances,
that’s another advantage of the surrogate class
approach: you can have automatic polymorphic
objects created “on the stack”. This is in addition to
the Address class removing the need for exposing the
address implementation details.

class Address {
 virtual makeAddress() = 0
 virtual cloneAddress() = 0
 // Whatever else is appropriate
 // to the abstraction
};
class UKAddress: public Address {
 // UK implementation
};
class USAddress: public Address {
 // US implementation
};

Therefore each concrete Address is handled via a
polymorphic call which will behave differently
dependent on the type of object instantiated. This
approach will require the “client” to instantiate and
delete the object afterwards but this could be handled
via smart pointers. The assertion that this may be “...a
feature of a poor design” I do not really understand. It
appears that this may be a very neat solution and if
resource acquisition/release strategies are employed it
may be a very elegant solution.

True, smart pointers could do the job, but this would
require the concrete classes, implementation and all,
to be exposed to the client code where the class is
instantiated. One of Francis’ objectives was to hide
implementation detail from the client code.

I remember (vaguely) a rule of thumb stating that any
time you find yourself using a giant switch statement
to decide the next action, like
make_address_data, one should step back and
see if a polymorphic solution is more desirable. This
is in fact contrary to the emphasis of the article. Of
course, as a minor point, given the multiple possible
conditions of “country” it should use a switch

 Overload – Issue 19 – April/May 1997

 Page 7

statement rather than ifs, since this is then one
evaluation of country rather than many.

My article covers this.

Why Use Friend?

Why use friend class Address_Data? Clearly the
implementation of Address_Data has been hidden
however, it may be desirable that there is a public
interface to some of Address_Data’s data. That
question can only be answered in the context of other
requirements and the design of a solution. However, I
do not understand why UK_Address_Data needs
to be a friend? I know that friends provide access to
private data and what the principles are but why is
that good or useful here in this example? It appears to
me to introduce an unnecessary level of coupling
when in fact Address_Data could have declared
its data protected. Alternatively, it may have been
useful for other classes to have access to the data via
an interface.

UK_Address_Data declares the base class
Address_Data as a friend. That means that
Address_Data has access to everything in
UK_Address_Data. Therefore, I don’t see why
Address_Data declaring it’s data as protected
changes anything in this case. I guess the reason for
the friend is that Francis appears to have made
everything in US_Address_Data private (I must
confess I overlooked this when designing my solution,
which might need some adjustments). So, in order for
the static member function
Address_Data::make_address_data() to
perform the instantiation, the friendship is needed to
make the constructor accessible.

Checking for Self Assignment

Why does the Address::operator= not check
for self assignment? It is possible that “a” is the same
as “this” and should check for that condition prior
to deleting “this”? Whether there is any real danger
here seems to be dependent on how
clone_address_data is implemented?

It looks like self assignment should be checked for.
Was this omission accidental or deliberate I wonder?
Or am I missing something which makes it
unnecessary. The way Francis has implemented the
clone_address_data() function it looks like
self assignment doesn’t do any harm, but just wastes
time and processing. I don’t normally bother about
performance unless I have to, but I think self
assignment is so trivial to protect against, that this

should be done. (Francis provides a better answer
below. - Alan)

Patterns

Why not use a Pattern style solution and/or
presentation? Not having Gamma et al, I cannot
quote which pattern this would relate to in their book,
is there a surrogate pattern? However, it seems that
the Address problem is evocative of a Factory or
Bridge pattern solution. If the presented design is not
a pattern it might have been

Gamma et al give Surrogate as an alternative name
for the Proxy pattern, where a Proxy/Surrogate
(Address) class controls access to its “Real
Subject” (Address_Data). Francis’ design exhibits
characteristics of both Bridge and Proxy patters. My
attempt at improvement, uses the Abstract Factory
pattern too. Design patterns capture known solutions
to known problems, providing designers with not only
standard solutions, but with ideas on which they can
draw when seeking solutions. The Bridge pattern is
about de coupling abstractions and their
implementations. One of the applications of the
Bridge given by Gamma et al is, in C++, to hide
away a class’ implementation details; in C++ there is
no facility for doing this provided by the language.
Giving the Address class responsibility for deleting
the implementation is a characteristic of the Proxy
pattern. Gamma et al call this application a “smart
reference”. The Address class in Francis’ design
simply forwards requests to the implementation
object, but it is possible that Address could be
extended to service requests which require more that
one request of the implementation object; this would
use the Adapter pattern.

(The pattern style of presenting “forces”, “solution”
& “examples” is very good at explaining the reasons
for and applicability of a particular design idiom. It
is also hard work! I suspect Francis was more
concerned with presenting some design issues for
consideration than delineating what he admits is a
flawed design. - Alan)

In Conclusion - Mark Radford

Let’s state again, for the record, what we all should
know by now: software design is hard! Anyone who
thinks otherwise is just kidding themselves. The
search for a solution to a design problem (in this
case, the problem is to provide polymorphic objects
without exposing their implementation details) in
most cases will turn out to be much more involved
than it looked on the surface. Each time we think of
an idea, more issues turn up to tax our brains.

 Overload – Issue 19 – April/May 1997

 Page 8

Francis’ original article in Overload 17/18 and
attempting to answer these questions has certainly
made me think a lot, as did writing my own article.
Roger has been thinking about it too, which is why the

above questions were asked. Therefore, I believe
something was achieved.

Roger Lever
rnl16616@ggr.co.uk

Mark Radford
mark@twonine.demon.co.uk

The Problem of Self-Assignment - By Francis Glassborow

A number of responses to my article in the last issue
leave me rather concerned. I guess the fault is mine
for not documenting some of my code better. The
purpose of this brief article is to revisit the issue of
writing an operator=() for a copy assignment.

In general you will only do this when the compiler-
generated version will be suspect or plain wrong.
There are several possibilities:

1. The class includes a pointer or a reference data
member

2. The class includes a const qualified data member

3. The requires semantics is not that of an exact copy
- for example there is a unique instance code, a
copy count or some other piece of data that must
not be copied.

4. You wish to provide a more sophisticated strategy
for copying such as lazy copying.

The most books all teach you to start your copy
assignment like this:

Mytype& Mytype::operator=(
 const Mytype& RHS) {
 if (&RHS == this) return *this;
 // code to copy as required
 return * this;
}

or the equivalent

Mytype& Mytype::operator=(const Mytype& RHS) {
 if (&RHS != this) {
 // code to copy as required
 }
 return * this;
}

Some programmers spend an inordinate amount of
time debating the relative merits of the above
alternatives. Instead they should be asking
themselves about why they wish to use either of them.

In both cases the cost of making the check for self-
assignment is some kind of comparison and branch
statement. Branches are bad news on pipelined
architectures. If we can write clean code with fewer
branches we should do so.

By the way it is worth noting that switch statements
can have a really bad effect in such environments. If
you know that one case will occur more than 50% of

the time and need maximum performance, it is worth
thinking about making that a special case tested with
an if statement before entering the switch. That helps
by allowing the processor to speculatively process
that branch. Such special treatment is only worth
considering in low level code that will have a large
impact on many applications (such as code for an
operating system).

Usually the critical feature about self-assignment is
the risk that data is deleted before it has been copied.

Suppose that I had written the following for my
Address class (see page 7 of Overload 17/18):

Address & Address::operator=(const Address & rhs) {
 delete the_works, the_works = rhs.clone_address_data();
 return *this;
}

 Overload – Issue 19 – April/May 1997

 Page 9

(By the way there was an error in the published code.
See if you can spot it before I provide the corrected
version.)

The above code falls over in the case of self-
assignment because you just threw away the data for

the left-hand side, which in this case was also the data
for rhs. The second part of the statement now fails
catastrophically because
Address_Data::clone_address_data()
accesses an invalid pointer. The naïve way to fix the
problem is to check for self-assignment. E.g.

Address& Address::operator=(const Address & rhs) {
 if(&rhs != this)
 delete the_works, the_works = rhs.clone_address_data();
 return *this;
}

(I feel that braces would make this code clearer than the comma operator! - Alan)

Now consider the (corrected code) for the operator=() I wrote.

Address& Address::operator=(const Address& rhs) {
 Address_Data* temp = rhs.clone_address_data();
 delete the_works, the_works = temp;
 return *this;
}

(This has the added benefit of leaving the object in a consistent state if an exception is thrown during the clone
operation. I’d rate this as more important than worrying about the different number of processor cycles required for
each version. Alan)

I first copy the data handled by the_works to temp
(note that I got the type of temp wrong in the original
article, result of upgrading old code with better
thought out names:) At this stage there are always two
full copies of the data for rhs. I now throw away the
data for the left-hand side. If that discards the data
for rhs that is completely irrelevant - it can only
happen when both operands are the same object
(Address).

Finally I transfer ownership of the copy from temp to
the_works. In the case of self-assignment this re-
instates the data for rhs.

As long as cloning does the right thing this will
always work. If this algorithm does not work (i.e.
does the wrong thing; it won't produce undefined
behaviour) for self-assignment then you have a
fundamental design issue as to why the semantics of
self-assignment is different from the semantics of
other copy assignments.

The benefit of this algorithm is that there is no branch
statement. On most hardware, the extra assignment of
a pointer will produce smaller code than a comparison
test. Even without the pipelining consideration a

pointer assignment will normally run faster than a
comparison and branch. The slightly larger
stackframe (storage for temp) should be
insignificant.

The cost is that you will take longer to do a self-
assignment. But why should every assignment pay to
allow you the rare benefit of doing nothing? If this
cost (of self-assignment) is significant in your code
perhaps you should consider testing for self-
assignment before you make the assignment. For
example:

 if (&lhs != &rhs) lhs = rhs;

Is this an attractive solution? Of course not, so why
advocate the equivalent in the function called?

Remember that the critical pattern is using delete on a
pointer before using it to handle a newed copy of
something. Avoid the knee-jerk reaction and think
about making the copy first and holding that copy
with a temporary pointer while you delete the
original.

 Overload – Issue 19 – April/May 1997

 Page 10

Borland C++ Builder for expert programmers - by Eric Richards

Copyright 1997 Eric Richards, Kibworth Computer Training.

Introduction

At last a Rapid Application Development tool is
available for C++. (This seems to ignore Blue Sky’s
WinMaker & VisualProgrammer, PowerSoft’s
Optima++, IBM’s VisualAge C++, and possibly
others - Alan) This latest C++ compiler includes a
C++ version of the class library developed for Delphi.
All the features you are used to in C++ are still
available with more additions than you may imagine.
All of Windows functionality is available, with a far
more intuitive event-driven interface, to provide
graphical interfaces and system features such as drag-
and-drop and OLE with extreme ease. Database
functionality galore: handle either native databases
(Paradox, dBase, Interbase) or many other databases
in much the same way, with or without using SQL. A
completely revised Integrated Development
Environment that looks just like Delphi 2.0 brings
genuine visual programming to C++.

An important language development

Not having the resources to catalogue all the benefits
of Delphi I will stress the importance of components.
Components? In order to understand these you need
first to understand a couple of extensions to ANSI
C++ syntax that are absolutely necessary. The 1994
decision to stop adding features to C++ cannot stop
genuine progress. Two vital new keywords are
__published and __property . Being non-standard
they are dutifully prefaced with a couple of
underscores (but you could use the pre-processor to
get rid of them) .

‘published’ is a privacy level that is similar to public
except that run-time type information is available for
an identifier so declared without needing to specify
anything further. (Is this anything in addition to
standard in C++ RTTI? - Alan) A ‘property’ is a
class data member that can be accessed syntactically
with assignment statements. But it actually uses
appropriate getter and setter functions which are
called automatically according to which side of := the
property occurs.

These new keywords extend the C++ notion of a
class, enabling its instances to be ‘components’ .
Components are all derived from a powerful ancestor
class with much of the functionality implied in the
next section and they contain published properties.

A published property enables an end user, or a naive
programmer, to supply a component object with
parameterised data at run time or development time
respectively.

Borland C++ 5 comparison

The notion of a published property appeared in BC 5.
But there it was not part of C++. The documentation
involved an inelegant excursion into a scripting
language, which I considered unnecessary hard work.

Many of the controls in C++ builder and Delphi were
also introduced in BC5, but only as part of a dialog
box editor. Thus the interface was not as smooth as
in Delphi and C++Builder. (I believe a scripting
language has been used internally to produce C++
Builder, but no trace of it remains visible.)

A massively altered IDE

Like Delphi. the much enhanced Integrated
Development Environment now contains three
features new to C/C++ programmers, as well as the
customary code editing area and menus :

1. ‘Forms’ which are versatile display windows
capable of forming visual interfaces. They are a
generalisation of the screens used by Windows
programmers when using programs like Resource
Workshop. Each screen is associated with some
code. (Windows programmers: do not jump to the
conclusion that it bears a resemblance to a win-
dows procedure)

2. A multi-paged ‘palette’ containing around 100
iconised components that can be dragged onto the
screens. Many of these components are little win-
dows used for all the rectangular areas that you
must have seen as a user of Windows even if you
have not programmed them. But many more are
nothing to do with display, they are actual pro-
grams which have been encapsulated as compo-
nents, and their user interface is via the afore-
mentioned properties.

3. The ‘object inspector’ can display both the prop-
erties (data with RTTI) and the events (triggered
programmatic responses to real-time occurrences)
of all the components you use, including the forms
themselves. Dragging and dropping components
and supplying their property values can take you a

 Overload – Issue 19 – April/May 1997

 Page 11

surprisingly long way. A more advanced use of
this class library is to write the real-time response
procedures.

Under the bonnet

When you create a new form from the menu you are
in fact instantiating an instance of a new type derived
from the parent class for forms. As soon as you do
this, not only can you see a design-time onscreen
representation of the form that will appear at runtime,
but also the code which defines the class and its
instance code in the Editor window. Then when you
drag a component from the palette onto this form
representation you actually include one object inside
another in the declaration of the form’s class , and
you can see this in the code too. The code and the
picture are automatically kept in step at all times
through the compiler’s background processing
capability.

What you do

C++ builder is an event-driven system, the event
model is much more intuitive than the underlying
Windows system. You can produce simple
applications without defining any events yourself, this
is a selling point for non-programmers. But usually
you will need to define some event-handlers, if only
to close the program neatly. So having got some
components together by visual manipulations with
your mouse, then just clicking on a so-far undefined
event in the object inspector creates in the code
editor the declaration of a suitable class method in a
.H file and the corresponding outline definition in a
related .CPP file. These function headers will look
strange at first but to start with you can cheerfully
ignore them ! You just insert your algorithmic ideas
into these outline definitions.

To give a couple of examples: if you want something
to happen when you click on a button, you supply the
definition of that button component’s OnClick event
handler procedure, or if you want something to
happen when you close a form you would supply the
body of that form’s OnClose event handler procedure.
Previous arcane rules for Windows event handling
are replaced by the intuitive application of common
sense.

Various supplied components encapsulate input and
output, all the controls you see in Windows 95 and
Windows 3.1, system controls to implement OLE,
DDE, Multimedia, and timers. There is a market in
third-party controls for specialised applications. Some
controls not mentioned here are provided in Delphi

but not in the pre-release version of C++ Builder on
which this article is based.

(Last-minute addition: My non-disclosure agreement
re Delphi 3 will end on Feb 25, before this will
appear. This contains among other things a new way
of presenting multi-dimensional data and extensive
support for Active X. Even if these topics turn you
on, I would advise C++ programmers to start with
C++ builder to minimise mental indigestion.)

Databases

There is nothing to stop you handling your data with
tools such as the template library, or writing directly
to files. C++ Builder provides extensive alternative
facilities for those wanting to interface with, or even
to replace, many commercially available databases
from dBase to Oracle. This is a huge topic which I
cannot do justice to here.

Very briefly, twenty control classes are provided
which encapsulate the functionality of the Borland
Database Engine and also of a number of supporting
tools for related activities like report-creation and
database upsizing. The beauty of it is that nearly
everything you do is independent of the particular
brand of database, the expensive versions of C++
builder provide many different drivers which enable
you to treat them all in a similar way. All versions
provide everything necessary to create applications in
two native desktop and one transaction-oriented SQL
database.

and C++ , similarities and differences.

Every one of the components is documented,
adequately but concisely, and so you get to know the
Standard Component Library which seems identical
in C++ builder and Delphi 2 . Because source code is
interchangeable between the two languages at .obj
level no translation of the SCL will have been
necessary, and C++ programmers will get a well
proven system from the outset.

As soon as I saw a pre-release version of Delphi 1.0 I
was sold on the system, even though as a C/C++
programmer it meant working in Pascal, but you don’t
have to do that any more.

For readers of this journal the benefits of working in
C++ include familiarity with the language and the
existence of a huge base of existing applications.

The benefits of working in Pascal have been getting a
head start, and a faster compiler (claimed to be the
fastest in the world). Pascal is not lumbered with

 Overload – Issue 19 – April/May 1997

 Page 12

much old stuff kept mainly for backwards
compatibility and its clean syntax is inherently
quicker to compile. (and now Delphi 3 mentioned in
above last-minute addition) However there is no
difference at all in runtime performance.

The most significant syntactic difference for any C
programmer who browses the Delphi literature for
inspiration is as follows. Think of what happened to
your C mindset when C++ introduced passing by
reference. The new level of implicit de-referencing
sets you back at first, but soon appears a good way to
get rid of over-dependence on pointers. There is a
very similar feature in Delphi Pascal whereby
pointers to classes are implicitly dereferenced in such
a way that you keep seeing dots linking variables
where as a C programmer you would expect arrows,
and this turns out to be much easier once you get used
to it. But as a C++ Builder user you will not have to
get used to this. Instead, just keep on using dots or
arrows as appropriate like you have always done,
realising that Delphi /Pascal sometimes does it
differently.

Conclusion

You should accept the fact that this way of
programming is so much more productive and
powerful that it is going to be the way of the future.
Now that C++ and object-orientation have come of

age, junior programmers and end users can easily use
components to create simple but sound systems, on
account of their intuitive interface, but few non-
programmers will have time to learn all the
techniques now available.

It takes programming skill to actually write
components, using the notions indicated at the
beginning of this article, and it takes wisdom to know
when to bother. An advantage of Delphi and friends
is that competent programmers can use the same skills
to handle a variety of different commercial databases.
There is not a lot to choose between using C++
Builder or Delphi, and a mixed team could work
together.

Eric Richards

I find that very few of the programs I develop would
benefit from such tools (and have discussed this with
Eric in the past)!

Certainly the when I reviewed the pre-release of
Delphi1 it offered little for my needs that was not
addressed by VisualProgrammer. (which had been
around quite a while and allowed me to write the
“real code” in C++.) Clearly, if you application is
nothing but GUI & database access your mileage will
vary. - Alan

Make a date with C++: In the Beginning... by Kevlin Henney

Many readers of Overload have identified the need
for more introductory articles on C++. I hope this new
series of articles will go some way to meeting that
need – if not, please get in touch. One premise of the
article is that readers have some familiarity with C or
C++.

Given the year 2000 problem (farce?), date handling
is very much a vogue topic and one I have found is a
sufficiently rich seam to mine for examples on minor
and major language features, method and technique,
and common understanding (or, occasionally,
misunderstanding). I will progressively try to build up
the example by discussing some interesting
implementation details – so hopefully this, combined
with some language trivia, should still keep the
interest of more advanced readers.

Having set the aims for series, and the prerequisites
for the reader, it is worth making sure we agree on the
ground rules: unless otherwise stated, the Gregorian
calendar is being used for dates and we will quietly
gloss over certain minor locale irregularities – such as
the calendar system first being introduced to France

in 1582, but only adopted later in certain countries
(for instance, Britain in 1752 and Russia in 1918).
Assuming that this calendar system has always been
in existence, and contains a year 0 (which
astronomical calendars, but civilian ones do not) will
also keep things from getting needlessly complex!

Leap years

Key to any date handling package is the classification
of whether or not a given year is a leap year. Rather
than embed the logic in every piece of code that
seems to need it, we factor this out into a function
with the prototype

bool is_leap_year(int year);

This would go into a header file. For C programmers
an important introductory perspective on C++ is that
in many ways it is a “safer C”. It is more strongly
typed than C, with a requirement that all things must
be declared before use. In this case what is considered

 Overload – Issue 19 – April/May 1997

 Page 13

good practice in C (i.e. declaring function prototypes
before use2) is enforced in C++.

The only other thing to note is the return type of
is_leap_year: bool is the built-in type for
Booleans. bool takes the values true and false,
but may also be mixed with other scalar expressions
with predictable results (true maps to 1 and false
maps to 0). As an addition to the language it is not
that recent (1993), but you will find a number of
compiler vendors have been a little slack in
introducing it – if your compiler does not support it,
either use int or kludge the bool, true and
false keywords with a typedef or macro. It is
likely that bool, true and false will in some
form make it into C9X, the next C standard, most
likely as reserved library identifiers rather than as
new keywords.

Function definitions are pretty much the same as in C,
except that the old K&R form is not permitted – you
must use the prototype form. The correct leap year
algorithm is defined as any year that is divisible by 4,
and either divisible by 400 or not divisible by 100.
This means that 1984 and 2000 are leap years, and
1983 and 1900 are not.

bool is_leap_year(int year)
{
 return year % 4 == 0 &&
 (year%400 == 0 || year%100 != 0);
}

Go faster stripes

Speed freaks have a nasty habit of turning all short
functions into macros in C. With a bit of judgement
and inspection (profiling, looking at generated code,
etc.) some functions can be identified as time critical
and in need of low level optimisation – such as losing
the overhead of a function call – as opposed to high
level optimisation – selecting different data structures
and algorithms.

The problem with the optimisation approach adopted
in C is the use of macros – if you are not familiar with
the problems of writing and using macro functions I
will assume you can’t be using them, which is good
thing! They do not look or behave like functions,
which leads to careless mistakes such as terminating
the macro definition with a semicolon, forgetting to
use a backslash to continue onto the next line, and
forgetting to place all uses of arguments as well as the
whole macro in parentheses (by definition a well
written macro is an unreadable one). Some of these

2 If you are not already doing this in your C code, get with it!

mistakes are immediate compile time irritations, with
associated cryptic error messages, whilst others can
lie dormant in code for a long time, waiting to
surprise and confound some poor unsuspecting
victim.

And this list of problems does not even begin to cover
the issues you can’t work around: multi-line macro
functions that return values, debugging, avoiding side
effects in re-evaluating arguments, and the to convert
a macro easily back into an ordinary function.

C++ offers an alternative and far superior mechanism
in the form of inline functions. These look and behave
exactly like ordinary functions with the minor
difference that they are specified with the inline
keyword:

inline bool is_leap_year(int year)
{
 return year % 4 == 0 &&
 (year%400 == 0 || year%100 != 0);
}

This gives the compiler a hint that the function code
should be expanded out at the point of use and
optimised accordingly. Note that this is only a hint,
and the compiler is entitled to ignore it and expand
the function out of line (i.e. traditional function
compilation). This is not altogether a bad thing as
many programmers (novices and the more
experienced alike) tend to inline everything in sight
out of a mixture of feature novelty and ease, ignoring
the generally undesirable side effect that the overall
size of generated code may well increase if all calls
are expanded out in place. Code bloat can be a
problem with careless and excessive use of inlines.

The only other thing you need to be aware of is that to
optimise a function at its call site its definition must
be available to the compiler. This necessitates one
change to your code: place the inline function
definition in a header file if you wish to make it
available to all.

In theory in both C and C++, any static function
can be optimised to be inline if the compiler sees fit.
In theory this makes inline functions redundant. In
theory there is no difference between theory and
practice, but in practice there is: you will find few
mainstream compilers that either do this or do this
well. There is the argument that a good compiler
should (so what do you do if your compiler doesn’t)
and that if you wait long enough all compilers will get
there (a sort of “ideal world by bus” argument).
Leaving aside the challenges of modern physics, it is
fair to say that we live in the present. The inline
keyword allows you to tag certain functions for

 Overload – Issue 19 – April/May 1997

 Page 14

possible optimisation and many compilers offer you a
choice of command line strategies, such as:

• Perform no inlining at all;

• Inline only those functions specified as inline;

• Inline at will.

Explicit inlining can be a useful feature, especially as
it displaces the addiction to macros that many
programmers seem to have. It is also becoming an
increasingly common extension in C compilers – as it
codifies existing practice it is likely that some form of
inline will make its way into C9X.

The main thing

So now we can write code to use the
is_leap_year function:

int main()
{
 cout << “Please enter a year: “;
 int year;
 cin >> year;

 if(is_leap_year(year))
 {
 cout << “Leap!!!” << endl;
 }

 return 0;
}

OK, so this isn’t a very exciting program, but it shows
the function in action. It also shows the use of the
C++ I/O streams facility, for which you will need to
include <iostream.h>3. The bitshift operators
have been hijacked/borrowed/overloaded for
shellscript-like I/O syntax, the gritty details of which I
will not cover yet. The cout object is the destination
for output, while the endl manipulator writes an end
of line and flushes the output. There are also cerr
and clog output objects for writing out or logging
errors (unbuffered and buffered, respectively). Not
surprisingly, cin is the source for input. Hopefully,
you can see some correspondence with the standard C
stdin, stdout and stderr streams.

Returning to the subject of good practice being
enforced, the implicit int rule – where no declared
return type implies int – has (relatively) recently
been dropped from C++, so main must be declared to
have a return type. Compilers may (may? will!) differ
in their compliance.

3 The draft ISO standard defines a slightly different convention, but
you will be very hard pushed to find a compiler that does not im-
plement the original <iostream.h>.

The physical structure of a C++ program is similar to
that of a C program, with header files and source
files. The main difference is the file suffices: where C
uses .c and .h, there is no single convention for
C++...

• Source file suffices include .cpp (de facto stan-
dard on PCs), .cxx, .cc and .C (only of any
real use on systems with case sensitive file
names).

• Header file suffices include .hpp, .hxx, .hh,
.C and .h (a convention I’m personally not keen
on, as it then makes it impossible to distinguish
between a C and a C++ file without content in-
spection).

Summary

• C++ is more strongly typed than C, requiring all
functions to be declared before use and banning
the implicit int rule.

• C++ has a bool type with true and false
constants, although your mileage (or more spe-
cifically, compiler conformance) may vary.

• Appropriate use of inline functions obviates
the need for the majority of macro functions.

• The I/O streams library provides an I/O facility
with a shell like syntax.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

 Overload – Issue 19 – April/May 1997

 Page 15

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal or criticism
that you would like to air publicly, this is where to send it!

C++ Committee Draft

The following announcement was made on USENET:
In January I posted the press release announcing the availability of the C++
Committee Draft for public comment. At the time, the only way to get a copy of
the draft was to purchase one from ANSI or from Global Documents.

ISO policy as of last year was to prohibit free access to these documents
except to committee members. I was assured at that time the although the
policy might be reviewed and might be changed in the future, there was no
possibility that the policy would change before the end of the C++ public
comment period.

ISO has changed its policy sooner than anyone thought possible, and copies of
the Committee draft are now available for downloading.

You can find complete instructions on downloading a copy of the draft and the
procedure for submitting comments at:

 <http://www.setech.com/x3.html>

 <http://www.maths.warwick.ac.uk/c++/pub/>

Steve Clamage, stephen.clamage@eng.sun.com
chair, X3J16 C++ Committee

The Casting Vote - by Sean A. Corfield

March, 1997. The second Committee Draft Ballot is in
progress so, strictly speaking, WG21 can do nothing
but wait for the National Body comments to come in
with the votes in June. However, the second ANSI
Public Comment period has just completed so X3J16
had something to do this week, reviewing what the
public has said about C++.

Mostly, the public want typos or small editorial stuff
fixed but we had the usual batch of extension requests.
Some them were proposals that we have already
considered and rejected while others were novel or
downright weird. So I'm going to start by talking about
some of things we didn't add to C++, just for a change!

The : operator

Isn't it annoying how often you want to write x ? x
: y but don't want x to be evaluated twice? Someone
thought so and suggested we add the : operator so that
x : y means x ? x : y except that x would only
be evaluated once. They went on to suggest allowing x
? y to mean x ? y : 0 and then to say that if ||
and && worked 'properly' they would already have the
behaviours proposed for ? and : respectively.
Rejected: too late for extensions.

Binary literals

This proposed adding some minor lexical
enhancements: binary numeric literals prefixed by 0y,
underscores in numbers (partly to make the proposed
binary literals easier to read!) and the \e escape
sequence to represent ESC. These had been proposed
and rejected several years ago, along with \dNNN to
represent decimal value escape sequences and a few
other goodies.

Cloning objects with type_info

This proposed adding the following member to
type_info:

void* type_info::clone(const void*)

Then objects could easily be cloned by writing:

template<typename T>
T* clone_ptr(const T* p){
 return (T*)typeid(*p).clone(p);
}

 Overload – Issue 19 – April/May 1997

 Page 16

Despite its utility, this and many other additions to
type_info have been considered and rejected over
the years. At one point, implementations were at liberty
to provide extended_type_info with
functionality like this (e.g., one compiler vendor looked
at providing function pointers for accessing
constructors, destructors and so on), but that approach
has fallen out of the draft at some point. I've raised it as
an issue to try to reinstate it.

Comments'r'US

The bulk of the meeting therefore was taken up with
considering possible solutions to the US Public
Comments. The intent of X3J16 was to produce a list of
official comments with suggested resolutions where
possible. Each National Body will be going through a
similar process at the moment and in July we will have
a more complete list of comments and suggested
resolutions.

Most of the US comments relate to small fixes but there
were a couple of issues which have broader impact:
exception handling in the library, allocator pointer
types, default arguments on template member functions
and void return types.

Exceptional policy

As several people have commented, the library
effectively has no policy regarding exceptions: if a user
type throws an exception while being manipulated by a
library function, the program has undefined behaviour.
Not surprisingly, many people would like to see some
guarantee that a program won't fall over with its legs in
the air when the first exception is thrown! Discussions
in Nashua suggest that as long as your types don't
throw exceptions during destruction and your iterators
don't throw exceptions when "used in valid ways", then
you stand a reasonable chance of the library behaving
reasonably when your types do throw exceptions.

Can you point to it? (again)

A major concern after Kona was the restriction that the
pointer member of the allocator template had to be a
real pointer type in order to work with the standard
library. Matt Austern of Silicon Graphics worked hard
between meetings to analyse exactly what the library
assumed of allocators and steered the discussion
towards a possible solution that would allow
substantially useful user-defined pointer types to
operate with the standard library components. More on
this after the London meeting.

Faulty defaults

Some time back, the Core WG reaffirmed the intent of
the WP regarding default arguments: their semantics
are checked at the declaration in which they first
appear. This had the slight inconvenience of breaking
the standard library!

The library currently has 54 occurrences of code like:

template<typename T>
class Thing {
public:
 void func(const T& = T());
};

Try instantiating this with the following type and see
what happens:

class A {
public:
 A(int);
};

According to the library, that should work as long as
you always provide an argument when you call
Thing::func. Unfortunately, according to the
language, it will fail at instantiation time (because T()
is invalid when T is A). After some sparring between
the Library and Core WGs, there appeared to be no
consensus on where the change should be made. Again,
we'll hear more of this after the London meeting.

Nothing revisited

If you've tried to use the function objects in STL,
you've probably hit the problems with trying to use the
void type inside templates: you can't return a void
expression from a function that has a void return type.
If you haven't hit this, you just aren't using enough
templates!

Stroustrup brought a proposal to Kona to relax the rules
concerning the use of void. It was not accepted then
but it was sympathetically received. The issue came up
again in the public comments and now it looks likely
that the resolution of the issue will involve at least
some adjustments to the rules on the use of void
expressions and void types. Personally, I'd like to see
declarations allowed with const void& (as long as
they are not "used") since that's the main problem I hit
with templates and void.

The future

The next joint meeting will be held at the BSI offices in
Chiswick, London on July 13-18, sponsored by

 Overload – Issue 19 – April/May 1997

 Page 17

Programming Research. It will be a busy meeting: we
have to try to resolve all the National Body comments
on CD2 (which we hope will pass).

Sean A. Corfield

Technical Director
Object Consultancy Services

sean@ocsltd.com

New Keywords For…by The Harpist

Over the last few years the C++ Standards Committees
have introduced several (actually quite a lot() of new
keywords into C++. In general the motives for each
addition have been very good. Now we are beginning
to get compilers that actually support these new
keywords it is time that the ordinary programmer
started using them. In order to do so you will need to
know what problems the keywords were introduced to
tackle. The latest version of Visual C++ (5.0) seems to
support most of the features of C++ though there are
numerous deficiencies — we could do with reports of
places where popular compilers do not comply with the
language specification. This potentially helps in two
ways. First the working programmer can learn what
they should be getting as distinct from what is delivered
(this matters because it helps programmers build the
right mental models). Second we can expose the
deficiencies and help bring more pressure on
implementors to provide correctly implemented tools.

Before I get into the meat of this article, let me mention
two deficiencies that are still present in VC++ 5.0
despite all that has been said and written before.

If you do not provide an explicit return from main the
compiler still generates a completely incorrect warning.
The language actually specifies that exiting main
without a return statement shall be deemed as returning
EXIT_SUCCESS. There is simply no way for a
correct implementation to get this wrong. It maybe
clumsy for a programmer to leave out a return
statement (please no calls to exit(), that was fine for
C but is quite inappropriate to C++ even if it seems to
work.) but it is correct code and so does not merit a
diagnostic (though one would be helpful for any other
function that had a return value but no return
statement—see sidebar). The actual warnings that
VC++ gives (different depending on whether you do or
do not explicitly specify int as the return type from
main()) are actually either admitting that the compiler
has wilfully miscompiled your code or advises you to
write non-conforming code. This is highly significant
because the C++ Standard can impose no requirements
on a compiler that accepts code that includes void
main(). The very existence of such a line makes your
code non-conforming and hence all consequential
disasters are your own fault. I strongly suggest
that:you loudly and vociferously complain about this
fault at every opportunity you never write code that
includes void main()

By the way if VC++ reinterprets your code as if you
had written void main (because you had relied on
implicit int for your definition of main then you have
them right in your sights. The compiler has blatantly
changed your conforming code to non-conforming
code.

The second irritating wart in VC++ 5.0 is that four
years after the change of the scope rule for a variable
declared in a for statement, VC++ still implements the
old version. The longer this continues the more
incorrect code will be written. I am getting more than a
little tired of still having to write '{for' and closing
with '}}' to ensure that my code behaves the way I
want it to, and the way the language says it should.
The four-year delay has probably increased the amount
of suspect code by at least a factor of 10 (and more
likely a factor of 100 or more). What is worse is that
those making the mistake are exactly those that will
find it difficult to detect and correct. Oh, for the benefit
of those who do not know what I am on about:

void fn (){
 int i=0;
 {
 for(int i=1; i<10; i++)
 cout<<1/i<<endl;
 cout<< 1/i<<endl; // A
 }
}

This function was well-formed when the scope of a
loop variable was from the point of declaration to the
closure of the enclosing block (in such circumstances
the value of i in line A is 10. In modern C++ line A
results in undefined runtime behaviour (no diagnostic
required) because the i is now the outer one that is still
0.

Sidebar:

Functions without return statements

It is only an error to actually return from a function
with a return type without an appropriate return
statement. Read that carefully. Then think about the
ways that it is possible to return without using a return
value.

 Overload – Issue 19 – April/May 1997

 Page 18

First of all, in K&R C there was no void return so it
became idiomatic to omit the return statement from a
function that would, in modern C, return nothing. It
was only an error if the putative return value was used
at the call site. In other words the following code was
fine:

int fn (void) {
 printf("This is a stub procedure");
}

int main() {
 fn();
 return 0;
}

But this is not:

int fn (void) {
 printf("This is a stub procedure");
}

int main() {
 int i = fn();
 return 0;
}

Actually even then it is the passage of the flow of
control through such a function at runtime that is the
error, so like it or not, the following should compile
and execute:

int fn (void) {
 printf("This is a stub procedure");
}

int main() {
 int i = 0;
 i ? i=fn() : i;
 return 0;
}

The critical part will never be executed so the program
is defective in the sense that it contains some silly code,
but there is no reason why a compiler should reject it,
nor is there any reason why it should exhibit undefined
behaviour at execution time.

There is another case when the lack of a return
statement is only of academic interest and that is when
the function will never actually return. This might be
the case in C when a program finishes with an explicit
call of exit() from somewhere beyond the call of the
critical function. In C++ this can happen when an
exception is thrown through the critical area.

To summarise, it is not the job of a compiler to double
guess a programmer. However it is the job of good

tools to identify suspicious areas and require some form
of sign-of from the programmer.

Now to some new keywords

mutable

Sometimes an item of instance data in an otherwise
constant object must still be alterable. For example, if
you are using some form of delayed or lazy copying
there needs to be a copy count to track whether an item
is a singleton or currently represents several objects.
This copy count must always be mutable. In other
words, whatever else the compiler does it must not
place the copy count into a write locked memory
segment. The traditional solution of using a cast to
ensure that the item in question was changed simply
does not work. Writing to const protected data by
using a cast results in undefined behaviour. I know that
the language now explicitly allows you to change the cv
qualification of an object, none-the-less doing so to an
object that was declared const results in undefined
behaviour if you then seek to modify the instance data.
That is not the same as casting away const protection
from a reference or pointer to const object because
theoretically you might know that the underlying object
had not been 'write' protected. Example:

class WithCount {
 // other data
 mutable int modifiable;
public:
 void increment_count() const
 { modifiable++ ;}

 // other member functions
};

int main () {
 const WithCount wc;
 wc.increment_count();// line B
 return 0;
}

Despite wc being declared const, you can call the
increment_count() member function because it is
a const member function. None-the-less it may
change the modifiable instance data because that has
been explicitly declared as mutable. With this feature
in place it should never be necessary to cast away
const qualification of an object, and if you do then
any resulting undefined behaviour is entirely your fault.
I strongly advocate that you use mutable where-ever
it is appropriate as soon as your compiler supports it.
Indeed you can sort of have your cake and eat it by
using mutable where-ever it would be correct, using
the pre-processor to eliminate it from actual code until
your compiler supports it, and cast away const in the

 Overload – Issue 19 – April/May 1997

 Page 19

meantime. If you leave that cast in for some time after
you have a compiler that supports mutable no real harm
will be done.

The golden rule is to write correct code now and, if
necessary, use the pre-processor to provide a temporary
fix. At the same time take every opportunity to demand
that your compiler implementor supports C++ as
specified and not some historical antecedent.

explicit

The process of constructing an object bears some
similarities to that of type conversion. In both cases
you start with data and use it to produce an object of
some type. The difference is that for a type conversion
you start with a single argument and —almost
certainly— create an anonymous temporary of the
required type. Constructing an object may have more
than one argument and may —often— create a named
object.

The similarity of process has plagued C++ for many
years. Whenever you write a constructor for Y that can
be called with a single argument of type X it
automatically became a user defined conversion from X
to Y. The compiler could use it whenever such a
conversion seemed appropriate to the compiler. This
licence to the compiler is at best unnecessary and at
worst fatal. Various hacks —coding tricks— were
available to restrain the compiler but when all was said
and done they were ugly and made code that much
harder to understand. Ideally we should have
constrained constructors to be just that, but as so often
happens hindsight makes it clear that the default was
wrong but it is too late to fix it.

What the Standards Committees have done is the next
best thing, they have provided a mechanism for limiting
a constructor to being nothing more than a constructor.
If you prefix the declaration of a constructor with
explicit it can only be used for conversions if you
explicitly cast the data to the type. For example, given:

struct Ex{
// various
 Ex (int);
};

void fn (Ex); //function taking
an Ex by value

int main() {
 fn(1);
 return 0;
}

will compile happily and the compiler will call
Ex(int) to convert 1 into an Ex whether that was
your intention or not. However if you change Ex to:

struct Ex{
// various
 explicit Ex (int);
};

main will no longer compile unless you replace the
call to fn() with:

 fn(static_cast<Ex> (1));

Strictly speaking making such a change to the public
interface violates the contract between class designer
and user however it is the kind of interface change that
we should accept. If you really cannot accept such
changes you can always use the pre-processor to
remove explicit (by #define explicit) from
header files but I think that code that relies on such
suppression of safety devices is of dubious merit.

Please note that you do not need explicit to qualify
conversions the other way because you always have a
choice between:

 operator int ();

and

 int convertTo_int();

Using the former when you want to provide a
conversion operator for the compiler and the latter
when you wish to keep control of the process.

While I am on the subject of constructors, a couple of
other items. One was a question posed to me by
Francis. Is the constructor in the above example (Ex)
an anonymous function that returns an Ex, a procedure
called Ex that has no return value or something else?
Not that the answer matters as such, but perhaps
writing Ex(int) is a mere lexical convenience and
we could just as well have written (int) — and have
written ~() for a destructor. By the way many
compilers internally provide names such as 'constructor'
for the function.

The other issue is that of default arguments. C++ has
no need of these for ordinary functions (global and
member) because a simple wrapper will do the job. For
example instead of

 void fn(int = 0);

 Overload – Issue 19 – April/May 1997

 Page 20

we could write:

 void fn(int);
 inline void fn(){ fn(0); }

This just makes explicit what the compiler does for you
anyway. Once you have overloading in the language
you have no need for default arguments. Well not
quite, we cannot use this wrapping technique for
constructors. For example:

struct Ex1 {
 int m_i;
 Ex1(int i =0): m_i(i) {}
};
cannot be expanded to:

struct Ex1 {
 int m_i;
 Ex1(int i): m_i(i) {}
 Ex1() { Ex1(0) } //ERROR
};

In other words you cannot wrap a constructor.
Providing a common body as a called private inline
member function may limit the code bloat to some
extent but you will still have two (or more) Ctor/init
lists to maintain. Not everyone is convinced that such
things as default arguments were such a good idea in
general and had we realised that constructors really
were something special we might have chosen a
different path. As it is we are now left with the
problem of default template arguments, which in case
you have not noticed, are used in the Committee Draft
2 library but nowhere (that I can find) does the clause
on templates tell us how these should work. It seems
the library writers must have generalised from ordinary
default arguments to using them for templates. Sure, it
seems reasonable that if one exists so should the other,
but perhaps the reasonable thing is that neither should
exist. OK, it is too late to remove them from the
language but perhaps we should keep a clear view that
constructors are nothing like any flavour of ordinary
function.

namespace and static

If you mentally completed the title to this article you
might wonder where the old ones are. Wonder no
longer. The dual use of static in C was probably a little
unwise but can be explained by saying that it means
that the object whose name is being declared has
current scope is to be placed in static storage. The
name is placed in the smallest enclosing scope (block
or file). Where static is used at block scope it means
just about what static means as a computer science
term, but at file scope its significance is to over-rule the
automatic exporting of names to global program scope.

C++ came along and during the first ten years of its
development those with a C mindset resisted new
keywords like the plague. The result was that static
acquired new uses with extra significance. It is time
that this nightmare was cut back.

When namespace was introduced to solve a rather
different problem (providing a mechanism for
controlling the injection of names from libraries into
global namespace) it seemed sensible to consider if it
could also be used to limit the pollution of the global
namespace with names that were intended to be limited
to file scope. To this end the C++ Standards
Committees did two things. The first of these was to
give a meaning to code such as the following:

namespace {
 // various declarations
}

The meaning is that names in such code belong to a
namespace with a unique and arbitrary (i.e. even if you
discover what it is for one compilation, it may and
probably will change next time round) name. The
purpose of this is that you can never refer to the names
in such a block outside the immediately enclosing
region (file or outer namespace) because you do not
know what the name is. Confused? Well let me take
another cut at explaining. Consider:

in file1.cpp

namespace {
 int i;
 void fn(int i);
 // other code
}

namespace X {
 int j;
 void gn(int i);
}

in file2.cpp

extern int i; // declare i as
defined elsewhere
namespace X; // declare the name
X
using X::j;

Now the i declared in file2.cpp cannot be the i defined
in the anonymous namespace in file1.cpp because the
link name for that i is prefixed by a compiler generated
scope name and so will not match the global i of
file2.cpp. By contrast the contents of namespace X
can be made available in file2.cpp.

 Overload – Issue 19 – April/May 1997

 Page 21

The result of this is that you get all the functionality of
C's global static but without the confusing keyword.
Having provided the functionality it only remained for
the Standards Committees to encourage you to use it by
deprecating the use of static at file scope. That means
that they have given notice that future versions of C++
(though not the standard currently under development)
might not continue to support that C usage.

Unlike classes, namespaces are extendible so you
can wrap each block of file scope declarations in the
anonymous namespace and all such blocks within a
single file will share the same unknown qualifier. Like
the other innovations above, I suggest that you start
moving to this one as soon as you have a compiler that
supports namespace.

The New Style Headers.

You will see increasing use of lines like:

#include <iostream>
#include <list>

The lack of '.h' is not a typo. These are the new C++
system headers that make particular parts of the
Standard C++ Library available for use in the following
code. When you use these you need to know that
almost all the Standard C++ Library is contained in
namespace std. If you do not understand this, you
will not be able to use these headers. For example,
suppose that you wanted to use cout in your program.
You can do one of the following:

• refer to it as std::cout. Unfortunately that
probably means that '<<' will not work because it
will be provided by std::operator<<() func-
tions. I am not sure about this and perhaps one of
the resident experts could write about such issues.

(According to CD2 3.2.4 the operator resolution
begins with member functions of the LHS and then
moves on to free functions in the namespace(s)

corresponding to the operands. With a conform-
ing compiler “std::cout <<” should invoke
std::operator<<(). - Alan)

• import the relevant items with using declarations
such as using std::cout. Again I would
welcome someone explaining how associated op-
erators (and possibly functions) work in such cir-
cumstances.

• use the quick, magical fix, of the using directive:
using namespace std;

By the way, do not get bitten in the way that Francis
did by assuming that cout can be used in the dynamic
initialisation of global variables (and in their
destructors). The classic implementation of iostreams
ensured that cout existed from the first to the last
linked file that included iostream.h. This was done
with an ugly hack. The C++ Standard will lay no such
burden on implementors. The result is that you should
not use iostream objects in constructors/destructors of
global objects.

Moral: Do not use global data objects. If you need
them use a global function instead. That way you can
control the problem of order of initialisation of multi-
file programs (if you include even a single library
header, you are definitely into that region.

Get used to the new style headers because you will
need them if you are going to use the full power of the
Standard C++ Library. Not doing that would be silly.
A lot of competent experts have worked long and hard
to provide you with tools to make your life easier don't
waste their efforts.

Conclusion

If you want any of the above expanded, re-addressed
etc. please email Francis and he will pass the request on
to me. I do try to keep things simple but detail seems to
run away with me.

 Overload – Issue 19 – April/May 1997

 Page 22

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hopefully, solu-
tions) that developers encounter.

OOD again: Some light, some shadows - by Graham Jones

First of all, many thanks to Kevlin (Overload 16) for
replying in detail to my article in the previous issue.
He certainly shed more light than darkness in my
direction, though perhaps not always in the way he
intended: one thing I now understand better is how
the kind of programming I do is atypical.

I stand by my statement that “using OOA/OOD for
the interface is fine, but a minor issue either way”.
Only about a quarter of the code in my application is
do with ‘presentation issues’, and it was the easiest
quarter to design, code and test. (I’d say you have
rather more “presentation code” than is typical The
normal range is around 10%-30% - Alan) No doubt
this explains why most people find the examples in
‘Design Patterns’ to be balanced, whilst I do not. I
should add that I like ‘Design Patterns’ in many ways.
In particular, it focuses on fairly low level design,
where it merges into implementation, and I am a good
deal happier with OOD (or OOP) at this level than at
the higher level tackled by Booch. Kevlin’s comment
that ‘fine grained classes can have more of an impact
on the construction of your application than the
coarse ones’ was timely. I was beginning to suspect
that this was the case, and it helped crystallise some
of my ideas.

Neural nets

I was intrigued by Kevlin’s description of the neural
net program. Look at the order in which he
approached the problem of modelling the net. A
mathematical model, the choice of a data structure
(matrix) and associated algorithms, then the neural
net class, then its interface, then factoring out the UI.
It is roughly the order in which I have tackled similar
projects. It is also almost exactly the reverse order
that the OOD paradigm (without modularity)
recommends. (I realise that authorities differ, but I’m
not aware of any that would reject Kevlin’s approach.
There is always a “cut-off” where modelling further
detail as object classes is counter-productive. Kevlin
used his expertise to identify this point. - Alan)

I’m afraid this example reinforces my view that OOD
is of little help for this kind of program - and it is this
kind of program I spend most of my time on. Kevlin
quite rightly says that my views on design are
incomplete. But unless there is more of a method to
this modelarity business than Kevlin describes, it

seems incomplete too. Does modelarity add flexibility
to OOD? Or does it allow the designer so much
freedom that there is no real guide except experience?

Much work in AI suffers from the ‘solution first’
approach. The most important design decision in
Kevlin’s example was to use a neural net in the first
place, but this is just a ‘given’ in his description.
Likewise, Booch decides pretty quickly that a
‘blackboard’ system is appropriate for his problem,
and gets on with implementing it (Chapter 11 in
“Object Oriented Design”). I am not criticising
Kevlin, his friend, or Grady Booch, since AI is not
their job, or even their main interest when designing
these systems. However, if your job is to actually
solve a problem you must be prepared to make radical
changes in the methods used, and your program
design should take that into account. When you
discover that the neural net does not do what it is
supposed to do, what is left of the design? Do you
perhaps wish that you’d spent less time on
presentation issues? (No, I wish I’d identified and
fixed the interfaces between the parts of the system
that need to be flexible and those that I expect to be
stable. Oddly enough OOD is an effective tool for
doing this. - Alan)

Is interface or implementation most
volatile?

I’d like to briefly describe an early stage of my OCR
program. The input is a bitmap, one bit per pixel, and
sizes up to 1Mb or 8 million pixels are common. This,
surely, is an obvious object in my program. I want to
find all the shapes (connected components) in the
image, and there are various algorithms for this. I will
sketch a few: the important point for my purposes is
the way they need to access the bitmap.

1) Find a black pixel, and then any black neighbours,
and then any of their neighbours etc. Pixel co-
ordinates are stored while this searching is going
on, and to avoid visiting the same pixel many
times, the pixels are set to white in the image as
they are found. getpixel() and
setpixel() member functions seem sensible:
they can wrap up the bit manipulations required to
find the colour of a pixel at given co-ordinates.
This is the simplest, and the slowest method.

 Overload – Issue 19 – April/May 1997

 Page 23

2) Scan down the image line by line, find runs of
black pixels in each, and build up a graph struc-
ture in which the vertices are horizontal black
runs, and the edges connect runs that touch one
another in adjacent lines. The graph can then be
converted into a list of shapes. The best way for
this to access the image seemed to be via a
getscanline() function. This algorithm is po-
tentially a lot faster than (1) but using
getpixel() would nullify this benefit
(setpixel() is not needed.)
getscanline() can convert the scan line into
a char array, and the algorithm can be written as
though it was dealing with a 2D array of chars.

3) Like (1) but using horizontal black runs instead of
individual pixels. getscanline() is no good
because while finding a tall shape, many scan
lines would be needed. Again getpixel() and
setpixel() are too slow. A third way of ac-
cessing the image is needed.

I do not know which is the best algorithm without
trying them. This is very often the case in my work: I
know the input and required output, but not how to
get there. The point I want to make about OOD is that
it is aimed at cases where the way in which data is to
be accessed remains constant, while the way in which
the data is represented inside the class may change. (I
disagree, it is aimed at cases where interactions
between parts of the system remain constant, but the
algorithms and data structures used in each part may
vary. In particular the above examples sound like
three implementations of the same class - Alan) As in
the example above, the opposite keeps happening to
me: the way in which the data is represented stays
constant, while the interface changes. (Then your
object model is wrong. This is the problem Kevlin’s
friend encountered: getting the correct model - Alan)
A couple of sentences from Barton and Nackman’s
Scientific and Engineering C++ (p230) strike me as
relevant:

“Information hiding allows us to exploit the
possibility of having different state representations by
picking the “best” representation according to criteria
prevailing when we implement the object’s
behaviour. If these conditions change, as when
problems or computers or compilers or users change,
the representation can be altered and the behaviours
reimplemented without altering other parts of the
program that only call member functions.”

During the 4 years that I have been developing my
OCR application, the problem and the computer and
the compiler and the users have stayed the same (from
a design point of view) while the program has
changed often and radically. I can only say that in my

experience, functions and data structures survive
these changes better than objects. This applies to
relatively low-level changes like different algorithms
for shape-finding and to more drastic changes like
replacing your neural net with a blackboard. Perhaps I
should make it clear that I am talking about functions
as a design element - function-oriented design if you
like - not about the capabilities of functions versus
classes in C++.

For a moment try thinking of objects a different way:
take all the “functions” that act on a “data
structure”, put the data structure as a private
structure inside a “class” and make the functions into
member functions of that class. Any functions that
are not invoked from outside the class should be
“private”, the ones invoked from outside are
“public”. By your own admission the functions and
data structures are largely stable - apart from “low
level” algorithm changes - which I’d expect to be in
the “private” functions that do not impact the rest of
the system. A class built this way should be more
stable than the functions and data structures that
comprise it.

In one sense this approach to constructing object
classes is a “long way around” since it goes via your
existing functional decomposition, but it allows you to
make effective use of your existing expertise.
(Someone is sure to point out that it also loses some
of the potential benefits of OOD - but those can only
be realised with a good deal of experience of the
method.) Alan

Polar Complexities

In my last article I described a class for complex
numbers and quoted Russell Winder to the effect that
he thought that knowledge of whether the internal
representation was Cartesian or polar should be
hidden from the user of the class. In my opinion, that
is a very bad design decision which only someone
who was fixated on objects would even consider.
Changing from Cartesian to polar co-ordinates will
affect the speed and precision of practically every
operation on the class. The idea that one could make
such a change without affecting client code is
ridiculous. I think that in this case, the nature of the
internal representation (not the actual variables)
should be exposed to clients. I note with relief that
Barton and Nackman’s classes for arrays expose their
internal representation in their names at least: you
know where you are with a
ConcreteFortranSymmetricPackedArray2d<T>.

 Overload – Issue 19 – April/May 1997

 Page 24

Encapsulation

In my last article I also mentioned a program for
converting between different image file formats. This
is another case where the data representation should
not (or cannot) be hidden (Why not? - See
“Observations on the Design of an Address Class -
By Mark Radford” in this issue - Alan). Possibly I am
beginning to make sense of what it is I don’t like
about OOD. Encapsulation is a wonderful thing but
an ‘object mentality’ leads programmers to
encapsulate the wrong thing in some situations. In
particular objects hide the way that data is
represented, and there are at least three reasons why
this might be a bad thing: because the representation
is more stable as the program develops than the way it
is accessed; because the user needs to know about the
time, memory, or precision implications of the
representation; because the way the data is
represented is already ‘fixed’ as some sort of external
standard. (I don’t see why encapsulation is wrong in
any of these circumstances - which I agree are
common. Alan)

Final thought

In “Safer C” by Les Hatton, 1994, ISBN 0-07-
707640-0, p98, the author says that he has seen “a
number of C++ systems with ridiculously simple

functional components and a labyrinthine class
system which caused the mind to boggle. When
plotting the class hierarchy of such a system recently
from a major communications package, the lines
joining the various classes were in such abundance
that all the white pixels between the boxes
representing the class names disappeared after about
twenty minutes plotting on a blisteringly fast
workstation, prompting the package’s designers to
burst out laughing, and confirming their view that
things had got a little out of hand!”

I think Phil Bass (Letters, Overload 16) is right to fear
a backlash against C++ and OO. The computer
industry seems to have a sheep-like tendency to rush
from one extreme to another. I did not intend in my
last article, and I do not in this one, to put people off
trying OOD - I know that my experience is limited,
and specialised. What I would like this article to do is
to provoke others to write in with their experiences.

Graham Jones

Looking at the above I realised that I’ve added more
than my intended proportion of annotations. I believe
that OOD is a solution to the problems that Graham
has identified rather than the source. I hope that the
above comments are illuminating. If not, please
write! - Alan

A model for backsolving by Richard Percy
problem statement � a generalised approach � backsolving toolkit

Introduction

In the last article I presented a Cashflow template class
that provides a generalised method for generating those
projections that financial analysts like so much. I don’t
propose to take this model any further forward at the
moment but just backward.

It is a fact of life in financial matters that we often
know where we want to get and how we want to get
there but we don’t know where to start. The result of
this, as far as financial applications programming is
concerned, is that the method of calculating an end
result from a starting position is often straightforward
but only the desired end result is known.

For example, a company may have a known liability
on, say, 1 January 2000 and wishes to invest in a stock
whose dividends and redemption proceeds will cover
this cash outflow. It would be fairly easy for the
company to work out the eventual proceeds from an
investment of a known amount now in a fixed interest
stock, assuming that it knows the current stock prices
and interest rates available on cash deposits. It is less

easy to calculate the investment necessary to meet the
liability and even less to compare the yields of two
alternative investments.

Sometimes a mathematical formula can be derived to
calculate this kind of problem but this may not be
portable to other similar problems and can be time-
consuming. The best approach is often a “trial and
error” method, which normally involves sensible initial
guesses of the answer that are refined successively until
we are “close enough”. The model I am presenting
below is a generalisation of this method in the form of a
tookit of classes that are bolted together according to
the programmer’s needs.

A generalised approach to backsolving

The biggest problem with trying to generalise
backsolving is the huge variety of data types and
methods that programmers may want to use. Having
said that, most of the time they will just want to use
built-in types (e.g. double) and a bog-standard targeting
method, such as interval bisection. So, it would be

 Overload – Issue 19 – April/May 1997

 Page 25

useful to provide a range of standard components that
can be used straight out of the box or replaced with
something else provided by the programmer.

Because of these requirements the model I have
developed is not fully object-oriented but rather splits
the problem into elements that I think programmers will
want to mix and match. These are:

• Seeker - Responsible for generating new guesses
for the trial and error method. Also receives initial
guesses supplied by the programmer and results of
each trial.

• Tolerance tester - Decides whether a given guess
and its result are close enough to the target value.

• Generator - Calculates the result of each guess.

• Solver - Controls the interaction of the above ele-
ments by generating successive guesses and find-
ing their results until they are close enough to the
target.

The Seeker provides the algorithm used to generate
successive guesses and will normally need to keep a
history of previous guesses. Therefore, it is often the
most complicated part of the model. I intend that my
library will provide one or two generalised seekers that
will work for most purposes but the programmer can
provide his own if he wishes.

The Tolerance tester should normally be very simple
and, again, the library should provide some common
general methods.

The Generator can be just about any “black box” that
takes a source value and generates a result.
Consequently, it is up to the programmer to supply it
but the library will impose restrictions on its general
form.

The Solver is simply a controlling loop and will be
provided by the library.

Implementing the elements of the tool-
kit

Introduction

I have developed the following implementation using
Borland C++ 4.02 but have generally tried to avoid
compiler-specific code. The model makes heavy use of
templates and uses the “function object” idiom in a
manner similar to STL.

An important concept is that of Source and Result
types because most of the templates are based on them.
The whole point of this exercise is that the programmer

provides a “black box” that converts a Source (any
type) into a Result (any type) but only knows the value
of Result. He wishes to calculate the Source value
without tortuous rearrangement of a mathematical
formula. The code sometimes abbreviates Source and
Result as S and R.

The library is organised into two main modules:
UTARG and SAMPFUNC. The first contains general
definitions, the Seeker abstract base class and the
Solver. The second contains examples of each of
Seeker, Tolerance tester and Generator. Some of these
would be provided by the library in practice, whereas
others are purely for illustration and would normally be
in a further module provided by the library user.

It is useful to define a special type of exception for
backsolving and this is provided in UTARG by deriving
from an existing exception class, xmsg.

// Borland string class
#include <cstring.h>
// Borland exception classes
#include <except.h>

class XNotConvergent: public xmsg {
public:
 XNotConvergent(string& s) :
 xmsg(s) {}
}; // XNotConvergent

Seeker

As stated above, the Seeker is the trickiest part of the
model to program because it will normally need to keep
a history of guesses (of type Source) and their results
(of type Result). Because of the order of processing
required by the Solver (see below) the timing of the
data transfer to and from the Seeker is quite rigidly
specified and separate functions are required for data
passing in and out. This sounds like a job for an
abstract base class!

template <class S, class R>
class Seeker {
public:
virtual ~Seeker() {}
virtual const S& GetNextGuess() = 0;
virtual void SetLastResult(const R&)
 = 0;
};

The user’s Seeker must be derived from the Seeker
base class and must implement the functions
GetNextGuess and SetLastResult for an object
to be created.

 Overload – Issue 19 – April/May 1997

 Page 26

I have provided an example class, MyBisector, which
uses a bisection method and works on continuous
monotonic functions (i.e. Result values always either
increase or decrease with increasing Source values and
there are no gaps). The class requires Source and

Result to have some basic arithmetic operators defined
(<. + and /) and is most suitable for floating point types.
The constructor requires the target Result, two initial
guesses and their results to get it started.

template <class S, class R>
class MyBisector: public Seeker<S, R> {
public:
 MyBisector(const R& target, const S& guess1, const R& result1,
 const S& guess2, const R& result2)
 : gu1(guess1), gu2(guess2), targ(target), res1(result1),
 res2(result2), expRes(false) {
 if ((res1<targ && res2<targ) || (targ<res1 && targ<res2))
 throw XNotConvergent(string(
 “MyBisector:Invalid result arguments in constructor”));
 }
 // default copy & assign are OK
 virtual const S& GetNextGuess();
 virtual void SetLastResult(const R&);

private:
 S gu1, gu2, gBis; // 2 old guesses & newest guess
 const R targ;
 R res1, res2;// 2 old guess results
 bool expRes; // true if expecting result of last guess
}; // MyBisector

template <class S, class R>
const S& MyBisector<S,R>::GetNextGuess() {
 if (expRes)
 throw msg(string(
 “MyBisector:Asking for next guess when result expected”));
 expRes = true;
 return gBis = (gu1 + gu2) / 2;
}

template <class S, class R>
void MyBisector<S, R>::
SetLastResult(const R& lr) {
 if ((res1<lr && res2<lr) || (lr<res1 && lr<res2))
 throw XNotConvergent(string(
 “MyBisector:Result outside previous results”));

 if ((lr<targ && targ<res1) || (res1<targ && targ<lr)) {
 res2 = lr; gu2 = gBis;
 }
 else {
 res1 = lr; gu1 = gBis;
 }
 expRes = false;
}

I’m sure that the reader can think of more widely
applicable and efficient algorithms than this. That’s
the whole point of designing the library this way.

Tolerance tester

The Tolerance tester’s job is to decide when to stop;
so it needs to know the target Result and the criteria

for a guess being close enough. This implies a
function call that returns a true/false value for each
guess. However, it would be nice only to have to
supply the target value once at the start and a user-
supplied routine may also want to keep a history of
guesses. A function object design with an
operator() returning bool is the best choice
here. The function takes a Source and Result
argument because a decision might be based on either

 Overload – Issue 19 – April/May 1997

 Page 27

or both for a given guess. For example, we might
want to stop when we have guessed the same value
more than 5 times or if the result of the guess is
within a certain margin of the target.

The example shown below illustrates the latter and
requires some arithmetic operators defined for Source
and Result.

template <class Source, class Result>
class MyTol {
public:
 MyTol(const Result& target, const double margin) :
 targ(target), marg(margin) {}
 // default copy & assign are OK
 bool operator()(const Source&, const Result& r) const {
 // Source isn’t used
 if ((r<targ && targ-r<targ*marg) ||(targ<r && r-targ<targ*marg))
 return true;
 else
 return false;
 }
private:
 const Result targ;
 const double marg;
};

Generator

The Generator simply calculates a Result value from
a Source value and, therefore, can be just about any
function that takes a Source argument and returns a
Result. As with the Tolerance tester, we are going to
make repeated calls to the function and will probably
want to initialise with some parameters that don’t

change with each call. Therefore, a function object
design is specified.

I have provided two examples: a quadratic equation
and the internal rate of return (IRR) of a simple
financial project. In fact, both problems can be
solved by simpler means but the simple examples are
provided for clarity.

template <class T>
class Quadratic {
public:
 Quadratic(const T& a, const T& b, const T& c) : a_(a), b_(b), c_(c){}
 // default copy & assign are OK
 T operator() (const T& x) const {return a_*x*x + b_*x + c_;}
private:
 const T a_, b_, c_;
};

The second example makes use of the Cashflow class
that I developed in the last article. It calculates the
net present value (the Result) of a series of regular
payments at a given interest rate (the Source).

Actuarial students might recognise this as the present
value of an annuity certain calculated in a generalised
way.

 Overload – Issue 19 – April/May 1997

 Page 28

#include “cashflow.h”
#include <math.h>

class RegularCash {
public:
 RegularCash(double amount, unsigned int interval, unsigned long duration)
 : amt(amount), inter(interval), dur(duration) {}
 // default copy & assign are OK
 double CalcNPV(const float rate) const;
 double operator() (const float rate) const {return CalcNPV(rate);}
private:
 class RcVec;
 double amt; // regular amount of each payment
 unsigned long inter; // no. of periods between each payment
 unsigned long dur; // overall no. of periods in payment stream
};//class RegularCash

class RegularCash::RcVec {
public:
 RcVec(const double amount=0) :
 amt(amount) {}
 // default copy & assign are OK
 const double GetAmount() const
 {return amt;}
 bool RollForward(
 unsigned long newDuration,
 RcVec& oldRow) {
 // the same amount is paid
 // at regular intervals
 // in perpetuity
 amt = oldRow.amt;
 return true;
 }

 bool IsEqual(
 const RcVec& other) const
 {return amt == other.amt;}

 ostream& PrintOn(
 ostream& o=cout) const
 {return o << amt << endl;}
private:
 double amt;
};//class RegularCash::RcVec

double RegularCash::CalcNPV(
 const float rate) const {
 double npv(0);
 RcVec startPayment(amt);
 // first payment is at time 1
 Cashflow<RcVec> cf(1);
 cf.RollUpLim(startPayment,
 RcVec::RollForward, dur, true);
 for(signed long c(cf.BaseIndex());
 c<=cf.LastIndex(); c++) {
 npv += (cf[c].GetAmount()) /
 pow(1+rate, c * inter);
 }
 return npv;
}

Solver

The final part of the backsolving jigsaw is the Solver.
This simply controls the process by performing the
following steps.

1. Get a new guess from the Seeker.

2. Calculate the result of the guess using the Genera-
tor.

3. Test the values with the Tolerance tester. If close
enough then stop.

4. Otherwise, tell the Seeker the result of the last
guess and go again from the top.

The Solver is implemented as a template function and
is surprisingly simple.

template<class Source, class Result,
 class Generator, class Tolerance>
const Source BackSolve(
 Generator gen,
 Seeker<Source,Result>& sk,
 Tolerance tol) {
 Result res;
 Source solution;
 while(true) {
 solution = sk.GetNextGuess();
 res = gen(solution);
 if (tol(solution,res)) break;
 sk.SetLastResult(res);
 }
 return solution;
}

Note that, although Source and Result are template
parameters, they aren’t supplied directly as arguments
to the function. Instead, they are passed through as
parameters to the Seeker argument, which lets the
compiler find the instantiation of the template. This

 Overload – Issue 19 – April/May 1997

 Page 29

handy feature eliminates the need to supply nasty
Source and Result dummy arguments.

I suppose that calling the Generator is wasteful if the
Tolerance tester only needs the Source value, but it
can’t be helped.

Controlling the application

To perform the backsolving all the user needs to do is
create the necessary objects and pass them to the
Solver. The first example below solves a quadratic
equation (10x2-16x+5.2=400) with real roots and the
second calculates the internal rate of return of a
project with a down payment of £10,000 and
proceeds of £1,000 p.a. for 25 years.

The implementation is for Borland’s DOS or
EasyWin platform.

The program calculates the positive root of the
quadratic equation (7.13404) in 33 guesses and the
interest rate (8.78042%) in 27 guesses. The results
can be checked for the quadratic equation with the
formula we all learned at school and for the annuity
certain by using NPV=[1-(1+i)-25]/i, where
i=0.0878042.

In the next article I plan to look at generalised
formatting and numerical precision issues for
financial people. In the final article in this series I
hope to cover updating the models I have developed
to a more recent release of the C++ Standard Library.

Richard Percy

int main() {
 int retCode; // {You ought to initialise this - Alan}
 try {
 // Example 1: quadratic equation
 const double qTarget(400);
 Quadratic<double> qGen(10,-16,5.2);
 MyBisector<float,double> qSeek(qTarget,0,qGen(0),999999.0,qGen(999999.0));
 MyTol<float, double> qTol(qTarget, 0.00001);
 cout << “Quadratic solution: “ << BackSolve(qGen, qSeek, qTol) << endl;

 // Example 2: internal rate of return using cashflow class
 const double npvTarget(10000.0);
 RegularCash npvGen(1000.0, 1,25-1);
 MyBisector<float, double>
 irrSeek(npvTarget, 0,npvGen(0), 999.99,npvGen(999.99));
 MyTol<float, double> irrTol(npvTarget, 0.00001);
 cout << “Internal rate of return solution: “ <<
 BackSolve(npvGen, irrSeek, irrTol) << endl;
 }
 catch (XNotConvergent x) {
 cout << “\nException: Non-convergence!\n\n” << x.why() << endl;
 retCode = 32767;
 }
 catch (xmsg x) {
 cout << “\nException!\n\n” << x.why() << endl;
 retCode = 32767;
 }
 catch (...) {
 cout << “\nException!\n\nProgram threw an unhandled exception” << endl;
 retCode = 32767;
 }
 return retCode;
}

 Overload – Issue 19 – April/May 1997

 Page 30

Corrections - Overload 17/18

Using Objects for Background Tasks

Apologies to anyone reading my article. The final
code box contains <Test>, which obviously should
be <MainWindow>

Did I write that?

Yes, apparently.

Adrian Fagg
adrian@rbaf.demon.co.uk

"auto_ptr || !auto_ptr"

I too (just like Adrian) feel I should mention a slight
slip-up in my article. The default constructor for
no_copy should really be protected and not public.

Jonathan Jagger
jonj@dmv.co.uk

editor << letters;

Further Thoughts on Inheritance for Reuse
From Francis Glassborow

In the last issue I only skimmed over this use of
inheritance in C++. Sean’s comment together with
several emails makes me think that it would be
beneficial to revisit the subject in a little more detail.

To understand what is going on you need a firm grasp
of dynamic versus static binding. I know that some
programmers get very confused by those terms. In
the simplest form static behaviour is that which can
be fully determined by the compiler whilst dynamic
behaviour is somehow determined at execution time.

Objects have a static type. This means that an object
has a well-defined existence at compile time. On the
other hand objects that are handled indirectly via
pointers or references have two types. The static type
provided by the declaration of the pointer or reference
identifier and the dynamic type of the object that they
are referring to. Keep that in mind.

In inheritance hierarchies we talk of a function over-
riding a base class version. By this we mean that
there is a new definition of a base class function in a
derived class. We also have the possibility that a
derived class function hides a base class one. To try
to make this clear consider the following very simple
hierarchy:

class Base {
public:
 void fn (int);
 void fn (double);
 void gn (int);
};

class Derived : public Base {
public:
 void fn (int);
};

And some code to use that hierarchy:

int main() {
 Base b;
 Derived d;

 // calls fn(int) for Base
 b.fn(1);

 // calls fn(double) for Base
 b.fn(1.0);

 // calls fn(int) for Derived
 d.fn(1);

 // calls fn(int) for derived!
 d.fn(1.0);

 // calls fn(double) for Base
 static_cast<Base>(d).fn(1.0);
}

We say that void fn(int) in Derived over-
rides void fn(int) in Base and hides void
fn(double). This is all to do with the way in
which names are looked up. Nothing new in any of
that and I only include it to remind you of the rules.
In C++ behaviour of objects is statically determined
based on the declared type of the object.

Francis Glassborow

francis@robinton.demon.co.uk

 Overload – Issue 19 – April/May 1997

 Page 31

Inheritance
From Roger Lever

In Overload17/18 “The uses and abuses of
inheritance” by Francis Glassborow raises some
interesting points. However, in the best traditions of
these things I do have some points to make...

The coding rule: “If you want a variant of an existing
type that has different behaviour then use either
private inheritance or layering. Do not use public
inheritance”. This appears to be ambiguous in terms
of what is actually meant by different behaviour. This
is important as it is this distinction which will decide
whether public inheritance is an appropriate choice or
not.

Let us consider the interface specification of class
Miss is:

// A is implemented by a mechanism X
 float do_something();

This is later changed to have everything the same
except:

// B is implemented by a mechanism X
 double do_something();

or:

// C is implemented by a mechanism Y
 float do_something();

or:

// D is implemented by a mechanism Y
 double do_something();

This allows us to consider the issue as:

1. Interface specification has changed as in B and D

2. Implementation behaviour has changed as in C

3. Interface and implementation has changed as in D

Different behaviour = interface specification

Comparing A and B, the behaviour is the same X in
both cases, however, the interface specification has
changed. This could well lead to either private
inheritance or composition as a means of maintaining
backward compatibility. The bottom line is that
interface changes are very difficult to deal with,
without either breaking existing code or forcing some
kludge to provide the changes. This is a case where

public inheritance is not a good idea, for the reasons
stated in the article.

Different behaviour = implementation
mechanism

What if we wanted to implement A using a
mechanism Y as in C? This is an implementation
detail and as long as the interface specification
remains fixed it has no bearing on the issue. In fact
this is part of the reason for hiding these details - that
they can be changed without affecting others
dependent on the interface. So public inheritance does
not enter the equation.

Different behaviour = interface and
implementation

What if we wanted to have do_something with
both X and Y mechanisms, dependent on some
condition, as in the Address example in the same
article? As is pointed out there - virtual functions are
a good solution, not overriding non-virtual functions.
So public inheritance enters the equation here,
probably via an ABC.

Comparing A to D, this may be a case where a new
concrete class is required and as such public
inheritance may well be a reasonable option. This is
because D is exhibiting different behaviour to A. At
this point usual public inheritance rules such as
“Substitutability” come in...

Summary

Therefore the coding rule: “If you want a variant of
an existing type that has different behaviour then use
either private inheritance or layering. Do not use
public inheritance”, should be modified to “If you
wish to change only the interface specification of an
existing type then use either private inheritance or
layering”.

Roger Lever
rnl16616@ggr.co.uk

 Overload – Issue 19 – April/May 1997

 Page 32

News & Product Releases
This section contains information about new products and is mainly contributed by the vendors themselves. If you
have an announcement that you feel would be of interest to the readership, please submit it to the Edito
r for inclusion here.

The UML/OMT User Group

Following the release of version 1.0 of the Unified
Modeling Language in January, the UK OMT User
Group is changing its name and scope to more fully
embrace the UML, to become the UML/OMT User
Group.

Developed by leading methodologists at Rational in
collaboration with other industrial partners, the UML
is a notation set with semantics for representing and
specifying software systems. It has evolved from a
number of object-oriented development methods,
notably Rumbaugh’s OMT, Booch, and Jacobson’s
Object-Oriented Software Engineering.

The user group has been tracking the development of
the UML from its initial development to its
submission to the OMG as a standard.

Individual membership of the group is ?50 per
annum. Corporate membership is ?200 with five

named members, or ?300 with ten named members.
All prices are exclusive of VAT. A web site is
planned and corporate members will soon be able to
take up the offer of a free link to their own site.

All members receive a quarterly newsletter,
reductions on OO books from leading publishers, and
a case book of articles on the techniques and notation
of OMT, OMT-2 and UML. Each year the group also
holds a seminar day, which is open to both non-
members and members (at a reduced rate).

For further information about the user group and
membership please contact either Jan Bevans
(jbevans@qatraining.com) or Kevlin Henney
(khenney@qatraining.com), on 01285 655 888 at QA
Training Ltd, Cecily Hill Castle, Cirencester,
Gloucestershire, GL7 2EF.

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Acting Editor - for this issue only
Alan Griffiths

CCN Group Limited, Talbot House,
Talbot Street, Nottingham, NG1 5HF

overload@octopull.demon.co.uk
Production Editor

Alan Lenton
alenton@aol.com

Advertising
John Washington

Cartchers Farm, Carthouse Lane
Woking, Surrey, GU21 4XS

accuads@wash.demon.co.uk
Subscriptions

David Hodge
2 Clevedon Road

Bexhill-on-Sea
East Sussex TN39 4EL

101633.1100@compuserve.com
Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such. The use of
such terms is intended neither to support nor disparage any trademark claim. On request, we will withdraw all refer-
ences to a specific trademark and its owner.
By default the copyright of all material published by ACCU is the exclusive property of ACCU. An author of an arti-
cle or column (not a letter or review of software or book) may explicitly offer single (first serial) publication rights
and thereby retain all other rights. Except for licences granted to (1) Corporate Members to copy solely for internal
distribution (2) members to copy source code for use on their own computers, no material can be copied from Over-
load without written permission of the copyright holder.
Copy deadline
All articles intended for inclusion in Overload 20 (June/July) should be submitted to the editor by May 26th.

 Overload – Issue 19 – April/May 1997

 Page 33

ACCU and the ’net

ACCU.general
This is an open mailing list for the discussion of C and C++ related issues. It features an unusually high standard of
discussion and several of our regular columnists contribute. The highlights are serialised in CVu. To subscribe, send
any message to:
accu.general-sub@monosys.com
You will receive a welcome message with instructions on how to use the list. The list address is:
accu.general@monosys.com

Demon FTP site
The contents of CVu disks, and hence the code from Overload articles, eventually ends up on Demon’s main FTP
site:
ftp://ftp.demon.co.uk/accu
Files are organised by CVu issue.

ACCU web page
At the moment there are still some problems with the generic URL but you should be able to access the current pages
at:
http://bach.cis.temple.edu/accu
Please note that a UK-based web site will be operational in the near future and this will become the “official” ACCU
web site. Alex Yuriev has done a great job supporting the ACCU web site from the US – thanks Alex!

C++ – The UK information site
This site is maintained by Steve Rumsby, long-serving member of the UK delegation to WG21 and nearly always
head of delegation.
http://www.maths.warwick.ac.uk/c++

C++ – Beyond the ARM
Sean says he will have updated his pages by the time this is in print.
http://www.ocsltd.com/c++
Any comments on these pages are welcome!

Contacting the ACCU committee
Individual committee members can be contacted at the addresses given above. In addition, the following generic
email addresses exist:
caugers@accu.org
chair@accu.org
cvu@accu.org
info@accu.org
info.deutschland@accu.org
membership@accu.org
overload@accu.org
publicity@accu.org
secretary@accu.org
standards@accu.org
treasurer@accu.org
webmaster@accu.org
There are actually a few others but I think you’ll find the list above fairly exhaustive!

	Editorial
	Hello…
	…and goodbye…
	…and hello…
	…and what do you want?

	Software Development in C++
	Observations on the Design of an Address Class - By Mark Radford
	Introduction
	Question 1
	Question 2

	Putting it right
	Correcting the make_address_data() Function Design
	Inline Functions in the Surrogate Address Class

	Conclusion
	References

	The Uses and Abuses of Inheritance - Roger Lever & Mark Radford
	Copy Constructor and Assignment Operator
	Is the Surrogate Really Needed?
	Why Use Friend?
	Checking for Self Assignment
	Patterns
	In Conclusion - Mark Radford

	The Problem of Self-Assignment - By Francis Glassborow
	Borland C++ Builder for expert programmers - by Eric Richards
	Introduction
	An important language development
	Borland C++ 5 comparison
	A massively altered IDE
	Under the bonnet
	What you do
	Databases
	and C++ , similarities and differences.
	Conclusion

	Make a date with C++: In the Beginning... by Kevlin Henney
	Leap years
	Go faster stripes
	The main thing
	Summary

	The Draft International C++ Standard
	C++ Committee Draft
	The Casting Vote - by Sean A. Corfield
	The : operator
	Binary literals
	Cloning objects with type_info
	Comments'r'US
	Exceptional policy
	Can you point to it? (again)
	Faulty defaults
	Nothing revisited
	The future

	New Keywords For…by The Harpist
	Sidebar:
	Functions without return statements

	Now to some new keywords
	mutable
	explicit
	namespace and static
	The New Style Headers.

	Conclusion

	C++ Techniques
	OOD again: Some light, some shadows - by Graham Jones
	Neural nets
	Is interface or implementation most volatile?
	Polar Complexities
	Encapsulation
	Final thought

	A model for backsolving by Richard Percy
	Introduction
	A generalised approach to backsolving
	Implementing the elements of the toolkit
	Introduction
	Seeker
	Tolerance tester
	Generator
	Solver
	Controlling the application

	Corrections - Overload 17/18
	Using Objects for Background Tasks
	"auto_ptr || !auto_ptr"

	editor << letters;
	Further Thoughts on Inheritance for Reuse
	Inheritance
	Different behaviour = interface specification
	Different behaviour = implementation mechanism
	Different behaviour = interface and implementation
	Summary

	News & Product Releases
	The UML/OMT User Group

	ACCU and the ’net
	ACCU.general
	Demon FTP site
	ACCU web page
	C++ – The UK information site
	C++ – Beyond the ARM
	Contacting the ACCU committee

